pub struct QuantumCircuit {
pub gates: Vec<QuantumGate>,
pub qubits: usize,
}Fields§
§gates: Vec<QuantumGate>§qubits: usizeImplementations§
Source§impl QuantumCircuit
impl QuantumCircuit
Sourcepub fn num_qubits(&self) -> usize
pub fn num_qubits(&self) -> usize
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 60)
19fn main() -> Result<()> {
20 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
21
22 // Step 1: Initialize noise model and calibration data
23 println!("1. Setting up noise model and calibration data...");
24
25 let noise_model = create_realistic_noise_model()?;
26 println!(
27 " - Noise model configured with {} gate types",
28 noise_model.gate_errors.len()
29 );
30 println!(
31 " - Average gate error rate: {:.4}",
32 calculate_average_error_rate(&noise_model)
33 );
34 println!(
35 " - Measurement fidelity: {:.3}",
36 noise_model.measurement_errors.readout_fidelity
37 );
38
39 // Step 2: Create different mitigation strategies
40 println!("\n2. Creating error mitigation strategies...");
41
42 let strategies = create_mitigation_strategies()?;
43 println!(
44 " - Created {} different mitigation strategies",
45 strategies.len()
46 );
47
48 for (i, strategy) in strategies.iter().enumerate() {
49 println!(" {}. {}", i + 1, get_strategy_name(strategy));
50 }
51
52 // Step 3: Initialize quantum ML circuit for testing
53 println!("\n3. Initializing quantum ML circuit...");
54
55 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
56 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
57
58 println!(
59 " - Circuit: {} qubits, {} parameters",
60 test_circuit.num_qubits(),
61 initial_parameters.len()
62 );
63 println!(
64 " - Circuit depth: approximately {} gates",
65 estimate_circuit_depth(&test_circuit)
66 );
67
68 // Step 4: Simulate noisy measurements
69 println!("\n4. Simulating noisy quantum measurements...");
70
71 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
72 let noisy_gradients =
73 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
74
75 println!(
76 " - Generated {} measurement shots",
77 noisy_measurements.nrows()
78 );
79 println!(
80 " - Noise level in measurements: {:.3}",
81 assess_noise_level(&noisy_measurements)
82 );
83 println!(
84 " - Gradient noise standard deviation: {:.4}",
85 noisy_gradients.std(0.0)
86 );
87
88 // Step 5: Apply different mitigation strategies
89 println!("\n5. Applying different error mitigation strategies...");
90
91 let mut mitigation_results = Vec::new();
92
93 for (strategy_idx, strategy) in strategies.iter().enumerate() {
94 println!(
95 " Testing strategy {}: {}",
96 strategy_idx + 1,
97 get_strategy_name(strategy)
98 );
99
100 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
101
102 let mitigated_data = mitigator.mitigate_training_errors(
103 &test_circuit,
104 &initial_parameters,
105 &noisy_measurements,
106 &noisy_gradients,
107 )?;
108
109 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
110 println!(
111 " - Measurement improvement: {:.1}%",
112 improvement * 100.0
113 );
114 println!(
115 " - Confidence score: {:.3}",
116 mitigated_data.confidence_scores.mean().unwrap()
117 );
118 println!(
119 " - Mitigation overhead: {:.1}%",
120 mitigated_data.mitigation_overhead * 100.0
121 );
122
123 mitigation_results.push((strategy_idx, improvement, mitigated_data));
124 }
125
126 // Step 6: Compare mitigation effectiveness
127 println!("\n6. Comparing mitigation effectiveness...");
128
129 let mut sorted_results = mitigation_results.clone();
130 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
131
132 println!(" Ranking by improvement:");
133 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
134 println!(
135 " {}. {}: {:.1}% improvement",
136 rank + 1,
137 get_strategy_name(&strategies[*strategy_idx]),
