pub struct QuantumMLErrorMitigator {
pub mitigation_strategy: MitigationStrategy,
pub noise_model: NoiseModel,
pub calibration_data: CalibrationData,
pub adaptive_config: AdaptiveConfig,
pub performance_metrics: PerformanceMetrics,
}Expand description
Advanced error mitigation framework for quantum ML
Fields§
§mitigation_strategy: MitigationStrategy§noise_model: NoiseModel§calibration_data: CalibrationData§adaptive_config: AdaptiveConfig§performance_metrics: PerformanceMetricsImplementations§
Source§impl QuantumMLErrorMitigator
impl QuantumMLErrorMitigator
Sourcepub fn new(
mitigation_strategy: MitigationStrategy,
noise_model: NoiseModel,
) -> Result<Self>
pub fn new( mitigation_strategy: MitigationStrategy, noise_model: NoiseModel, ) -> Result<Self>
Create a new error mitigation framework
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 100)
19fn main() -> Result<()> {
20 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22 // Step 1: Initialize noise model and calibration data
23 println!("1. Setting up noise model and calibration data...");
24
25 let noise_model = create_realistic_noise_model()?;
26 println!(
27 " - Noise model configured with {} gate types",
28 noise_model.gate_errors.len()
29 );
30 println!(
31 " - Average gate error rate: {:.4}",
32 calculate_average_error_rate(&noise_model)
33 );
34 println!(
35 " - Measurement fidelity: {:.3}",
36 noise_model.measurement_errors.readout_fidelity
37 );
38
39 // Step 2: Create different mitigation strategies
40 println!("\n2. Creating error mitigation strategies...");
41
42 let strategies = create_mitigation_strategies()?;
43 println!(
44 " - Created {} different mitigation strategies",
45 strategies.len()
46 );
47
48 for (i, strategy) in strategies.iter().enumerate() {
49 println!(" {}. {}", i + 1, get_strategy_name(strategy));
50 }
51
52 // Step 3: Initialize quantum ML circuit for testing
53 println!("\n3. Initializing quantum ML circuit...");
54
55 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58 println!(
59 " - Circuit: {} qubits, {} parameters",
60 test_circuit.num_qubits(),
61 initial_parameters.len()
62 );
63 println!(
64 " - Circuit depth: approximately {} gates",
65 estimate_circuit_depth(&test_circuit)
66 );
67
68 // Step 4: Simulate noisy measurements
69 println!("\n4. Simulating noisy quantum measurements...");
70
71 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72 let noisy_gradients =
73 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75 println!(
76 " - Generated {} measurement shots",
77 noisy_measurements.nrows()
78 );
79 println!(
80 " - Noise level in measurements: {:.3}",
81 assess_noise_level(&noisy_measurements)
82 );
83 println!(
84 " - Gradient noise standard deviation: {:.4}",
85 noisy_gradients.std(0.0)
86 );
87
88 // Step 5: Apply different mitigation strategies
89 println!("\n5. Applying different error mitigation strategies...");
90
91 let mut mitigation_results = Vec::new();
92
93 for (strategy_idx, strategy) in strategies.iter().enumerate() {
94 println!(
95 " Testing strategy {}: {}",
96 strategy_idx + 1,
97 get_strategy_name(strategy)
98 );
99
100 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102 let mitigated_data = mitigator.mitigate_training_errors(
103 &test_circuit,
104 &initial_parameters,
105 &noisy_measurements,
106 &noisy_gradients,
107 )?;
108
109 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110 println!(
111 " - Measurement improvement: {:.1}%",
112 improvement * 100.0
113 );
114 println!(
115 " - Confidence score: {:.3}",
116 mitigated_data.confidence_scores.mean().unwrap()
117 );
118 println!(
119 " - Mitigation overhead: {:.1}%",
120 mitigated_data.mitigation_overhead * 100.0
121 );
122
123 mitigation_results.push((strategy_idx, improvement, mitigated_data));
124 }
125
126 // Step 6: Compare mitigation effectiveness
127 println!("\n6. Comparing mitigation effectiveness...");
128
129 let mut sorted_results = mitigation_results.clone();
130 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132 println!(" Ranking by improvement:");
133 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134 println!(
135 " {}. {}: {:.1}% improvement",
136 rank + 1,
137 get_strategy_name(&strategies[*strategy_idx]),
138 improvement * 100.0
139 );
140 }
141
142 // Step 7: Demonstrate adaptive mitigation
