QuantumMLErrorMitigator

Struct QuantumMLErrorMitigator 

Source
pub struct QuantumMLErrorMitigator {
    pub mitigation_strategy: MitigationStrategy,
    pub noise_model: NoiseModel,
    pub calibration_data: CalibrationData,
    pub adaptive_config: AdaptiveConfig,
    pub performance_metrics: PerformanceMetrics,
}
Expand description

Advanced error mitigation framework for quantum ML

Fields§

§mitigation_strategy: MitigationStrategy§noise_model: NoiseModel§calibration_data: CalibrationData§adaptive_config: AdaptiveConfig§performance_metrics: PerformanceMetrics

Implementations§

Source§

impl QuantumMLErrorMitigator

Source

pub fn new( mitigation_strategy: MitigationStrategy, noise_model: NoiseModel, ) -> Result<Self>

Create a new error mitigation framework

Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 100)
19fn main() -> Result<()> {
20    println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22    // Step 1: Initialize noise model and calibration data
23    println!("1. Setting up noise model and calibration data...");
24
25    let noise_model = create_realistic_noise_model()?;
26    println!(
27        "   - Noise model configured with {} gate types",
28        noise_model.gate_errors.len()
29    );
30    println!(
31        "   - Average gate error rate: {:.4}",
32        calculate_average_error_rate(&noise_model)
33    );
34    println!(
35        "   - Measurement fidelity: {:.3}",
36        noise_model.measurement_errors.readout_fidelity
37    );
38
39    // Step 2: Create different mitigation strategies
40    println!("\n2. Creating error mitigation strategies...");
41
42    let strategies = create_mitigation_strategies()?;
43    println!(
44        "   - Created {} different mitigation strategies",
45        strategies.len()
46    );
47
48    for (i, strategy) in strategies.iter().enumerate() {
49        println!("   {}. {}", i + 1, get_strategy_name(strategy));
50    }
51
52    // Step 3: Initialize quantum ML circuit for testing
53    println!("\n3. Initializing quantum ML circuit...");
54
55    let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56    let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58    println!(
59        "   - Circuit: {} qubits, {} parameters",
60        test_circuit.num_qubits(),
61        initial_parameters.len()
62    );
63    println!(
64        "   - Circuit depth: approximately {} gates",
65        estimate_circuit_depth(&test_circuit)
66    );
67
68    // Step 4: Simulate noisy measurements
69    println!("\n4. Simulating noisy quantum measurements...");
70
71    let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72    let noisy_gradients =
73        simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75    println!(
76        "   - Generated {} measurement shots",
77        noisy_measurements.nrows()
78    );
79    println!(
80        "   - Noise level in measurements: {:.3}",
81        assess_noise_level(&noisy_measurements)
82    );
83    println!(
84        "   - Gradient noise standard deviation: {:.4}",
85        noisy_gradients.std(0.0)
86    );
87
88    // Step 5: Apply different mitigation strategies
89    println!("\n5. Applying different error mitigation strategies...");
90
91    let mut mitigation_results = Vec::new();
92
93    for (strategy_idx, strategy) in strategies.iter().enumerate() {
94        println!(
95            "   Testing strategy {}: {}",
96            strategy_idx + 1,
97            get_strategy_name(strategy)
98        );
99
100        let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102        let mitigated_data = mitigator.mitigate_training_errors(
103            &test_circuit,
104            &initial_parameters,
105            &noisy_measurements,
106            &noisy_gradients,
107        )?;
108
109        let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110        println!(
111            "     - Measurement improvement: {:.1}%",
112            improvement * 100.0
113        );
114        println!(
115            "     - Confidence score: {:.3}",
116            mitigated_data.confidence_scores.mean().unwrap()
117        );
118        println!(
119            "     - Mitigation overhead: {:.1}%",
120            mitigated_data.mitigation_overhead * 100.0
121        );
122
123        mitigation_results.push((strategy_idx, improvement, mitigated_data));
124    }
125
126    // Step 6: Compare mitigation effectiveness
127    println!("\n6. Comparing mitigation effectiveness...");
128
129    let mut sorted_results = mitigation_results.clone();