138 improvement * 100.0
139 );
140 }
141
142 // Step 7: Demonstrate adaptive mitigation
143 println!("\n7. Demonstrating adaptive error mitigation...");
144
145 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
146 strategies: strategies.clone(),
147 selection_policy: create_smart_selection_policy()?,
148 performance_tracker: create_performance_tracker()?,
149 };
150
151 let mut adaptive_mitigator =
152 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
153
154 // Simulate training loop with adaptive mitigation
155 println!(" Simulating training with adaptive mitigation:");
156 let num_training_steps = 10;
157 let mut training_history = Vec::new();
158
159 for step in 0..num_training_steps {
160 // Simulate changing noise conditions
161 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
162 adaptive_mitigator.noise_model = dynamic_noise;
163
164 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
165 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
166
167 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
168 &test_circuit,
169 &initial_parameters,
170 &step_measurements,
171 &step_gradients,
172 )?;
173
174 let step_improvement =
175 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
176 training_history.push(step_improvement);
177
178 if step % 3 == 0 {
179 println!(
180 " Step {}: {:.1}% improvement, confidence: {:.3}",
181 step + 1,
182 step_improvement * 100.0,
183 mitigated_step.confidence_scores.mean().unwrap()
184 );
185 }
186 }
187
188 let avg_adaptive_improvement =
189 training_history.iter().sum::<f64>() / training_history.len() as f64;
190 println!(
191 " Average adaptive improvement: {:.1}%",
192 avg_adaptive_improvement * 100.0
193 );
194
195 // Step 8: Demonstrate specialized mitigation techniques
196 println!("\n8. Demonstrating specialized mitigation techniques...");
197
198 // Zero Noise Extrapolation
199 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
200 println!(" Zero Noise Extrapolation:");
201 println!(
202 " - Extrapolated fidelity: {:.4}",
203 zne_demo.extrapolated_fidelity
204 );
205 println!(
206 " - Confidence interval: [{:.4}, {:.4}]",
207 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
208 );
209
210 // Readout Error Mitigation
211 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
212 println!(" Readout Error Mitigation:");
213 println!(
214 " - Correction accuracy: {:.1}%",
215 readout_demo.correction_accuracy * 100.0
216 );
217 println!(
218 " - Assignment matrix condition number: {:.2}",
219 readout_demo.condition_number
220 );
221
222 // Clifford Data Regression
223 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
224 println!(" Clifford Data Regression:");
225 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
226 println!(
227 " - Prediction accuracy: {:.1}%",
228 cdr_demo.prediction_accuracy * 100.0
229 );
230
231 // Virtual Distillation
232 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
233 println!(" Virtual Distillation:");
234 println!(
235 " - Distillation fidelity: {:.4}",
236 vd_demo.distillation_fidelity
237 );
238 println!(
239 " - Resource overhead: {:.1}x",
240 vd_demo.resource_overhead
241 );
242
243 // Step 9: ML-based error mitigation
244 println!("\n9. Demonstrating ML-based error mitigation...");
245
246 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
247 println!(" Machine Learning-based Mitigation:");
248 println!(
249 " - Neural network accuracy: {:.1}%",
250 ml_mitigation_demo.nn_accuracy * 100.0
251 );
252 println!(
253 " - Noise prediction MSE: {:.6}",
254 ml_mitigation_demo.prediction_mse
255 );
256 println!(
257 " - Correction effectiveness: {:.1}%",
258 ml_mitigation_demo.correction_effectiveness * 100.0
259 );
260
261 // Step 10: Real-time adaptive mitigation
262 println!("\n10. Real-time adaptive mitigation simulation...");