143 println!("\n7. Demonstrating adaptive error mitigation...");
144
145 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146 strategies: strategies.clone(),
147 selection_policy: create_smart_selection_policy()?,
148 performance_tracker: create_performance_tracker()?,
149 };
150
151 let mut adaptive_mitigator =
152 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154 // Simulate training loop with adaptive mitigation
155 println!(" Simulating training with adaptive mitigation:");
156 let num_training_steps = 10;
157 let mut training_history = Vec::new();
158
159 for step in 0..num_training_steps {
160 // Simulate changing noise conditions
161 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162 adaptive_mitigator.noise_model = dynamic_noise;
163
164 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168 &test_circuit,
169 &initial_parameters,
170 &step_measurements,
171 &step_gradients,
172 )?;
173
174 let step_improvement =
175 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176 training_history.push(step_improvement);
177
178 if step % 3 == 0 {
179 println!(
180 " Step {}: {:.1}% improvement, confidence: {:.3}",
181 step + 1,
182 step_improvement * 100.0,
183 mitigated_step.confidence_scores.mean().unwrap()
184 );
185 }
186 }
187
188 let avg_adaptive_improvement =
189 training_history.iter().sum::<f64>() / training_history.len() as f64;
190 println!(
191 " Average adaptive improvement: {:.1}%",
192 avg_adaptive_improvement * 100.0
193 );
194
195 // Step 8: Demonstrate specialized mitigation techniques
196 println!("\n8. Demonstrating specialized mitigation techniques...");
197
198 // Zero Noise Extrapolation
199 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200 println!(" Zero Noise Extrapolation:");
201 println!(
202 " - Extrapolated fidelity: {:.4}",
203 zne_demo.extrapolated_fidelity
204 );
205 println!(
206 " - Confidence interval: [{:.4}, {:.4}]",
207 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208 );
209
210 // Readout Error Mitigation
211 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212 println!(" Readout Error Mitigation:");
213 println!(
214 " - Correction accuracy: {:.1}%",
215 readout_demo.correction_accuracy * 100.0
216 );
217 println!(
218 " - Assignment matrix condition number: {:.2}",
219 readout_demo.condition_number
220 );
221
222 // Clifford Data Regression
223 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224 println!(" Clifford Data Regression:");
225 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
226 println!(
227 " - Prediction accuracy: {:.1}%",
228 cdr_demo.prediction_accuracy * 100.0
229 );
230
231 // Virtual Distillation
232 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233 println!(" Virtual Distillation:");
234 println!(
235 " - Distillation fidelity: {:.4}",
236 vd_demo.distillation_fidelity
237 );
238 println!(
239 " - Resource overhead: {:.1}x",
240 vd_demo.resource_overhead
241 );
242
243 // Step 9: ML-based error mitigation
244 println!("\n9. Demonstrating ML-based error mitigation...");
245
246 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247 println!(" Machine Learning-based Mitigation:");
248 println!(
249 " - Neural network accuracy: {:.1}%",
250 ml_mitigation_demo.nn_accuracy * 100.0
251 );
252 println!(
253 " - Noise prediction MSE: {:.6}",
254 ml_mitigation_demo.prediction_mse
255 );
256 println!(
257 " - Correction effectiveness: {:.1}%",
258 ml_mitigation_demo.correction_effectiveness * 100.0
259 );
260
261 // Step 10: Real-time adaptive mitigation
262 println!("\n10. Real-time adaptive mitigation simulation...");
263
264 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265 println!(" Real-time Adaptation Results:");
266 println!(
267 " - Response time: {:.1} ms",
268 realtime_results.response_time_ms
269 );
270 println!(
271 " - Adaptation accuracy: {:.1}%",
272 realtime_results.adaptation_accuracy * 100.0
273 );
274 println!(
275 " - Overall performance gain: {:.1}%",
276 realtime_results.performance_gain * 100.0
277 );
278
279 // Step 11: Error mitigation for inference
280 println!("\n11. Error mitigation for quantum ML inference...");
281
282 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284 let best_strategy = &strategies[sorted_results[0].0];
285 let mut inference_mitigator =
286 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288 let mitigated_inference =