130    sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132    println!("   Ranking by improvement:");
133    for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134        println!(
135            "   {}. {}: {:.1}% improvement",
136            rank + 1,
137            get_strategy_name(&strategies[*strategy_idx]),
138            improvement * 100.0
139        );
140    }
141
142    // Step 7: Demonstrate adaptive mitigation
143    println!("\n7. Demonstrating adaptive error mitigation...");
144
145    let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146        strategies: strategies.clone(),
147        selection_policy: create_smart_selection_policy()?,
148        performance_tracker: create_performance_tracker()?,
149    };
150
151    let mut adaptive_mitigator =
152        QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154    // Simulate training loop with adaptive mitigation
155    println!("   Simulating training with adaptive mitigation:");
156    let num_training_steps = 10;
157    let mut training_history = Vec::new();
158
159    for step in 0..num_training_steps {
160        // Simulate changing noise conditions
161        let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162        adaptive_mitigator.noise_model = dynamic_noise;
163
164        let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165        let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167        let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168            &test_circuit,
169            &initial_parameters,
170            &step_measurements,
171            &step_gradients,
172        )?;
173
174        let step_improvement =
175            calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176        training_history.push(step_improvement);
177
178        if step % 3 == 0 {
179            println!(
180                "     Step {}: {:.1}% improvement, confidence: {:.3}",
181                step + 1,
182                step_improvement * 100.0,
183                mitigated_step.confidence_scores.mean().unwrap()
184            );
185        }
186    }
187
188    let avg_adaptive_improvement =
189        training_history.iter().sum::<f64>() / training_history.len() as f64;
190    println!(
191        "   Average adaptive improvement: {:.1}%",
192        avg_adaptive_improvement * 100.0
193    );
194
195    // Step 8: Demonstrate specialized mitigation techniques
196    println!("\n8. Demonstrating specialized mitigation techniques...");
197
198    // Zero Noise Extrapolation
199    let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200    println!("   Zero Noise Extrapolation:");
201    println!(
202        "     - Extrapolated fidelity: {:.4}",
203        zne_demo.extrapolated_fidelity
204    );
205    println!(
206        "     - Confidence interval: [{:.4}, {:.4}]",
207        zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208    );
209
210    // Readout Error Mitigation
211    let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212    println!("   Readout Error Mitigation:");
213    println!(
214        "     - Correction accuracy: {:.1}%",
215        readout_demo.correction_accuracy * 100.0
216    );
217    println!(
218        "     - Assignment matrix condition number: {:.2}",
219        readout_demo.condition_number
220    );
221
222    // Clifford Data Regression
223    let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224    println!("   Clifford Data Regression:");
225    println!("     - Regression R²: {:.3}", cdr_demo.r_squared);
226    println!(
227        "     - Prediction accuracy: {:.1}%",
228        cdr_demo.prediction_accuracy * 100.0
229    );
230
231    // Virtual Distillation
232    let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233    println!("   Virtual Distillation:");
234    println!(
235        "     - Distillation fidelity: {:.4}",
236        vd_demo.distillation_fidelity
237    );
238    println!(
239        "     - Resource overhead: {:.1}x",
240        vd_demo.resource_overhead
241    );
242
243    // Step 9: ML-based error mitigation
244    println!("\n9. Demonstrating ML-based error mitigation...");
245
246    let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247    println!("   Machine Learning-based Mitigation:");
248    println!(
249        "     - Neural network accuracy: {:.1}%",
250        ml_mitigation_demo.nn_accuracy * 100.0
251    );
252    println!(
253        "     - Noise prediction MSE: {:.6}",
254        ml_mitigation_demo.prediction_mse
255    );
256    println!(
257        "     - Correction effectiveness: {:.1}%",