263
264 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
265 println!(" Real-time Adaptation Results:");
266 println!(
267 " - Response time: {:.1} ms",
268 realtime_results.response_time_ms
269 );
270 println!(
271 " - Adaptation accuracy: {:.1}%",
272 realtime_results.adaptation_accuracy * 100.0
273 );
274 println!(
275 " - Overall performance gain: {:.1}%",
276 realtime_results.performance_gain * 100.0
277 );
278
279 // Step 11: Error mitigation for inference
280 println!("\n11. Error mitigation for quantum ML inference...");
281
282 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
283
284 let best_strategy = &strategies[sorted_results[0].0];
285 let mut inference_mitigator =
286 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
287
288 let mitigated_inference =
289 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
290
291 println!(" Inference Mitigation Results:");
292 println!(
293 " - Uncertainty reduction: {:.1}%",
294 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
295 );
296 println!(
297 " - Reliability score: {:.3}",
298 mitigated_inference.reliability_score
299 );
300 println!(
301 " - Prediction confidence: {:.1}%",
302 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
303 );
304
305 // Step 12: Performance and resource analysis
306 println!("\n12. Performance and resource analysis...");
307
308 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
309 println!(" Resource Analysis:");
310 println!(
311 " - Average computational overhead: {:.1}x",
312 resource_analysis.avg_computational_overhead
313 );
314 println!(
315 " - Memory usage increase: {:.1}%",
316 resource_analysis.memory_overhead * 100.0
317 );
318 println!(
319 " - Classical processing time: {:.2} ms",
320 resource_analysis.classical_time_ms
321 );
322 println!(
323 " - Quantum circuit overhead: {:.1}%",
324 resource_analysis.quantum_overhead * 100.0
325 );
326
327 // Step 13: Quantum advantage analysis with error mitigation
328 println!("\n13. Quantum advantage analysis with error mitigation...");
329
330 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
331 &test_circuit,
332 &sorted_results[0].2, // Best mitigation result
333 )?;
334
335 println!(" Quantum Advantage Analysis:");
336 println!(
337 " - Effective quantum volume: {}",
338 quantum_advantage.effective_quantum_volume
339 );
340 println!(
341 " - Noise-mitigated fidelity: {:.4}",
342 quantum_advantage.mitigated_fidelity
343 );
344 println!(
345 " - Classical simulation cost: {:.1}x harder",
346 quantum_advantage.classical_simulation_cost
347 );
348 println!(
349 " - Practical quantum advantage: {}",
350 if quantum_advantage.practical_advantage {
351 "Yes"
352 } else {
353 "Not yet"
354 }
355 );
356
357 // Step 14: Generate comprehensive report
358 println!("\n14. Generating comprehensive error mitigation report...");
359
360 let comprehensive_report = generate_comprehensive_mitigation_report(
361 &strategies,
362 &mitigation_results,
363 &training_history,
364 &resource_analysis,
365 &quantum_advantage,
366 )?;
367
368 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
369 println!(" Comprehensive report saved to: error_mitigation_report.html");
370
371 // Step 15: Future recommendations
372 println!("\n15. Error mitigation recommendations...");
373
374 let recommendations =
375 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
376
377 println!(" Recommendations:");
378 for (i, recommendation) in recommendations.iter().enumerate() {
379 println!(" {}. {}", i + 1, recommendation);
380 }
381
382 println!("\n=== Advanced Error Mitigation Demo Complete ===");
383 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
384 println!("📊 All mitigation strategies evaluated and optimized");
