1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13 single::{RotationX, RotationY, RotationZ},
14 GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{s, Array1, Array2, Array3, Axis};
18use scirs2_core::random::prelude::*;
19use std::collections::{HashMap, HashSet};
20use std::fmt;
21
22#[derive(Debug, Clone, Copy)]
24pub enum SearchStrategy {
25 Evolutionary {
27 population_size: usize,
28 mutation_rate: f64,
29 crossover_rate: f64,
30 elitism_ratio: f64,
31 },
32
33 ReinforcementLearning {
35 agent_type: RLAgentType,
36 exploration_rate: f64,
37 learning_rate: f64,
38 },
39
40 Random { num_samples: usize },
42
43 BayesianOptimization {
45 acquisition_function: AcquisitionFunction,
46 num_initial_points: usize,
47 },
48
49 DARTS {
51 learning_rate: f64,
52 weight_decay: f64,
53 },
54}
55
56#[derive(Debug, Clone, Copy)]
58pub enum RLAgentType {
59 DQN,
61 PolicyGradient,
63 ActorCritic,
65}
66
67#[derive(Debug, Clone, Copy)]
69pub enum AcquisitionFunction {
70 ExpectedImprovement,
72 UpperConfidenceBound,
74 ProbabilityOfImprovement,
76}
77
78#[derive(Debug, Clone)]
80pub struct SearchSpace {
81 pub layer_types: Vec<QNNLayerType>,
83
84 pub depth_range: (usize, usize),
86
87 pub qubit_constraints: QubitConstraints,
89
90 pub param_ranges: HashMap<String, (usize, usize)>,
92
93 pub connectivity_patterns: Vec<String>,
95
96 pub measurement_bases: Vec<String>,
98}
99
100#[derive(Debug, Clone)]
102pub struct QubitConstraints {
103 pub min_qubits: usize,
105
106 pub max_qubits: usize,
108
109 pub topology: Option<QuantumTopology>,
111}
112
113#[derive(Debug, Clone)]
115pub enum QuantumTopology {
116 Linear,
118 Ring,
120 Grid { width: usize, height: usize },
122 Complete,
124 Custom { edges: Vec<(usize, usize)> },
126}
127
128#[derive(Debug, Clone)]
130pub struct ArchitectureCandidate {
131 pub id: String,
133
134 pub layers: Vec<QNNLayerType>,
136
137 pub num_qubits: usize,
139
140 pub metrics: ArchitectureMetrics,
142
143 pub properties: ArchitectureProperties,
145}
146
147#[derive(Debug, Clone)]
149pub struct ArchitectureMetrics {
150 pub accuracy: Option<f64>,
152
153 pub loss: Option<f64>,
155
156 pub circuit_depth: usize,
158
159 pub parameter_count: usize,
161
162 pub training_time: Option<f64>,
164
165 pub memory_usage: Option<usize>,
167
168 pub hardware_efficiency: Option<f64>,
170}
171
172#[derive(Debug, Clone)]
174pub struct ArchitectureProperties {
175 pub expressivity: Option<f64>,
177
178 pub entanglement_capability: Option<f64>,
180
181 pub gradient_variance: Option<f64>,
183
184 pub barren_plateau_score: Option<f64>,
186
187 pub noise_resilience: Option<f64>,
189}
190
191pub struct QuantumNAS {
193 strategy: SearchStrategy,
195
196 search_space: SearchSpace,
198
199 eval_data: Option<(Array2<f64>, Array1<usize>)>,
201
202 best_architectures: Vec<ArchitectureCandidate>,
204
205 search_history: Vec<ArchitectureCandidate>,
207
208 current_generation: usize,
210
211 rl_state: Option<RLSearchState>,
213
214 pareto_front: Vec<ArchitectureCandidate>,
216}
217
218#[derive(Debug, Clone)]
220pub struct RLSearchState {
221 q_values: HashMap<String, f64>,
223
224 policy_params: Array1<f64>,
226
227 replay_buffer: Vec<RLExperience>,
229
230 current_state: Array1<f64>,
232}
233
234#[derive(Debug, Clone)]
236pub struct RLExperience {
237 pub state: Array1<f64>,
239
240 pub action: ArchitectureAction,
242
243 pub reward: f64,
245
246 pub next_state: Array1<f64>,
248
249 pub done: bool,
251}
252
253#[derive(Debug, Clone)]
255pub enum ArchitectureAction {
256 AddLayer(QNNLayerType),
258
259 RemoveLayer(usize),
261
262 ModifyLayer(usize, HashMap<String, f64>),
264
265 ChangeConnectivity(String),
267
268 Finish,
270}
271
272impl QuantumNAS {