258        ml_mitigation_demo.correction_effectiveness * 100.0
259    );
260
261    // Step 10: Real-time adaptive mitigation
262    println!("\n10. Real-time adaptive mitigation simulation...");
263
264    let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265    println!("    Real-time Adaptation Results:");
266    println!(
267        "    - Response time: {:.1} ms",
268        realtime_results.response_time_ms
269    );
270    println!(
271        "    - Adaptation accuracy: {:.1}%",
272        realtime_results.adaptation_accuracy * 100.0
273    );
274    println!(
275        "    - Overall performance gain: {:.1}%",
276        realtime_results.performance_gain * 100.0
277    );
278
279    // Step 11: Error mitigation for inference
280    println!("\n11. Error mitigation for quantum ML inference...");
281
282    let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284    let best_strategy = &strategies[sorted_results[0].0];
285    let mut inference_mitigator =
286        QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288    let mitigated_inference =
289        inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291    println!("    Inference Mitigation Results:");
292    println!(
293        "    - Uncertainty reduction: {:.1}%",
294        (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295    );
296    println!(
297        "    - Reliability score: {:.3}",
298        mitigated_inference.reliability_score
299    );
300    println!(
301        "    - Prediction confidence: {:.1}%",
302        calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303    );
304
305    // Step 12: Performance and resource analysis
306    println!("\n12. Performance and resource analysis...");
307
308    let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309    println!("    Resource Analysis:");
310    println!(
311        "    - Average computational overhead: {:.1}x",
312        resource_analysis.avg_computational_overhead
313    );
314    println!(
315        "    - Memory usage increase: {:.1}%",
316        resource_analysis.memory_overhead * 100.0
317    );
318    println!(
319        "    - Classical processing time: {:.2} ms",
320        resource_analysis.classical_time_ms
321    );
322    println!(
323        "    - Quantum circuit overhead: {:.1}%",
324        resource_analysis.quantum_overhead * 100.0
325    );
326
327    // Step 13: Quantum advantage analysis with error mitigation
328    println!("\n13. Quantum advantage analysis with error mitigation...");
329
330    let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331        &test_circuit,
332        &sorted_results[0].2, // Best mitigation result
333    )?;
334
335    println!("    Quantum Advantage Analysis:");
336    println!(
337        "    - Effective quantum volume: {}",
338        quantum_advantage.effective_quantum_volume
339    );
340    println!(
341        "    - Noise-mitigated fidelity: {:.4}",
342        quantum_advantage.mitigated_fidelity
343    );
344    println!(
345        "    - Classical simulation cost: {:.1}x harder",
346        quantum_advantage.classical_simulation_cost
347    );
348    println!(
349        "    - Practical quantum advantage: {}",
350        if quantum_advantage.practical_advantage {
351            "Yes"
352        } else {
353            "Not yet"
354        }
355    );
356
357    // Step 14: Generate comprehensive report
358    println!("\n14. Generating comprehensive error mitigation report...");
359
360    let comprehensive_report = generate_comprehensive_mitigation_report(
361        &strategies,
362        &mitigation_results,
363        &training_history,
364        &resource_analysis,
365        &quantum_advantage,
366    )?;
367
368    save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369    println!("    Comprehensive report saved to: error_mitigation_report.html");
370
371    // Step 15: Future recommendations
372    println!("\n15. Error mitigation recommendations...");
373
374    let recommendations =
375        generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377    println!("    Recommendations:");
378    for (i, recommendation) in recommendations.iter().enumerate() {
379        println!("    {}. {}", i + 1, recommendation);
380    }
381
382    println!("\n=== Advanced Error Mitigation Demo Complete ===");
383    println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384    println!("📊 All mitigation strategies evaluated and optimized");
385    println!("🚀 Quantum ML error mitigation framework ready for production");
386
387    Ok(())
388}
Source