289 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291 println!(" Inference Mitigation Results:");
292 println!(
293 " - Uncertainty reduction: {:.1}%",
294 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295 );
296 println!(
297 " - Reliability score: {:.3}",
298 mitigated_inference.reliability_score
299 );
300 println!(
301 " - Prediction confidence: {:.1}%",
302 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303 );
304
305 // Step 12: Performance and resource analysis
306 println!("\n12. Performance and resource analysis...");
307
308 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309 println!(" Resource Analysis:");
310 println!(
311 " - Average computational overhead: {:.1}x",
312 resource_analysis.avg_computational_overhead
313 );
314 println!(
315 " - Memory usage increase: {:.1}%",
316 resource_analysis.memory_overhead * 100.0
317 );
318 println!(
319 " - Classical processing time: {:.2} ms",
320 resource_analysis.classical_time_ms
321 );
322 println!(
323 " - Quantum circuit overhead: {:.1}%",
324 resource_analysis.quantum_overhead * 100.0
325 );
326
327 // Step 13: Quantum advantage analysis with error mitigation
328 println!("\n13. Quantum advantage analysis with error mitigation...");
329
330 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331 &test_circuit,
332 &sorted_results[0].2, // Best mitigation result
333 )?;
334
335 println!(" Quantum Advantage Analysis:");
336 println!(
337 " - Effective quantum volume: {}",
338 quantum_advantage.effective_quantum_volume
339 );
340 println!(
341 " - Noise-mitigated fidelity: {:.4}",
342 quantum_advantage.mitigated_fidelity
343 );
344 println!(
345 " - Classical simulation cost: {:.1}x harder",
346 quantum_advantage.classical_simulation_cost
347 );
348 println!(
349 " - Practical quantum advantage: {}",
350 if quantum_advantage.practical_advantage {
351 "Yes"
352 } else {
353 "Not yet"
354 }
355 );
356
357 // Step 14: Generate comprehensive report
358 println!("\n14. Generating comprehensive error mitigation report...");
359
360 let comprehensive_report = generate_comprehensive_mitigation_report(
361 &strategies,
362 &mitigation_results,
363 &training_history,
364 &resource_analysis,
365 &quantum_advantage,
366 )?;
367
368 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369 println!(" Comprehensive report saved to: error_mitigation_report.html");
370
371 // Step 15: Future recommendations
372 println!("\n15. Error mitigation recommendations...");
373
374 let recommendations =
375 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377 println!(" Recommendations:");
378 for (i, recommendation) in recommendations.iter().enumerate() {
379 println!(" {}. {}", i + 1, recommendation);
380 }
381
382 println!("\n=== Advanced Error Mitigation Demo Complete ===");
383 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384 println!("📊 All mitigation strategies evaluated and optimized");
385 println!("🚀 Quantum ML error mitigation framework ready for production");
386
387 Ok(())
388}Sourcepub fn mitigate_training_errors(
&mut self,
circuit: &QuantumCircuit,
parameters: &Array1<f64>,
measurement_results: &Array2<f64>,
gradient_estimates: &Array1<f64>,
) -> Result<MitigatedTrainingData>
pub fn mitigate_training_errors( &mut self, circuit: &QuantumCircuit, parameters: &Array1<f64>, measurement_results: &Array2<f64>, gradient_estimates: &Array1<f64>, ) -> Result<MitigatedTrainingData>
Apply error mitigation to quantum ML training
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (lines 102-107)
19fn main() -> Result<()> {
20 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22 // Step 1: Initialize noise model and calibration data
23 println!("1. Setting up noise model and calibration data...");
24
25 let noise_model = create_realistic_noise_model()?;
26 println!(
27 " - Noise model configured with {} gate types",
28 noise_model.gate_errors.len()
29 );
30 println!(
31 " - Average gate error rate: {:.4}",
32 calculate_average_error_rate(&noise_model)
33 );
34 println!(
35 " - Measurement fidelity: {:.3}",
36 noise_model.measurement_errors.readout_fidelity
37 );
38
39 // Step 2: Create different mitigation strategies
40 println!("\n2. Creating error mitigation strategies...");
41
42 let strategies = create_mitigation_strategies()?;
43 println!(