273 pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self {
275 Self {
276 strategy,
277 search_space,
278 eval_data: None,
279 best_architectures: Vec::new(),
280 search_history: Vec::new(),
281 current_generation: 0,
282 rl_state: None,
283 pareto_front: Vec::new(),
284 }
285 }
286
287 pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>) {
289 self.eval_data = Some((data, labels));
290 }
291
292 pub fn search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
294 println!("Starting quantum neural architecture search...");
295
296 match self.strategy {
297 SearchStrategy::Evolutionary { .. } => self.evolutionary_search(max_iterations),
298 SearchStrategy::ReinforcementLearning { .. } => self.rl_search(max_iterations),
299 SearchStrategy::Random { .. } => self.random_search(max_iterations),
300 SearchStrategy::BayesianOptimization { .. } => self.bayesian_search(max_iterations),
301 SearchStrategy::DARTS { .. } => self.darts_search(max_iterations),
302 }
303 }
304
305 fn evolutionary_search(
307 &mut self,
308 max_generations: usize,
309 ) -> Result<Vec<ArchitectureCandidate>> {
310 let (population_size, mutation_rate, crossover_rate, elitism_ratio) = match self.strategy {
311 SearchStrategy::Evolutionary {
312 population_size,
313 mutation_rate,
314 crossover_rate,
315 elitism_ratio,
316 } => (
317 population_size,
318 mutation_rate,
319 crossover_rate,
320 elitism_ratio,
321 ),
322 _ => unreachable!(),
323 };
324
325 let mut population = self.initialize_population(population_size)?;
327
328 for generation in 0..max_generations {
329 self.current_generation = generation;
330
331 for candidate in &mut population {
333 if candidate.metrics.accuracy.is_none() {
334 self.evaluate_architecture(candidate)?;
335 }
336 }
337
338 population.sort_by(|a, b| {
340 let fitness_a = self.compute_fitness(a);
341 let fitness_b = self.compute_fitness(b);
342 fitness_b.partial_cmp(&fitness_a).unwrap()
343 });
344
345 self.update_best_architectures(&population);
347
348 self.update_pareto_front(&population);
350
351 println!(
352 "Generation {}: Best fitness = {:.4}",
353 generation,
354 self.compute_fitness(&population[0])
355 );
356
357 let elite_count = (population_size as f64 * elitism_ratio) as usize;
359 let mut next_generation = population[..elite_count].to_vec();
360
361 while next_generation.len() < population_size {
362 let parent1 = self.tournament_selection(&population, 3)?;
364 let parent2 = self.tournament_selection(&population, 3)?;
365
366 let mut offspring = if thread_rng().gen::<f64>() < crossover_rate {
368 self.crossover(&parent1, &parent2)?
369 } else {
370 parent1.clone()
371 };
372
373 if thread_rng().gen::<f64>() < mutation_rate {
375 self.mutate(&mut offspring)?;
376 }
377
378 next_generation.push(offspring);
379 }
380
381 population = next_generation;
382
383 self.search_history.extend(population.clone());
385 }
386
387 Ok(self.best_architectures.clone())
388 }
389
390 fn rl_search(&mut self, max_episodes: usize) -> Result<Vec<ArchitectureCandidate>> {
392 let (agent_type, exploration_rate, learning_rate) = match self.strategy {
393 SearchStrategy::ReinforcementLearning {
394 agent_type,
395 exploration_rate,
396 learning_rate,
397 } => (agent_type, exploration_rate, learning_rate),
398 _ => unreachable!(),
399 };
400
401 self.initialize_rl_agent(agent_type, learning_rate)?;
403
404 for episode in 0..max_episodes {
405 let mut current_architecture = self.create_empty_architecture();
406 let mut episode_reward = 0.0;
407 let mut step = 0;
408
409 loop {
410 let state = self.architecture_to_state(¤t_architecture)?;
412
413 let action = if thread_rng().gen::<f64>() < exploration_rate {
415 self.sample_random_action(¤t_architecture)?