pub fn mitigate_training_errors( &mut self, circuit: &QuantumCircuit, parameters: &Array1<f64>, measurement_results: &Array2<f64>, gradient_estimates: &Array1<f64>, ) -> Result<MitigatedTrainingData>

Apply error mitigation to quantum ML training

Examples found in repository?
examples/advanced_error_mitigation_demo.rs (lines 102-107)
19fn main() -> Result<()> {
20    println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22    // Step 1: Initialize noise model and calibration data
23    println!("1. Setting up noise model and calibration data...");
24
25    let noise_model = create_realistic_noise_model()?;
26    println!(
27        "   - Noise model configured with {} gate types",
28        noise_model.gate_errors.len()
29    );
30    println!(
31        "   - Average gate error rate: {:.4}",
32        calculate_average_error_rate(&noise_model)
33    );
34    println!(
35        "   - Measurement fidelity: {:.3}",
36        noise_model.measurement_errors.readout_fidelity
37    );
38
39    // Step 2: Create different mitigation strategies
40    println!("\n2. Creating error mitigation strategies...");
41
42    let strategies = create_mitigation_strategies()?;
43    println!(
44        "   - Created {} different mitigation strategies",
45        strategies.len()
46    );
47
48    for (i, strategy) in strategies.iter().enumerate() {
49        println!("   {}. {}", i + 1, get_strategy_name(strategy));
50    }
51
52    // Step 3: Initialize quantum ML circuit for testing
53    println!("\n3. Initializing quantum ML circuit...");
54
55    let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56    let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58    println!(
59        "   - Circuit: {} qubits, {} parameters",
60        test_circuit.num_qubits(),
61        initial_parameters.len()
62    );
63    println!(
64        "   - Circuit depth: approximately {} gates",
65        estimate_circuit_depth(&test_circuit)
66    );
67
68    // Step 4: Simulate noisy measurements
69    println!("\n4. Simulating noisy quantum measurements...");
70
71    let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72    let noisy_gradients =
73        simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75    println!(
76        "   - Generated {} measurement shots",
77        noisy_measurements.nrows()
78    );
79    println!(
80        "   - Noise level in measurements: {:.3}",
81        assess_noise_level(&noisy_measurements)
82    );
83    println!(
84        "   - Gradient noise standard deviation: {:.4}",
85        noisy_gradients.std(0.0)
86    );
87
88    // Step 5: Apply different mitigation strategies
89    println!("\n5. Applying different error mitigation strategies...");
90
91    let mut mitigation_results = Vec::new();
92
93    for (strategy_idx, strategy) in strategies.iter().enumerate() {
94        println!(
95            "   Testing strategy {}: {}",
96            strategy_idx + 1,
97            get_strategy_name(strategy)
98        );
99
100        let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102        let mitigated_data = mitigator.mitigate_training_errors(
103            &test_circuit,
104            &initial_parameters,
105            &noisy_measurements,
106            &noisy_gradients,
107        )?;
108
109        let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110        println!(
111            "     - Measurement improvement: {:.1}%",
112            improvement * 100.0
113        );
114        println!(
115            "     - Confidence score: {:.3}",
116            mitigated_data.confidence_scores.mean().unwrap()
117        );
118        println!(
119            "     - Mitigation overhead: {:.1}%",
120            mitigated_data.mitigation_overhead * 100.0
121        );
122
123        mitigation_results.push((strategy_idx, improvement, mitigated_data));
124    }
125
126    // Step 6: Compare mitigation effectiveness
127    println!("\n6. Comparing mitigation effectiveness...");
128
129    let mut sorted_results = mitigation_results.clone();
130    sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132    println!("   Ranking by improvement:");
133    for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134        println!(
135            "   {}. {}: {:.1}% improvement",
136            rank + 1,
137            get_strategy_name(&strategies[*strategy_idx]),
138            improvement * 100.0