44 " - Created {} different mitigation strategies",
45 strategies.len()
46 );
47
48 for (i, strategy) in strategies.iter().enumerate() {
49 println!(" {}. {}", i + 1, get_strategy_name(strategy));
50 }
51
52 // Step 3: Initialize quantum ML circuit for testing
53 println!("\n3. Initializing quantum ML circuit...");
54
55 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58 println!(
59 " - Circuit: {} qubits, {} parameters",
60 test_circuit.num_qubits(),
61 initial_parameters.len()
62 );
63 println!(
64 " - Circuit depth: approximately {} gates",
65 estimate_circuit_depth(&test_circuit)
66 );
67
68 // Step 4: Simulate noisy measurements
69 println!("\n4. Simulating noisy quantum measurements...");
70
71 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72 let noisy_gradients =
73 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75 println!(
76 " - Generated {} measurement shots",
77 noisy_measurements.nrows()
78 );
79 println!(
80 " - Noise level in measurements: {:.3}",
81 assess_noise_level(&noisy_measurements)
82 );
83 println!(
84 " - Gradient noise standard deviation: {:.4}",
85 noisy_gradients.std(0.0)
86 );
87
88 // Step 5: Apply different mitigation strategies
89 println!("\n5. Applying different error mitigation strategies...");
90
91 let mut mitigation_results = Vec::new();
92
93 for (strategy_idx, strategy) in strategies.iter().enumerate() {
94 println!(
95 " Testing strategy {}: {}",
96 strategy_idx + 1,
97 get_strategy_name(strategy)
98 );
99
100 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102 let mitigated_data = mitigator.mitigate_training_errors(
103 &test_circuit,
104 &initial_parameters,
105 &noisy_measurements,
106 &noisy_gradients,
107 )?;
108
109 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110 println!(
111 " - Measurement improvement: {:.1}%",
112 improvement * 100.0
113 );
114 println!(
115 " - Confidence score: {:.3}",
116 mitigated_data.confidence_scores.mean().unwrap()
117 );
118 println!(
119 " - Mitigation overhead: {:.1}%",
120 mitigated_data.mitigation_overhead * 100.0
121 );
122
123 mitigation_results.push((strategy_idx, improvement, mitigated_data));
124 }
125
126 // Step 6: Compare mitigation effectiveness
127 println!("\n6. Comparing mitigation effectiveness...");
128
129 let mut sorted_results = mitigation_results.clone();
130 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132 println!(" Ranking by improvement:");
133 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134 println!(
135 " {}. {}: {:.1}% improvement",
136 rank + 1,
137 get_strategy_name(&strategies[*strategy_idx]),
138 improvement * 100.0
139 );
140 }
141
142 // Step 7: Demonstrate adaptive mitigation
143 println!("\n7. Demonstrating adaptive error mitigation...");
144
145 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146 strategies: strategies.clone(),
147 selection_policy: create_smart_selection_policy()?,
148 performance_tracker: create_performance_tracker()?,
149 };
150
151 let mut adaptive_mitigator =
152 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154 // Simulate training loop with adaptive mitigation
155 println!(" Simulating training with adaptive mitigation:");
156 let num_training_steps = 10;
157 let mut training_history = Vec::new();
158
159 for step in 0..num_training_steps {
160 // Simulate changing noise conditions
161 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162 adaptive_mitigator.noise_model = dynamic_noise;
163
164 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168 &test_circuit,
169 &initial_parameters,
170 &step_measurements,
171 &step_gradients,
172 )?;
173
174 let step_improvement =
175 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176 training_history.push(step_improvement);
177
178 if step % 3 == 0 {
179 println!(
180 " Step {}: {:.1}% improvement, confidence: {:.3}",
181 step + 1,
182 step_improvement * 100.0,
183 mitigated_step.confidence_scores.mean().unwrap()
184 );
185 }
186 }
187
188 let avg_adaptive_improvement =
189 training_history.iter().sum::<f64>() / training_history.len() as f64;
190 println!(
191 " Average adaptive improvement: {:.1}%",
192 avg_adaptive_improvement * 100.0
193 );
194
195 // Step 8: Demonstrate specialized mitigation techniques
196 println!("\n8. Demonstrating specialized mitigation techniques...");
197