416 } else {
417 self.choose_best_action(&state)?
418 };
419
420 let (next_architecture, reward, done) =
422 self.apply_action(¤t_architecture, &action)?;
423
424 let next_state = self.architecture_to_state(&next_architecture)?;
426 let experience = RLExperience {
427 state: state.clone(),
428 action: action.clone(),
429 reward,
430 next_state: next_state.clone(),
431 done,
432 };
433
434 if let Some(ref mut rl_state) = self.rl_state {
435 rl_state.replay_buffer.push(experience);
436 }
437
438 if step % 10 == 0 {
440 self.train_rl_agent()?;
441 }
442
443 episode_reward += reward;
444 current_architecture = next_architecture;
445 step += 1;
446
447 if done || step > 20 {
448 break;
449 }
450 }
451
452 let mut final_candidate = current_architecture;
454 self.evaluate_architecture(&mut final_candidate)?;
455 self.search_history.push(final_candidate.clone());
456 self.update_best_architectures(&[final_candidate]);
457
458 if episode % 100 == 0 {
459 println!("Episode {}: Reward = {:.4}", episode, episode_reward);
460 }
461 }
462
463 Ok(self.best_architectures.clone())
464 }
465
466 fn random_search(&mut self, num_samples: usize) -> Result<Vec<ArchitectureCandidate>> {
468 for i in 0..num_samples {
469 let mut candidate = self.sample_random_architecture()?;
470 self.evaluate_architecture(&mut candidate)?;
471
472 self.search_history.push(candidate.clone());
473 self.update_best_architectures(&[candidate]);
474
475 if i % 100 == 0 {
476 println!("Evaluated {} random architectures", i + 1);
477 }
478 }
479
480 Ok(self.best_architectures.clone())
481 }
482
483 fn bayesian_search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
485 let (acquisition_fn, num_initial) = match self.strategy {
486 SearchStrategy::BayesianOptimization {
487 acquisition_function,
488 num_initial_points,
489 } => (acquisition_function, num_initial_points),
490 _ => unreachable!(),
491 };
492
493 let mut candidates = Vec::new();
495 for _ in 0..num_initial {
496 let mut candidate = self.sample_random_architecture()?;
497 self.evaluate_architecture(&mut candidate)?;
498 candidates.push(candidate);
499 }
500
501 for iteration in num_initial..max_iterations {
503 let surrogate = self.fit_surrogate_model(&candidates)?;
505
506 let next_candidate = self.optimize_acquisition(&surrogate, acquisition_fn)?;
508
509 let mut evaluated_candidate = next_candidate;
511 self.evaluate_architecture(&mut evaluated_candidate)?;
512
513 candidates.push(evaluated_candidate.clone());
514 self.search_history.push(evaluated_candidate.clone());
515 self.update_best_architectures(&[evaluated_candidate]);
516
517 if iteration % 50 == 0 {
518 let best_acc = self.best_architectures[0].metrics.accuracy.unwrap_or(0.0);
519 println!("Iteration {}: Best accuracy = {:.4}", iteration, best_acc);
520 }
521 }
522
523 Ok(self.best_architectures.clone())
524 }
525
526 fn darts_search(&mut self, max_epochs: usize) -> Result<Vec<ArchitectureCandidate>> {
528 let (learning_rate, weight_decay) = match self.strategy {
529 SearchStrategy::DARTS {
530 learning_rate,
531 weight_decay,
532 } => (learning_rate, weight_decay),
533 _ => unreachable!(),
534 };
535
536 let num_layers = 8; let num_ops = self.search_space.layer_types.len();
539 let mut alpha = Array2::zeros((num_layers, num_ops));
540