139        );
140    }
141
142    // Step 7: Demonstrate adaptive mitigation
143    println!("\n7. Demonstrating adaptive error mitigation...");
144
145    let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146        strategies: strategies.clone(),
147        selection_policy: create_smart_selection_policy()?,
148        performance_tracker: create_performance_tracker()?,
149    };
150
151    let mut adaptive_mitigator =
152        QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154    // Simulate training loop with adaptive mitigation
155    println!("   Simulating training with adaptive mitigation:");
156    let num_training_steps = 10;
157    let mut training_history = Vec::new();
158
159    for step in 0..num_training_steps {
160        // Simulate changing noise conditions
161        let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162        adaptive_mitigator.noise_model = dynamic_noise;
163
164        let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165        let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167        let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168            &test_circuit,
169            &initial_parameters,
170            &step_measurements,
171            &step_gradients,
172        )?;
173
174        let step_improvement =
175            calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176        training_history.push(step_improvement);
177
178        if step % 3 == 0 {
179            println!(
180                "     Step {}: {:.1}% improvement, confidence: {:.3}",
181                step + 1,
182                step_improvement * 100.0,
183                mitigated_step.confidence_scores.mean().unwrap()
184            );
185        }
186    }
187
188    let avg_adaptive_improvement =
189        training_history.iter().sum::<f64>() / training_history.len() as f64;
190    println!(
191        "   Average adaptive improvement: {:.1}%",
192        avg_adaptive_improvement * 100.0
193    );
194
195    // Step 8: Demonstrate specialized mitigation techniques
196    println!("\n8. Demonstrating specialized mitigation techniques...");
197
198    // Zero Noise Extrapolation
199    let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200    println!("   Zero Noise Extrapolation:");
201    println!(
202        "     - Extrapolated fidelity: {:.4}",
203        zne_demo.extrapolated_fidelity
204    );
205    println!(
206        "     - Confidence interval: [{:.4}, {:.4}]",
207        zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208    );
209
210    // Readout Error Mitigation
211    let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212    println!("   Readout Error Mitigation:");
213    println!(
214        "     - Correction accuracy: {:.1}%",
215        readout_demo.correction_accuracy * 100.0
216    );
217    println!(
218        "     - Assignment matrix condition number: {:.2}",
219        readout_demo.condition_number
220    );
221
222    // Clifford Data Regression
223    let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224    println!("   Clifford Data Regression:");
225    println!("     - Regression R²: {:.3}", cdr_demo.r_squared);
226    println!(
227        "     - Prediction accuracy: {:.1}%",
228        cdr_demo.prediction_accuracy * 100.0
229    );
230
231    // Virtual Distillation
232    let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233    println!("   Virtual Distillation:");
234    println!(
235        "     - Distillation fidelity: {:.4}",
236        vd_demo.distillation_fidelity
237    );
238    println!(
239        "     - Resource overhead: {:.1}x",
240        vd_demo.resource_overhead
241    );
242
243    // Step 9: ML-based error mitigation
244    println!("\n9. Demonstrating ML-based error mitigation...");
245
246    let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247    println!("   Machine Learning-based Mitigation:");
248    println!(
249        "     - Neural network accuracy: {:.1}%",
250        ml_mitigation_demo.nn_accuracy * 100.0
251    );
252    println!(
253        "     - Noise prediction MSE: {:.6}",
254        ml_mitigation_demo.prediction_mse
255    );
256    println!(
257        "     - Correction effectiveness: {:.1}%",
258        ml_mitigation_demo.correction_effectiveness * 100.0
259    );
260
261    // Step 10: Real-time adaptive mitigation
262    println!("\n10. Real-time adaptive mitigation simulation...");