198 // Zero Noise Extrapolation
199 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200 println!(" Zero Noise Extrapolation:");
201 println!(
202 " - Extrapolated fidelity: {:.4}",
203 zne_demo.extrapolated_fidelity
204 );
205 println!(
206 " - Confidence interval: [{:.4}, {:.4}]",
207 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208 );
209
210 // Readout Error Mitigation
211 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212 println!(" Readout Error Mitigation:");
213 println!(
214 " - Correction accuracy: {:.1}%",
215 readout_demo.correction_accuracy * 100.0
216 );
217 println!(
218 " - Assignment matrix condition number: {:.2}",
219 readout_demo.condition_number
220 );
221
222 // Clifford Data Regression
223 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224 println!(" Clifford Data Regression:");
225 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
226 println!(
227 " - Prediction accuracy: {:.1}%",
228 cdr_demo.prediction_accuracy * 100.0
229 );
230
231 // Virtual Distillation
232 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233 println!(" Virtual Distillation:");
234 println!(
235 " - Distillation fidelity: {:.4}",
236 vd_demo.distillation_fidelity
237 );
238 println!(
239 " - Resource overhead: {:.1}x",
240 vd_demo.resource_overhead
241 );
242
243 // Step 9: ML-based error mitigation
244 println!("\n9. Demonstrating ML-based error mitigation...");
245
246 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247 println!(" Machine Learning-based Mitigation:");
248 println!(
249 " - Neural network accuracy: {:.1}%",
250 ml_mitigation_demo.nn_accuracy * 100.0
251 );
252 println!(
253 " - Noise prediction MSE: {:.6}",
254 ml_mitigation_demo.prediction_mse
255 );
256 println!(
257 " - Correction effectiveness: {:.1}%",
258 ml_mitigation_demo.correction_effectiveness * 100.0
259 );
260
261 // Step 10: Real-time adaptive mitigation
262 println!("\n10. Real-time adaptive mitigation simulation...");
263
264 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265 println!(" Real-time Adaptation Results:");
266 println!(
267 " - Response time: {:.1} ms",
268 realtime_results.response_time_ms
269 );
270 println!(
271 " - Adaptation accuracy: {:.1}%",
272 realtime_results.adaptation_accuracy * 100.0
273 );
274 println!(
275 " - Overall performance gain: {:.1}%",
276 realtime_results.performance_gain * 100.0
277 );
278
279 // Step 11: Error mitigation for inference
280 println!("\n11. Error mitigation for quantum ML inference...");
281
282 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284 let best_strategy = &strategies[sorted_results[0].0];
285 let mut inference_mitigator =
286 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288 let mitigated_inference =
289 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291 println!(" Inference Mitigation Results:");
292 println!(
293 " - Uncertainty reduction: {:.1}%",
294 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295 );
296 println!(
297 " - Reliability score: {:.3}",
298 mitigated_inference.reliability_score
299 );
300 println!(
301 " - Prediction confidence: {:.1}%",
302 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303 );
304
305 // Step 12: Performance and resource analysis
306 println!("\n12. Performance and resource analysis...");
307
308 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309 println!(" Resource Analysis:");
310 println!(
311 " - Average computational overhead: {:.1}x",
312 resource_analysis.avg_computational_overhead
313 );
314 println!(
315 " - Memory usage increase: {:.1}%",
316 resource_analysis.memory_overhead * 100.0
317 );
318 println!(
319 " - Classical processing time: {:.2} ms",
320 resource_analysis.classical_time_ms
321 );
322 println!(
323 " - Quantum circuit overhead: {:.1}%",
324 resource_analysis.quantum_overhead * 100.0
325 );
326
327 // Step 13: Quantum advantage analysis with error mitigation
328 println!("\n13. Quantum advantage analysis with error mitigation...");
329
330 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331 &test_circuit,
332 &sorted_results[0].2, // Best mitigation result
333 )?;
334
335 println!(" Quantum Advantage Analysis:");
336 println!(
337 " - Effective quantum volume: {}",
338 quantum_advantage.effective_quantum_volume
339 );
340 println!(
341 " - Noise-mitigated fidelity: {:.4}",