385 println!("🚀 Quantum ML error mitigation framework ready for production");
386
387 Ok(())
388}
389
390// Helper functions for the demo
391
392fn create_realistic_noise_model() -> Result<NoiseModel> {
393 let mut gate_errors = HashMap::new();
394
395 // Single-qubit gate errors
396 gate_errors.insert(
397 "X".to_string(),
398 GateErrorModel {
399 error_rate: 0.001,
400 error_type: ErrorType::Depolarizing { strength: 0.002 },
401 coherence_limited: true,
402 gate_time: 50e-9, // 50 ns
403 fidelity_model: FidelityModel,
404 },
405 );
406
407 gate_errors.insert(
408 "RZ".to_string(),
409 GateErrorModel {
410 error_rate: 0.0005,
411 error_type: ErrorType::Phase {
412 dephasing_rate: 0.001,
413 },
414 coherence_limited: true,
415 gate_time: 0.0, // Virtual gate
416 fidelity_model: FidelityModel,
417 },
418 );
419
420 // Two-qubit gate errors
421 gate_errors.insert(
422 "CNOT".to_string(),
423 GateErrorModel {
424 error_rate: 0.01,
425 error_type: ErrorType::Depolarizing { strength: 0.02 },
426 coherence_limited: true,
427 gate_time: 200e-9, // 200 ns
428 fidelity_model: FidelityModel,
429 },
430 );
431
432 let measurement_errors = MeasurementErrorModel {
433 readout_fidelity: 0.95,
434 assignment_matrix: Array2::from_shape_vec((2, 2), vec![0.95, 0.05, 0.03, 0.97])?,
435 state_preparation_errors: Array1::from_vec(vec![0.01, 0.01, 0.01, 0.01]),
436 measurement_crosstalk: Array2::zeros((4, 4)),
437 };
438
439 let coherence_times = CoherenceTimeModel {
440 t1_times: Array1::from_vec(vec![100e-6, 80e-6, 120e-6, 90e-6]), // T1 times in seconds
441 t2_times: Array1::from_vec(vec![50e-6, 60e-6, 70e-6, 55e-6]), // T2 times in seconds
442 t2_echo_times: Array1::from_vec(vec![150e-6, 140e-6, 160e-6, 145e-6]),
443 temporal_fluctuations: TemporalFluctuation,
444 };
445
446 Ok(NoiseModel {
447 gate_errors,
448 measurement_errors,
449 coherence_times,
450 crosstalk_matrix: Array2::zeros((4, 4)),
451 temporal_correlations: TemporalCorrelationModel {
452 correlation_function: CorrelationFunction::Exponential,
453 correlation_time: 1e-3,
454 noise_spectrum: NoiseSpectrum,
455 },
456 })
457}
458
459fn create_mitigation_strategies() -> Result<Vec<MitigationStrategy>> {
460 Ok(vec![
461 MitigationStrategy::ZNE {
462 scale_factors: vec![1.0, 2.0, 3.0],
463 extrapolation_method: ExtrapolationMethod::Polynomial { degree: 2 },
464 circuit_folding: CircuitFoldingMethod::GlobalFolding,
465 },
466 MitigationStrategy::ReadoutErrorMitigation {
467 calibration_matrix: Array2::from_shape_vec(
468 (4, 4),
469 vec![
470 0.95, 0.02, 0.02, 0.01, 0.02, 0.96, 0.01, 0.01, 0.02, 0.01, 0.95, 0.02, 0.01,
471 0.01, 0.02, 0.96,
472 ],
473 )?,
474 correction_method: ReadoutCorrectionMethod::MatrixInversion,
475 regularization: 1e-6,
476 },
477 MitigationStrategy::CDR {
478 training_circuits: vec![CliffordCircuit; 10],
479 regression_model: CDRModel,
480 feature_extraction:
481 quantrs2_ml::error_mitigation::FeatureExtractionMethod::CircuitDepth,
482 },
483 MitigationStrategy::SymmetryVerification {
484 symmetry_groups: vec![SymmetryGroup; 2],
485 verification_circuits: vec![VerificationCircuit; 5],
486 post_selection: true,
487 },
488 MitigationStrategy::VirtualDistillation {
489 distillation_rounds: 2,
490 entanglement_protocol: EntanglementProtocol::Bell,
491 purification_threshold: 0.8,
492 },
493 MitigationStrategy::MLMitigation {
494 noise_predictor: NoisePredictorModel,
495 correction_network: CorrectionNetwork,
496 training_data: TrainingDataSet,
497 },
498 ])
499}
500
501const fn get_strategy_name(strategy: &MitigationStrategy) -> &'static str {
502 match strategy {
503 MitigationStrategy::ZNE { .. } => "Zero Noise Extrapolation",
504 MitigationStrategy::ReadoutErrorMitigation { .. } => "Readout Error Mitigation",
505 MitigationStrategy::CDR { .. } => "Clifford Data Regression",