263
264    let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265    println!("    Real-time Adaptation Results:");
266    println!(
267        "    - Response time: {:.1} ms",
268        realtime_results.response_time_ms
269    );
270    println!(
271        "    - Adaptation accuracy: {:.1}%",
272        realtime_results.adaptation_accuracy * 100.0
273    );
274    println!(
275        "    - Overall performance gain: {:.1}%",
276        realtime_results.performance_gain * 100.0
277    );
278
279    // Step 11: Error mitigation for inference
280    println!("\n11. Error mitigation for quantum ML inference...");
281
282    let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284    let best_strategy = &strategies[sorted_results[0].0];
285    let mut inference_mitigator =
286        QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288    let mitigated_inference =
289        inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291    println!("    Inference Mitigation Results:");
292    println!(
293        "    - Uncertainty reduction: {:.1}%",
294        (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295    );
296    println!(
297        "    - Reliability score: {:.3}",
298        mitigated_inference.reliability_score
299    );
300    println!(
301        "    - Prediction confidence: {:.1}%",
302        calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303    );
304
305    // Step 12: Performance and resource analysis
306    println!("\n12. Performance and resource analysis...");
307
308    let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309    println!("    Resource Analysis:");
310    println!(
311        "    - Average computational overhead: {:.1}x",
312        resource_analysis.avg_computational_overhead
313    );
314    println!(
315        "    - Memory usage increase: {:.1}%",
316        resource_analysis.memory_overhead * 100.0
317    );
318    println!(
319        "    - Classical processing time: {:.2} ms",
320        resource_analysis.classical_time_ms
321    );
322    println!(
323        "    - Quantum circuit overhead: {:.1}%",
324        resource_analysis.quantum_overhead * 100.0
325    );
326
327    // Step 13: Quantum advantage analysis with error mitigation
328    println!("\n13. Quantum advantage analysis with error mitigation...");
329
330    let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331        &test_circuit,
332        &sorted_results[0].2, // Best mitigation result
333    )?;
334
335    println!("    Quantum Advantage Analysis:");
336    println!(
337        "    - Effective quantum volume: {}",
338        quantum_advantage.effective_quantum_volume
339    );
340    println!(
341        "    - Noise-mitigated fidelity: {:.4}",
342        quantum_advantage.mitigated_fidelity
343    );
344    println!(
345        "    - Classical simulation cost: {:.1}x harder",
346        quantum_advantage.classical_simulation_cost
347    );
348    println!(
349        "    - Practical quantum advantage: {}",
350        if quantum_advantage.practical_advantage {
351            "Yes"
352        } else {
353            "Not yet"
354        }
355    );
356
357    // Step 14: Generate comprehensive report
358    println!("\n14. Generating comprehensive error mitigation report...");
359
360    let comprehensive_report = generate_comprehensive_mitigation_report(
361        &strategies,
362        &mitigation_results,
363        &training_history,
364        &resource_analysis,
365        &quantum_advantage,
366    )?;
367
368    save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369    println!("    Comprehensive report saved to: error_mitigation_report.html");
370
371    // Step 15: Future recommendations
372    println!("\n15. Error mitigation recommendations...");
373
374    let recommendations =
375        generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377    println!("    Recommendations:");
378    for (i, recommendation) in recommendations.iter().enumerate() {
379        println!("    {}. {}", i + 1, recommendation);
380    }
381
382    println!("\n=== Advanced Error Mitigation Demo Complete ===");
383    println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384    println!("📊 All mitigation strategies evaluated and optimized");
385    println!("🚀 Quantum ML error mitigation framework ready for production");
386
387    Ok(())
388}
Source