342 quantum_advantage.mitigated_fidelity
343 );
344 println!(
345 " - Classical simulation cost: {:.1}x harder",
346 quantum_advantage.classical_simulation_cost
347 );
348 println!(
349 " - Practical quantum advantage: {}",
350 if quantum_advantage.practical_advantage {
351 "Yes"
352 } else {
353 "Not yet"
354 }
355 );
356
357 // Step 14: Generate comprehensive report
358 println!("\n14. Generating comprehensive error mitigation report...");
359
360 let comprehensive_report = generate_comprehensive_mitigation_report(
361 &strategies,
362 &mitigation_results,
363 &training_history,
364 &resource_analysis,
365 &quantum_advantage,
366 )?;
367
368 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369 println!(" Comprehensive report saved to: error_mitigation_report.html");
370
371 // Step 15: Future recommendations
372 println!("\n15. Error mitigation recommendations...");
373
374 let recommendations =
375 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377 println!(" Recommendations:");
378 for (i, recommendation) in recommendations.iter().enumerate() {
379 println!(" {}. {}", i + 1, recommendation);
380 }
381
382 println!("\n=== Advanced Error Mitigation Demo Complete ===");
383 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384 println!("📊 All mitigation strategies evaluated and optimized");
385 println!("🚀 Quantum ML error mitigation framework ready for production");
386
387 Ok(())
388}Sourcepub fn mitigate_inference_errors(
&mut self,
circuit: &QuantumCircuit,
measurement_results: &Array2<f64>,
) -> Result<MitigatedInferenceData>
pub fn mitigate_inference_errors( &mut self, circuit: &QuantumCircuit, measurement_results: &Array2<f64>, ) -> Result<MitigatedInferenceData>
Apply error mitigation to quantum ML inference
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 289)
19fn main() -> Result<()> {
20 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22 // Step 1: Initialize noise model and calibration data
23 println!("1. Setting up noise model and calibration data...");
24
25 let noise_model = create_realistic_noise_model()?;
26 println!(
27 " - Noise model configured with {} gate types",
28 noise_model.gate_errors.len()
29 );
30 println!(
31 " - Average gate error rate: {:.4}",
32 calculate_average_error_rate(&noise_model)
33 );
34 println!(
35 " - Measurement fidelity: {:.3}",
36 noise_model.measurement_errors.readout_fidelity
37 );
38
39 // Step 2: Create different mitigation strategies
40 println!("\n2. Creating error mitigation strategies...");
41
42 let strategies = create_mitigation_strategies()?;
43 println!(
44 " - Created {} different mitigation strategies",
45 strategies.len()
46 );
47
48 for (i, strategy) in strategies.iter().enumerate() {
49 println!(" {}. {}", i + 1, get_strategy_name(strategy));
50 }
51
52 // Step 3: Initialize quantum ML circuit for testing
53 println!("\n3. Initializing quantum ML circuit...");
54
55 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58 println!(
59 " - Circuit: {} qubits, {} parameters",
60 test_circuit.num_qubits(),
61 initial_parameters.len()
62 );
63 println!(
64 " - Circuit depth: approximately {} gates",
65 estimate_circuit_depth(&test_circuit)
66 );
67
68 // Step 4: Simulate noisy measurements
69 println!("\n4. Simulating noisy quantum measurements...");
70
71 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72 let noisy_gradients =
73 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75 println!(
76 " - Generated {} measurement shots",
77 noisy_measurements.nrows()
78 );
79 println!(
80 " - Noise level in measurements: {:.3}",
81 assess_noise_level(&noisy_measurements)
82 );
83 println!(
84 " - Gradient noise standard deviation: {:.4}",
85 noisy_gradients.std(0.0)
86 );
87
88 // Step 5: Apply different mitigation strategies
89 println!("\n5. Applying different error mitigation strategies...");
90
91 let mut mitigation_results = Vec::new();
92
93 for (strategy_idx, strategy) in strategies.iter().enumerate() {
94 println!(
95 " Testing strategy {}: {}",
96 strategy_idx + 1,
97 get_strategy_name(strategy)
98 );
99
100 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102 let mitigated_data = mitigator.mitigate_training_errors(
103 &test_circuit,
104 &initial_parameters,
105 &noisy_measurements,
106 &noisy_gradients,
107 )?;
108