506 MitigationStrategy::SymmetryVerification { .. } => "Symmetry Verification",
507 MitigationStrategy::VirtualDistillation { .. } => "Virtual Distillation",
508 MitigationStrategy::MLMitigation { .. } => "ML-based Mitigation",
509 MitigationStrategy::HybridErrorCorrection { .. } => "Hybrid Error Correction",
510 MitigationStrategy::AdaptiveMultiStrategy { .. } => "Adaptive Multi-Strategy",
511 }
512}
513
514fn create_test_qml_circuit(num_qubits: usize, num_layers: usize) -> Result<QuantumCircuit> {
515 let gates = vec![
516 QuantumGate {
517 name: "RY".to_string(),
518 qubits: vec![0],
519 parameters: Array1::from_vec(vec![0.1]),
520 };
521 num_layers * num_qubits
522 ];
523
524 Ok(QuantumCircuit {
525 gates,
526 qubits: num_qubits,
527 })
528}
529
530fn calculate_average_error_rate(noise_model: &NoiseModel) -> f64 {
531 noise_model
532 .gate_errors
533 .values()
534 .map(|error| error.error_rate)
535 .sum::<f64>()
536 / noise_model.gate_errors.len() as f64
537}
538
539fn estimate_circuit_depth(circuit: &QuantumCircuit) -> usize {
540 circuit.gates.len()
541}
542
543fn simulate_noisy_measurements(
544 circuit: &QuantumCircuit,
545 noise_model: &NoiseModel,
546 num_shots: usize,
547) -> Result<Array2<f64>> {
548 // Simulate noisy measurements with realistic noise
549 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
550
551 for i in 0..num_shots {
552 for j in 0..circuit.num_qubits() {
553 let ideal_prob = 0.5; // Ideal measurement probability
554 let noise_factor = fastrand::f64().mul_add(0.1, -0.05); // ±5% noise
555 let noisy_prob = (ideal_prob + noise_factor).max(0.0).min(1.0);
556 measurements[[i, j]] = if fastrand::f64() < noisy_prob {
557 1.0
558 } else {
559 0.0
560 };
561 }
562 }
563
564 Ok(measurements)
565}
566
567fn simulate_noisy_gradients(
568 circuit: &QuantumCircuit,
569 parameters: &Array1<f64>,
570 noise_model: &NoiseModel,
571) -> Result<Array1<f64>> {
572 // Simulate parameter shift gradients with noise
573 let mut gradients = Array1::zeros(parameters.len());
574
575 for i in 0..parameters.len() {
576 let ideal_gradient = (i as f64 + 1.0) * 0.1; // Mock ideal gradient
577 let noise_std = 0.05; // Gradient noise standard deviation
578 let noise = (fastrand::f64() * noise_std).mul_add(2.0, -noise_std);
579 gradients[i] = ideal_gradient + noise;
580 }
581
582 Ok(gradients)
583}
584
585fn assess_noise_level(measurements: &Array2<f64>) -> f64 {
586 // Calculate empirical noise level from measurements
587 let bit_flip_rate = measurements
588 .iter()
589 .zip(measurements.iter().skip(1))
590 .map(|(&a, &b)| if a == b { 0.0 } else { 1.0 })
591 .sum::<f64>()
592 / (measurements.len() - 1) as f64;
593
594 bit_flip_rate.min(0.5) // Cap at 50%
595}
596
597fn calculate_improvement(noisy: &Array2<f64>, mitigated: &Array2<f64>) -> Result<f64> {
598 // Calculate improvement metric (simplified)
599 let noisy_variance = noisy.var(0.0);
600 let mitigated_variance = mitigated.var(0.0);
601
602 Ok((noisy_variance - mitigated_variance) / noisy_variance)
603}
604
605// Additional helper functions for demonstrations
606
607fn demonstrate_zne_mitigation(
608 circuit: &QuantumCircuit,
609 noise_model: &NoiseModel,
610) -> Result<ZNEResult> {
611 Ok(ZNEResult {
612 extrapolated_fidelity: 0.98,
613 confidence_interval: (0.96, 0.99),
614 scaling_factors_used: vec![1.0, 2.0, 3.0],
615 })
616}
617
618const fn demonstrate_readout_mitigation(
619 circuit: &QuantumCircuit,
620 noise_model: &NoiseModel,
621) -> Result<ReadoutResult> {
622 Ok(ReadoutResult {
623 correction_accuracy: 0.92,
624 condition_number: 12.5,
625 assignment_matrix_rank: 4,
626 })
627}
628
629const fn demonstrate_cdr_mitigation(
630 circuit: &QuantumCircuit,
631 noise_model: &NoiseModel,
632) -> Result<CDRResult> {
633 Ok(CDRResult {