541 for i in 0..num_layers {
543 for j in 0..num_ops {
544 alpha[[i, j]] = 1.0 / num_ops as f64;
545 }
546 }
547
548 for epoch in 0..max_epochs {
549 let alpha_grad = self.compute_architecture_gradients(&alpha)?;
551 alpha = alpha - learning_rate * &alpha_grad;
552
553 for i in 0..num_layers {
555 let row_sum: f64 = alpha.row(i).iter().map(|x| x.exp()).sum();
556 for j in 0..num_ops {
557 alpha[[i, j]] = alpha[[i, j]].exp() / row_sum;
558 }
559 }
560
561 if epoch % 100 == 0 {
562 println!("DARTS epoch {}: Architecture weights updated", epoch);
563 }
564 }
565
566 let final_architecture = self.derive_architecture_from_weights(&alpha)?;
568 let mut candidate = final_architecture;
569 self.evaluate_architecture(&mut candidate)?;
570
571 self.search_history.push(candidate.clone());
572 self.update_best_architectures(&[candidate]);
573
574 Ok(self.best_architectures.clone())
575 }
576
577 fn initialize_population(&self, size: usize) -> Result<Vec<ArchitectureCandidate>> {
579 let mut population = Vec::new();
580 for i in 0..size {
581 let candidate = self.sample_random_architecture()?;
582 population.push(candidate);
583 }
584 Ok(population)
585 }
586
587 fn sample_random_architecture(&self) -> Result<ArchitectureCandidate> {
589 let depth =
590 fastrand::usize(self.search_space.depth_range.0..=self.search_space.depth_range.1);
591 let num_qubits = fastrand::usize(
592 self.search_space.qubit_constraints.min_qubits
593 ..=self.search_space.qubit_constraints.max_qubits,
594 );
595
596 let mut layers = Vec::new();
597
598 layers.push(QNNLayerType::EncodingLayer {
600 num_features: fastrand::usize(2..8),
601 });
602
603 for _ in 0..depth {
605 let layer_type_idx = fastrand::usize(0..self.search_space.layer_types.len());
606 let layer_type = self.search_space.layer_types[layer_type_idx].clone();
607 layers.push(layer_type);
608 }
609
610 let basis_idx = fastrand::usize(0..self.search_space.measurement_bases.len());
612 layers.push(QNNLayerType::MeasurementLayer {
613 measurement_basis: self.search_space.measurement_bases[basis_idx].clone(),
614 });
615
616 Ok(ArchitectureCandidate {
617 id: format!("arch_{}", fastrand::u64(..)),
618 layers,
619 num_qubits,
620 metrics: ArchitectureMetrics {
621 accuracy: None,
622 loss: None,
623 circuit_depth: 0,
624 parameter_count: 0,
625 training_time: None,
626 memory_usage: None,
627 hardware_efficiency: None,
628 },
629 properties: ArchitectureProperties {
630 expressivity: None,
631 entanglement_capability: None,
632 gradient_variance: None,
633 barren_plateau_score: None,
634 noise_resilience: None,
635 },
636 })
637 }
638
639 fn evaluate_architecture(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
641 let qnn = QuantumNeuralNetwork::new(
643 candidate.layers.clone(),
644 candidate.num_qubits,
645 4, 2, )?;
648
649 candidate.metrics.parameter_count = qnn.parameters.len();
651 candidate.metrics.circuit_depth = self.estimate_circuit_depth(&candidate.layers);
652
653 if let Some((data, labels)) = &self.eval_data {
655 let (accuracy, loss) = self.evaluate_on_dataset(&qnn, data, labels)?;
656 candidate.metrics.accuracy = Some(accuracy);
657 candidate.metrics.loss = Some(loss);
658 } else {
659 candidate.metrics.accuracy = Some(0.5 + 0.4 * thread_rng().gen::<f64>());
661 candidate.metrics.loss = Some(0.5 + 0.5 * thread_rng().gen::<f64>());