109 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110 println!(
111 " - Measurement improvement: {:.1}%",
112 improvement * 100.0
113 );
114 println!(
115 " - Confidence score: {:.3}",
116 mitigated_data.confidence_scores.mean().unwrap()
117 );
118 println!(
119 " - Mitigation overhead: {:.1}%",
120 mitigated_data.mitigation_overhead * 100.0
121 );
122
123 mitigation_results.push((strategy_idx, improvement, mitigated_data));
124 }
125
126 // Step 6: Compare mitigation effectiveness
127 println!("\n6. Comparing mitigation effectiveness...");
128
129 let mut sorted_results = mitigation_results.clone();
130 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132 println!(" Ranking by improvement:");
133 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134 println!(
135 " {}. {}: {:.1}% improvement",
136 rank + 1,
137 get_strategy_name(&strategies[*strategy_idx]),
138 improvement * 100.0
139 );
140 }
141
142 // Step 7: Demonstrate adaptive mitigation
143 println!("\n7. Demonstrating adaptive error mitigation...");
144
145 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146 strategies: strategies.clone(),
147 selection_policy: create_smart_selection_policy()?,
148 performance_tracker: create_performance_tracker()?,
149 };
150
151 let mut adaptive_mitigator =
152 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154 // Simulate training loop with adaptive mitigation
155 println!(" Simulating training with adaptive mitigation:");
156 let num_training_steps = 10;
157 let mut training_history = Vec::new();
158
159 for step in 0..num_training_steps {
160 // Simulate changing noise conditions
161 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162 adaptive_mitigator.noise_model = dynamic_noise;
163
164 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168 &test_circuit,
169 &initial_parameters,
170 &step_measurements,
171 &step_gradients,
172 )?;
173
174 let step_improvement =
175 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176 training_history.push(step_improvement);
177
178 if step % 3 == 0 {
179 println!(
180 " Step {}: {:.1}% improvement, confidence: {:.3}",
181 step + 1,
182 step_improvement * 100.0,
183 mitigated_step.confidence_scores.mean().unwrap()
184 );
185 }
186 }
187
188 let avg_adaptive_improvement =
189 training_history.iter().sum::<f64>() / training_history.len() as f64;
190 println!(
191 " Average adaptive improvement: {:.1}%",
192 avg_adaptive_improvement * 100.0
193 );
194
195 // Step 8: Demonstrate specialized mitigation techniques
196 println!("\n8. Demonstrating specialized mitigation techniques...");
197
198 // Zero Noise Extrapolation
199 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200 println!(" Zero Noise Extrapolation:");
201 println!(
202 " - Extrapolated fidelity: {:.4}",
203 zne_demo.extrapolated_fidelity
204 );
205 println!(
206 " - Confidence interval: [{:.4}, {:.4}]",
207 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208 );
209
210 // Readout Error Mitigation
211 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212 println!(" Readout Error Mitigation:");
213 println!(
214 " - Correction accuracy: {:.1}%",
215 readout_demo.correction_accuracy * 100.0
216 );
217 println!(
218 " - Assignment matrix condition number: {:.2}",
219 readout_demo.condition_number
220 );
221
222 // Clifford Data Regression
223 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224 println!(" Clifford Data Regression:");
225 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
226 println!(
227 " - Prediction accuracy: {:.1}%",
228 cdr_demo.prediction_accuracy * 100.0
229 );
230
231 // Virtual Distillation
232 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233 println!(" Virtual Distillation:");
234 println!(
235 " - Distillation fidelity: {:.4}",
236 vd_demo.distillation_fidelity
237 );
238 println!(
239 " - Resource overhead: {:.1}x",
240 vd_demo.resource_overhead
241 );
242
243 // Step 9: ML-based error mitigation
244 println!("\n9. Demonstrating ML-based error mitigation...");
245
246 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247 println!(" Machine Learning-based Mitigation:");
248 println!(
249 " - Neural network accuracy: {:.1}%",
250 ml_mitigation_demo.nn_accuracy * 100.0
251 );
252 println!(
253 " - Noise prediction MSE: {:.6}",
254 ml_mitigation_demo.prediction_mse
255 );
256 println!(