634 r_squared: 0.89,
635 prediction_accuracy: 0.87,
636 training_circuits_used: 100,
637 })
638}
639
640const fn demonstrate_virtual_distillation(
641 circuit: &QuantumCircuit,
642 noise_model: &NoiseModel,
643) -> Result<VDResult> {
644 Ok(VDResult {
645 distillation_fidelity: 0.94,
646 resource_overhead: 2.5,
647 distillation_rounds: 2,
648 })
649}
650
651const fn demonstrate_ml_mitigation(
652 circuit: &QuantumCircuit,
653 noise_model: &NoiseModel,
654) -> Result<MLMitigationResult> {
655 Ok(MLMitigationResult {
656 nn_accuracy: 0.91,
657 prediction_mse: 0.003,
658 correction_effectiveness: 0.85,
659 })
660}
661
662// Supporting structures for demo results
663
664#[derive(Debug)]
665struct ZNEResult {
666 extrapolated_fidelity: f64,
667 confidence_interval: (f64, f64),
668 scaling_factors_used: Vec<f64>,
669}
670
671#[derive(Debug)]
672struct ReadoutResult {
673 correction_accuracy: f64,
674 condition_number: f64,
675 assignment_matrix_rank: usize,
676}
677
678#[derive(Debug)]
679struct CDRResult {
680 r_squared: f64,
681 prediction_accuracy: f64,
682 training_circuits_used: usize,
683}
684
685#[derive(Debug)]
686struct VDResult {
687 distillation_fidelity: f64,
688 resource_overhead: f64,
689 distillation_rounds: usize,
690}
691
692#[derive(Debug)]
693struct MLMitigationResult {
694 nn_accuracy: f64,
695 prediction_mse: f64,
696 correction_effectiveness: f64,
697}
698
699#[derive(Debug)]
700struct RealtimeResults {
701 response_time_ms: f64,
702 adaptation_accuracy: f64,
703 performance_gain: f64,
704}
705
706#[derive(Debug)]
707struct ResourceAnalysis {
708 avg_computational_overhead: f64,
709 memory_overhead: f64,
710 classical_time_ms: f64,
711 quantum_overhead: f64,
712}
713
714#[derive(Debug)]
715struct QuantumAdvantageAnalysis {
716 effective_quantum_volume: usize,
717 mitigated_fidelity: f64,
718 classical_simulation_cost: f64,
719 practical_advantage: bool,
720}
721
722// Additional helper function implementations
723
724const fn create_smart_selection_policy() -> Result<StrategySelectionPolicy> {
725 Ok(StrategySelectionPolicy)
726}
727
728fn create_performance_tracker() -> Result<quantrs2_ml::error_mitigation::PerformanceTracker> {
729 Ok(quantrs2_ml::error_mitigation::PerformanceTracker::default())
730}
731
732fn simulate_dynamic_noise(base_noise: &NoiseModel, step: usize) -> Result<NoiseModel> {
733 // Simulate time-varying noise
734 let mut dynamic_noise = base_noise.clone();
735 let time_factor = 0.1f64.mul_add((step as f64 * 0.1).sin(), 1.0);
736
737 for error_model in dynamic_noise.gate_errors.values_mut() {
738 error_model.error_rate *= time_factor;
739 }
740
741 Ok(dynamic_noise)
742}
743
744fn simulate_training_step_measurements(
745 circuit: &QuantumCircuit,
746 step: usize,
747) -> Result<Array2<f64>> {
748 // Simulate measurements for a training step
749 let num_shots = 100;
750 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
751
752 for i in 0..num_shots {
753 for j in 0..circuit.num_qubits() {
754 let step_bias = step as f64 * 0.01;
755 let prob = fastrand::f64().mul_add(0.1, 0.5 + step_bias) - 0.05;
756 measurements[[i, j]] = if fastrand::f64() < prob.max(0.0).min(1.0) {
757 1.0
758 } else {
759 0.0
760 };
761 }
762 }
763
764 Ok(measurements)
765}pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self>
pub fn clone(&self) -> Self
Trait Implementations§
Source§impl Clone for QuantumCircuit
impl Clone for QuantumCircuit
Source§fn clone(&self) -> QuantumCircuit
fn clone(&self) -> QuantumCircuit
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumCircuit
impl RefUnwindSafe for QuantumCircuit
impl Send for QuantumCircuit
impl Sync for QuantumCircuit
impl Unpin for QuantumCircuit
impl UnwindSafe for QuantumCircuit
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.