662 }
663
664 self.compute_architecture_properties(candidate)?;
666
667 Ok(())
668 }
669
670 fn compute_fitness(&self, candidate: &ArchitectureCandidate) -> f64 {
672 let accuracy = candidate.metrics.accuracy.unwrap_or(0.0);
673 let param_penalty = candidate.metrics.parameter_count as f64 / 1000.0;
674 let depth_penalty = candidate.metrics.circuit_depth as f64 / 100.0;
675
676 accuracy - 0.1 * param_penalty - 0.05 * depth_penalty
678 }
679
680 fn tournament_selection(
682 &self,
683 population: &[ArchitectureCandidate],
684 tournament_size: usize,
685 ) -> Result<ArchitectureCandidate> {
686 let mut best = None;
687 let mut best_fitness = f64::NEG_INFINITY;
688
689 for _ in 0..tournament_size {
690 let idx = fastrand::usize(0..population.len());
691 let candidate = &population[idx];
692 let fitness = self.compute_fitness(candidate);
693
694 if fitness > best_fitness {
695 best_fitness = fitness;
696 best = Some(candidate.clone());
697 }
698 }
699
700 Ok(best.unwrap())
701 }
702
703 fn crossover(
705 &self,
706 parent1: &ArchitectureCandidate,
707 parent2: &ArchitectureCandidate,
708 ) -> Result<ArchitectureCandidate> {
709 let mut child_layers = Vec::new();
711 let max_len = parent1.layers.len().max(parent2.layers.len());
712
713 for i in 0..max_len {
714 if thread_rng().gen::<bool>() {
715 if i < parent1.layers.len() {
716 child_layers.push(parent1.layers[i].clone());
717 }
718 } else {
719 if i < parent2.layers.len() {
720 child_layers.push(parent2.layers[i].clone());
721 }
722 }
723 }
724
725 let num_qubits = if thread_rng().gen::<bool>() {
726 parent1.num_qubits
727 } else {
728 parent2.num_qubits
729 };
730
731 Ok(ArchitectureCandidate {
732 id: format!("crossover_{}", fastrand::u64(..)),
733 layers: child_layers,
734 num_qubits,
735 metrics: ArchitectureMetrics {
736 accuracy: None,
737 loss: None,
738 circuit_depth: 0,
739 parameter_count: 0,
740 training_time: None,
741 memory_usage: None,
742 hardware_efficiency: None,
743 },
744 properties: ArchitectureProperties {
745 expressivity: None,
746 entanglement_capability: None,
747 gradient_variance: None,
748 barren_plateau_score: None,
749 noise_resilience: None,
750 },
751 })
752 }
753
754 fn mutate(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
756 let mutation_type = fastrand::usize(0..4);
757
758 match mutation_type {
759 0 => {
760 if candidate.layers.len() < self.search_space.depth_range.1 + 2 {
762 let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
763 let new_layer = self.search_space.layer_types[layer_idx].clone();
764 let insert_pos = fastrand::usize(1..candidate.layers.len()); candidate.layers.insert(insert_pos, new_layer);
766 }
767 }
768 1 => {
769 if candidate.layers.len() > 3 {
771 let remove_pos = fastrand::usize(1..candidate.layers.len() - 1);
773 candidate.layers.remove(remove_pos);
774 }
775 }
776 2 => {
777 if candidate.layers.len() > 2 {
779 let layer_idx = fastrand::usize(1..candidate.layers.len() - 1);
780 let new_layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
781 candidate.layers[layer_idx] =
782 self.search_space.layer_types[new_layer_idx].clone();
783 }
784 }
785 3 => {
786 candidate.num_qubits = fastrand::usize(
788 self.search_space.qubit_constraints.min_qubits
789 ..=self.search_space.qubit_constraints.max_qubits,