pub fn mitigate_inference_errors( &mut self, circuit: &QuantumCircuit, measurement_results: &Array2<f64>, ) -> Result<MitigatedInferenceData>

Apply error mitigation to quantum ML inference

Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 289)
19fn main() -> Result<()> {
20    println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22    // Step 1: Initialize noise model and calibration data
23    println!("1. Setting up noise model and calibration data...");
24
25    let noise_model = create_realistic_noise_model()?;
26    println!(
27        "   - Noise model configured with {} gate types",
28        noise_model.gate_errors.len()
29    );
30    println!(
31        "   - Average gate error rate: {:.4}",
32        calculate_average_error_rate(&noise_model)
33    );
34    println!(
35        "   - Measurement fidelity: {:.3}",
36        noise_model.measurement_errors.readout_fidelity
37    );
38
39    // Step 2: Create different mitigation strategies
40    println!("\n2. Creating error mitigation strategies...");
41
42    let strategies = create_mitigation_strategies()?;
43    println!(
44        "   - Created {} different mitigation strategies",
45        strategies.len()
46    );
47
48    for (i, strategy) in strategies.iter().enumerate() {
49        println!("   {}. {}", i + 1, get_strategy_name(strategy));
50    }
51
52    // Step 3: Initialize quantum ML circuit for testing
53    println!("\n3. Initializing quantum ML circuit...");
54
55    let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56    let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58    println!(
59        "   - Circuit: {} qubits, {} parameters",
60        test_circuit.num_qubits(),
61        initial_parameters.len()
62    );
63    println!(
64        "   - Circuit depth: approximately {} gates",
65        estimate_circuit_depth(&test_circuit)
66    );
67
68    // Step 4: Simulate noisy measurements
69    println!("\n4. Simulating noisy quantum measurements...");
70
71    let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72    let noisy_gradients =
73        simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75    println!(
76        "   - Generated {} measurement shots",
77        noisy_measurements.nrows()
78    );
79    println!(
80        "   - Noise level in measurements: {:.3}",
81        assess_noise_level(&noisy_measurements)
82    );
83    println!(
84        "   - Gradient noise standard deviation: {:.4}",
85        noisy_gradients.std(0.0)
86    );
87
88    // Step 5: Apply different mitigation strategies
89    println!("\n5. Applying different error mitigation strategies...");
90
91    let mut mitigation_results = Vec::new();
92
93    for (strategy_idx, strategy) in strategies.iter().enumerate() {
94        println!(
95            "   Testing strategy {}: {}",
96            strategy_idx + 1,
97            get_strategy_name(strategy)
98        );
99
100        let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102        let mitigated_data = mitigator.mitigate_training_errors(
103            &test_circuit,
104            &initial_parameters,
105            &noisy_measurements,
106            &noisy_gradients,
107        )?;
108
109        let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110        println!(
111            "     - Measurement improvement: {:.1}%",
112            improvement * 100.0
113        );
114        println!(
115            "     - Confidence score: {:.3}",
116            mitigated_data.confidence_scores.mean().unwrap()
117        );
118        println!(
119            "     - Mitigation overhead: {:.1}%",
120            mitigated_data.mitigation_overhead * 100.0
121        );
122
123        mitigation_results.push((strategy_idx, improvement, mitigated_data));
124    }
125
126    // Step 6: Compare mitigation effectiveness
127    println!("\n6. Comparing mitigation effectiveness...");
128
129    let mut sorted_results = mitigation_results.clone();
130    sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132    println!("   Ranking by improvement:");
133    for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134        println!(
135            "   {}. {}: {:.1}% improvement",
136            rank + 1,
137            get_strategy_name(&strategies[*strategy_idx]),
138            improvement * 100.0
139        );
140    }
141
142    // Step 7: Demonstrate adaptive mitigation
143    println!("\n7. Demonstrating adaptive error mitigation...");
144
145    let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146        strategies: strategies.clone(),
147        selection_policy: create_smart_selection_policy()?,
148        performance_tracker: create_performance_tracker()?,
149    };
150
151    let mut adaptive_mitigator =
152        QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154    // Simulate training loop with adaptive mitigation
155    println!("   Simulating training with adaptive mitigation:");
156    let num_training_steps = 10;
157    let mut training_history = Vec::new();
158
159    for step in 0..num_training_steps {
160        // Simulate changing noise conditions
161        let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162        adaptive_mitigator.noise_model = dynamic_noise;
163
164        let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165        let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167        let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168            &test_circuit,
169            &initial_parameters,
170            &step_measurements,
171            &step_gradients,
172        )?;
173
174        let step_improvement =
175            calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176        training_history.push(step_improvement);
177
178        if step % 3 == 0 {
179            println!(
180                "     Step {}: {:.1}% improvement, confidence: {:.3}",
181                step + 1,
182                step_improvement * 100.0,
183                mitigated_step.confidence_scores.mean().unwrap()
184            );
185        }
186    }
187
188    let avg_adaptive_improvement =
189        training_history.iter().sum::<f64>() / training_history.len() as f64;
190    println!(
191        "   Average adaptive improvement: {:.1}%",
192        avg_adaptive_improvement * 100.0
193    );
194
195    // Step 8: Demonstrate specialized mitigation techniques
196    println!("\n8. Demonstrating specialized mitigation techniques...");
197
198    // Zero Noise Extrapolation
199    let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200    println!("   Zero Noise Extrapolation:");