257 " - Correction effectiveness: {:.1}%",
258 ml_mitigation_demo.correction_effectiveness * 100.0
259 );
260
261 // Step 10: Real-time adaptive mitigation
262 println!("\n10. Real-time adaptive mitigation simulation...");
263
264 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265 println!(" Real-time Adaptation Results:");
266 println!(
267 " - Response time: {:.1} ms",
268 realtime_results.response_time_ms
269 );
270 println!(
271 " - Adaptation accuracy: {:.1}%",
272 realtime_results.adaptation_accuracy * 100.0
273 );
274 println!(
275 " - Overall performance gain: {:.1}%",
276 realtime_results.performance_gain * 100.0
277 );
278
279 // Step 11: Error mitigation for inference
280 println!("\n11. Error mitigation for quantum ML inference...");
281
282 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284 let best_strategy = &strategies[sorted_results[0].0];
285 let mut inference_mitigator =
286 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288 let mitigated_inference =
289 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291 println!(" Inference Mitigation Results:");
292 println!(
293 " - Uncertainty reduction: {:.1}%",
294 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295 );
296 println!(
297 " - Reliability score: {:.3}",
298 mitigated_inference.reliability_score
299 );
300 println!(
301 " - Prediction confidence: {:.1}%",
302 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303 );
304
305 // Step 12: Performance and resource analysis
306 println!("\n12. Performance and resource analysis...");
307
308 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309 println!(" Resource Analysis:");
310 println!(
311 " - Average computational overhead: {:.1}x",
312 resource_analysis.avg_computational_overhead
313 );
314 println!(
315 " - Memory usage increase: {:.1}%",
316 resource_analysis.memory_overhead * 100.0
317 );
318 println!(
319 " - Classical processing time: {:.2} ms",
320 resource_analysis.classical_time_ms
321 );
322 println!(
323 " - Quantum circuit overhead: {:.1}%",
324 resource_analysis.quantum_overhead * 100.0
325 );
326
327 // Step 13: Quantum advantage analysis with error mitigation
328 println!("\n13. Quantum advantage analysis with error mitigation...");
329
330 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331 &test_circuit,
332 &sorted_results[0].2, // Best mitigation result
333 )?;
334
335 println!(" Quantum Advantage Analysis:");
336 println!(
337 " - Effective quantum volume: {}",
338 quantum_advantage.effective_quantum_volume
339 );
340 println!(
341 " - Noise-mitigated fidelity: {:.4}",
342 quantum_advantage.mitigated_fidelity
343 );
344 println!(
345 " - Classical simulation cost: {:.1}x harder",
346 quantum_advantage.classical_simulation_cost
347 );
348 println!(
349 " - Practical quantum advantage: {}",
350 if quantum_advantage.practical_advantage {
351 "Yes"
352 } else {
353 "Not yet"
354 }
355 );
356
357 // Step 14: Generate comprehensive report
358 println!("\n14. Generating comprehensive error mitigation report...");
359
360 let comprehensive_report = generate_comprehensive_mitigation_report(
361 &strategies,
362 &mitigation_results,
363 &training_history,
364 &resource_analysis,
365 &quantum_advantage,
366 )?;
367
368 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369 println!(" Comprehensive report saved to: error_mitigation_report.html");
370
371 // Step 15: Future recommendations
372 println!("\n15. Error mitigation recommendations...");
373
374 let recommendations =
375 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377 println!(" Recommendations:");
378 for (i, recommendation) in recommendations.iter().enumerate() {
379 println!(" {}. {}", i + 1, recommendation);
380 }
381
382 println!("\n=== Advanced Error Mitigation Demo Complete ===");
383 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384 println!("📊 All mitigation strategies evaluated and optimized");
385 println!("🚀 Quantum ML error mitigation framework ready for production");
386
387 Ok(())
388}Auto Trait Implementations§
impl Freeze for QuantumMLErrorMitigator
impl RefUnwindSafe for QuantumMLErrorMitigator
impl Send for QuantumMLErrorMitigator
impl Sync for QuantumMLErrorMitigator
impl Unpin for QuantumMLErrorMitigator
impl UnwindSafe for QuantumMLErrorMitigator
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.