790 );
791 }
792 _ => {}
793 }
794
795 candidate.metrics.accuracy = None;
797 candidate.metrics.loss = None;
798
799 Ok(())
800 }
801
802 fn update_best_architectures(&mut self, candidates: &[ArchitectureCandidate]) {
804 for candidate in candidates {
805 if candidate.metrics.accuracy.is_some() {
806 self.best_architectures.push(candidate.clone());
807 }
808 }
809
810 let mut fitness_scores: Vec<(usize, f64)> = self
812 .best_architectures
813 .iter()
814 .enumerate()
815 .map(|(i, arch)| (i, self.compute_fitness(arch)))
816 .collect();
817
818 fitness_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
820
821 let sorted_architectures: Vec<_> = fitness_scores
823 .into_iter()
824 .take(10)
825 .map(|(i, _)| self.best_architectures[i].clone())
826 .collect();
827
828 self.best_architectures = sorted_architectures;
829 }
830
831 fn update_pareto_front(&mut self, candidates: &[ArchitectureCandidate]) {
833 for candidate in candidates {
834 let is_dominated = self
835 .pareto_front
836 .iter()
837 .any(|other| self.dominates(other, candidate));
838
839 if !is_dominated {
840 let mut to_remove = Vec::new();
842 for (i, other) in self.pareto_front.iter().enumerate() {
843 if self.dominates(candidate, other) {
844 to_remove.push(i);
845 }
846 }
847
848 for &i in to_remove.iter().rev() {
850 self.pareto_front.remove(i);
851 }
852
853 self.pareto_front.push(candidate.clone());
855 }
856 }
857 }
858
859 fn dominates(&self, a: &ArchitectureCandidate, b: &ArchitectureCandidate) -> bool {
861 let acc_a = a.metrics.accuracy.unwrap_or(0.0);
862 let acc_b = b.metrics.accuracy.unwrap_or(0.0);
863 let params_a = a.metrics.parameter_count as f64;
864 let params_b = b.metrics.parameter_count as f64;
865
866 (acc_a >= acc_b && params_a <= params_b) && (acc_a > acc_b || params_a < params_b)
867 }
868
869 fn estimate_circuit_depth(&self, layers: &[QNNLayerType]) -> usize {
871 layers
872 .iter()
873 .map(|layer| match layer {
874 QNNLayerType::EncodingLayer { .. } => 1,
875 QNNLayerType::VariationalLayer { num_params } => num_params / 3, QNNLayerType::EntanglementLayer { .. } => 1,
877 QNNLayerType::MeasurementLayer { .. } => 1,
878 })
879 .sum()
880 }
881
882 fn evaluate_on_dataset(
884 &self,
885 qnn: &QuantumNeuralNetwork,
886 data: &Array2<f64>,
887 labels: &Array1<usize>,
888 ) -> Result<(f64, f64)> {
889 let accuracy = 0.6 + 0.3 * thread_rng().gen::<f64>();
891 let loss = 0.2 + 0.8 * thread_rng().gen::<f64>();
892 Ok((accuracy, loss))
893 }
894
895 fn compute_architecture_properties(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
897 let expressivity = (candidate.metrics.parameter_count as f64).ln()
899 * (candidate.metrics.circuit_depth as f64).sqrt()
900 / 100.0;
901 candidate.properties.expressivity = Some(expressivity.min(1.0));
902
903 let entanglement_layers = candidate
905 .layers
906 .iter()
907 .filter(|layer| matches!(layer, QNNLayerType::EntanglementLayer { .. }))
908 .count();
909 candidate.properties.entanglement_capability =
910 Some((entanglement_layers as f64 / candidate.layers.len() as f64).min(1.0));
911
912 candidate.properties.gradient_variance = Some(0.1 + 0.3 * thread_rng().gen::<f64>());
914 candidate.properties.barren_plateau_score = Some(0.2 + 0.6 * thread_rng().gen::<f64>());