201    println!(
202        "     - Extrapolated fidelity: {:.4}",
203        zne_demo.extrapolated_fidelity
204    );
205    println!(
206        "     - Confidence interval: [{:.4}, {:.4}]",
207        zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208    );
209
210    // Readout Error Mitigation
211    let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212    println!("   Readout Error Mitigation:");
213    println!(
214        "     - Correction accuracy: {:.1}%",
215        readout_demo.correction_accuracy * 100.0
216    );
217    println!(
218        "     - Assignment matrix condition number: {:.2}",
219        readout_demo.condition_number
220    );
221
222    // Clifford Data Regression
223    let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224    println!("   Clifford Data Regression:");
225    println!("     - Regression R²: {:.3}", cdr_demo.r_squared);
226    println!(
227        "     - Prediction accuracy: {:.1}%",
228        cdr_demo.prediction_accuracy * 100.0
229    );
230
231    // Virtual Distillation
232    let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233    println!("   Virtual Distillation:");
234    println!(
235        "     - Distillation fidelity: {:.4}",
236        vd_demo.distillation_fidelity
237    );
238    println!(
239        "     - Resource overhead: {:.1}x",
240        vd_demo.resource_overhead
241    );
242
243    // Step 9: ML-based error mitigation
244    println!("\n9. Demonstrating ML-based error mitigation...");
245
246    let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247    println!("   Machine Learning-based Mitigation:");
248    println!(
249        "     - Neural network accuracy: {:.1}%",
250        ml_mitigation_demo.nn_accuracy * 100.0
251    );
252    println!(
253        "     - Noise prediction MSE: {:.6}",
254        ml_mitigation_demo.prediction_mse
255    );
256    println!(
257        "     - Correction effectiveness: {:.1}%",
258        ml_mitigation_demo.correction_effectiveness * 100.0
259    );
260
261    // Step 10: Real-time adaptive mitigation
262    println!("\n10. Real-time adaptive mitigation simulation...");
263
264    let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265    println!("    Real-time Adaptation Results:");
266    println!(
267        "    - Response time: {:.1} ms",
268        realtime_results.response_time_ms
269    );
270    println!(
271        "    - Adaptation accuracy: {:.1}%",
272        realtime_results.adaptation_accuracy * 100.0
273    );
274    println!(
275        "    - Overall performance gain: {:.1}%",
276        realtime_results.performance_gain * 100.0
277    );
278
279    // Step 11: Error mitigation for inference
280    println!("\n11. Error mitigation for quantum ML inference...");
281
282    let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284    let best_strategy = &strategies[sorted_results[0].0];
285    let mut inference_mitigator =
286        QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288    let mitigated_inference =
289        inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291    println!("    Inference Mitigation Results:");
292    println!(
293        "    - Uncertainty reduction: {:.1}%",
294        (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295    );
296    println!(
297        "    - Reliability score: {:.3}",
298        mitigated_inference.reliability_score
299    );
300    println!(
301        "    - Prediction confidence: {:.1}%",
302        calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303    );
304
305    // Step 12: Performance and resource analysis
306    println!("\n12. Performance and resource analysis...");
307
308    let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309    println!("    Resource Analysis:");
310    println!(
311        "    - Average computational overhead: {:.1}x",
312        resource_analysis.avg_computational_overhead
313    );
314    println!(
315        "    - Memory usage increase: {:.1}%",
316        resource_analysis.memory_overhead * 100.0
317    );
318    println!(
319        "    - Classical processing time: {:.2} ms",
320        resource_analysis.classical_time_ms
321    );
322    println!(
323        "    - Quantum circuit overhead: {:.1}%",
324        resource_analysis.quantum_overhead * 100.0
325    );
326
327    // Step 13: Quantum advantage analysis with error mitigation
328    println!("\n13. Quantum advantage analysis with error mitigation...");
329
330    let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331        &test_circuit,
332        &sorted_results[0].2, // Best mitigation result
333    )?;
334
335    println!("    Quantum Advantage Analysis:");
336    println!(
337        "    - Effective quantum volume: {}",
338        quantum_advantage.effective_quantum_volume
339    );
340    println!(
341        "    - Noise-mitigated fidelity: {:.4}",
342        quantum_advantage.mitigated_fidelity
343    );
344    println!(
345        "    - Classical simulation cost: {:.1}x harder",
346        quantum_advantage.classical_simulation_cost
347    );
348    println!(
349        "    - Practical quantum advantage: {}",
350        if quantum_advantage.practical_advantage {
351            "Yes"
352        } else {
353            "Not yet"
354        }
355    );
356
357    // Step 14: Generate comprehensive report
358    println!("\n14. Generating comprehensive error mitigation report...");
359
360    let comprehensive_report = generate_comprehensive_mitigation_report(
361        &strategies,
362        &mitigation_results,
363        &training_history,
364        &resource_analysis,
365        &quantum_advantage,
366    )?;
367
368    save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369    println!("    Comprehensive report saved to: error_mitigation_report.html");
370
371    // Step 15: Future recommendations
372    println!("\n15. Error mitigation recommendations...");
373
374    let recommendations =
375        generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377    println!("    Recommendations:");
378    for (i, recommendation) in recommendations.iter().enumerate() {
379        println!("    {}. {}", i + 1, recommendation);
380    }
381
382    println!("\n=== Advanced Error Mitigation Demo Complete ===");
383    println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384    println!("📊 All mitigation strategies evaluated and optimized");
385    println!("🚀 Quantum ML error mitigation framework ready for production");
386
387    Ok(())
388}

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V