915 candidate.properties.noise_resilience = Some(0.3 + 0.4 * thread_rng().gen::<f64>());
916
917 Ok(())
918 }
919
920 fn initialize_rl_agent(&mut self, agent_type: RLAgentType, learning_rate: f64) -> Result<()> {
922 let state_dim = 64; self.rl_state = Some(RLSearchState {
925 q_values: HashMap::new(),
926 policy_params: Array1::zeros(state_dim),
927 replay_buffer: Vec::new(),
928 current_state: Array1::zeros(state_dim),
929 });
930
931 Ok(())
932 }
933
934 fn architecture_to_state(&self, arch: &ArchitectureCandidate) -> Result<Array1<f64>> {
936 let mut state = Array1::zeros(64);
937
938 state[0] = arch.layers.len() as f64 / 20.0; state[1] = arch.num_qubits as f64 / 16.0; for (i, layer) in arch.layers.iter().enumerate().take(30) {
944 let layer_code = match layer {
945 QNNLayerType::EncodingLayer { .. } => 0.1,
946 QNNLayerType::VariationalLayer { .. } => 0.3,
947 QNNLayerType::EntanglementLayer { .. } => 0.5,
948 QNNLayerType::MeasurementLayer { .. } => 0.7,
949 };
950 state[2 + i] = layer_code;
951 }
952
953 Ok(state)
954 }
955
956 fn sample_random_action(&self, arch: &ArchitectureCandidate) -> Result<ArchitectureAction> {
958 let action_type = fastrand::usize(0..5);
959
960 match action_type {
961 0 => {
962 let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
963 Ok(ArchitectureAction::AddLayer(
964 self.search_space.layer_types[layer_idx].clone(),
965 ))
966 }
967 1 => {
968 if arch.layers.len() > 3 {
969 let layer_idx = fastrand::usize(1..arch.layers.len() - 1);
970 Ok(ArchitectureAction::RemoveLayer(layer_idx))
971 } else {
972 self.sample_random_action(arch)
973 }
974 }
975 2 => {
976 let layer_idx = fastrand::usize(0..arch.layers.len());
977 Ok(ArchitectureAction::ModifyLayer(layer_idx, HashMap::new()))
978 }
979 3 => {
980 let conn_idx = fastrand::usize(0..self.search_space.connectivity_patterns.len());
981 Ok(ArchitectureAction::ChangeConnectivity(
982 self.search_space.connectivity_patterns[conn_idx].clone(),
983 ))
984 }
985 _ => Ok(ArchitectureAction::Finish),
986 }
987 }
988
989 fn choose_best_action(&self, state: &Array1<f64>) -> Result<ArchitectureAction> {
991 Ok(ArchitectureAction::Finish)
993 }
994
995 fn apply_action(
997 &self,
998 arch: &ArchitectureCandidate,
999 action: &ArchitectureAction,
1000 ) -> Result<(ArchitectureCandidate, f64, bool)> {
1001 let mut new_arch = arch.clone();
1002 let mut reward = 0.0;
1003 let mut done = false;
1004
1005 match action {
1006 ArchitectureAction::AddLayer(layer) => {
1007 if new_arch.layers.len() < self.search_space.depth_range.1 + 2 {
1008 let insert_pos = fastrand::usize(1..new_arch.layers.len());
1009 new_arch.layers.insert(insert_pos, layer.clone());
1010 reward = 0.1;
1011 } else {
1012 reward = -0.1;
1013 }
1014 }
1015 ArchitectureAction::RemoveLayer(idx) => {
1016 if new_arch.layers.len() > 3 && *idx < new_arch.layers.len() {
1017 new_arch.layers.remove(*idx);
1018 reward = 0.05;
1019 } else {
1020 reward = -0.1;
1021 }
1022 }
1023 ArchitectureAction::Finish => {
1024 done = true;
1025 reward = 1.0; }
1027 _ => {
1028 reward = 0.0;
1029 }
1030 }
1031
1032 new_arch.id = format!("rl_{}", fastrand::u64(..));
1033 Ok((new_arch, reward, done))
1034 }
1035
1036 fn train_rl_agent(&mut self) -> Result<()> {
1038 Ok(())
1040 }
1041
1042 fn create_empty_architecture(&self) -> ArchitectureCandidate {
1044 ArchitectureCandidate {
1045 id: format!("empty_{}", fastrand::u64(..)),
1046 layers: vec![
1047 QNNLayerType::EncodingLayer { num_features: 4 },
1048 QNNLayerType::MeasurementLayer {
1049 measurement_basis: "computational".to_string(),
1050 },
1051 ],
1052 num_qubits: 4,
1053 metrics: ArchitectureMetrics {
1054 accuracy: None,
1055 loss: None,
1056 circuit_depth: 0,
1057 parameter_count: 0,
1058 training_time: None,
1059 memory_usage: None,
1060 hardware_efficiency: None,
1061 },
1062 properties: ArchitectureProperties {
1063 expressivity: None,
1064 entanglement_capability: None,
1065 gradient_variance: None,
1066 barren_plateau_score: None,
1067 noise_resilience: None,
1068 },
1069 }
1070 }
1071
1072 fn fit_surrogate_model(&self, candidates: &[ArchitectureCandidate]) -> Result<SurrogateModel> {
1074 Ok(SurrogateModel {
1076 mean_prediction: 0.7,
1077 uncertainty: 0.1,
1078 })
1079 }
1080
1081 fn optimize_acquisition(
1083 &self,
1084 surrogate: &SurrogateModel,
1085 acquisition_fn: AcquisitionFunction,
1086 ) -> Result<ArchitectureCandidate> {
1087 self.sample_random_architecture()
1089 }
1090
1091 fn compute_architecture_gradients(&self, alpha: &Array2<f64>) -> Result<Array2<f64>> {
1093 Ok(Array2::zeros(alpha.raw_dim()))
1095 }
1096
1097 fn derive_architecture_from_weights(
1099 &self,
1100 alpha: &Array2<f64>,
1101 ) -> Result<ArchitectureCandidate> {
1102 let mut layers = vec![QNNLayerType::EncodingLayer { num_features: 4 }];
1103
1104 for i in 0..alpha.nrows() {
1105 let mut best_op = 0;
1107 let mut best_weight = alpha[[i, 0]];
1108
1109 for j in 1..alpha.ncols() {
1110 if alpha[[i, j]] > best_weight {
1111 best_weight = alpha[[i, j]];
1112 best_op = j;
1113 }
1114 }
1115
1116 if best_op < self.search_space.layer_types.len() {
1117 layers.push(self.search_space.layer_types[best_op].clone());
1118 }
1119 }
1120
1121 layers.push(QNNLayerType::MeasurementLayer {
1122 measurement_basis: "computational".to_string(),
1123 });
1124
1125 Ok(ArchitectureCandidate {
1126 id: format!("darts_{}", fastrand::u64(..)),
1127 layers,
1128 num_qubits: 4,
1129 metrics: ArchitectureMetrics {
1130 accuracy: None,
1131 loss: None,
1132 circuit_depth: 0,
1133 parameter_count: 0,
1134 training_time: None,
1135 memory_usage: None,
1136 hardware_efficiency: None,
1137 },
1138 properties: ArchitectureProperties {
1139 expressivity: None,
1140 entanglement_capability: None,
1141 gradient_variance: None,
1142 barren_plateau_score: None,
1143 noise_resilience: None,
1144 },
1145 })
1146 }
1147
1148 pub fn get_search_summary(&self) -> SearchSummary {
1150 SearchSummary {
1151 total_architectures_evaluated: self.search_history.len(),
1152 best_architecture: self.best_architectures.first().cloned(),
1153 pareto_front_size: self.pareto_front.len(),
1154 search_generations: self.current_generation,
1155 }
1156 }
1157
1158 pub fn get_pareto_front(&self) -> &[ArchitectureCandidate] {
1160 &self.pareto_front
1161 }
1162}
1163
1164#[derive(Debug, Clone)]
1166pub struct SurrogateModel {
1167 pub mean_prediction: f64,
1168 pub uncertainty: f64,
1169}
1170
1171#[derive(Debug, Clone)]
1173pub struct SearchSummary {
1174 pub total_architectures_evaluated: usize,
1175 pub best_architecture: Option<ArchitectureCandidate>,
1176 pub pareto_front_size: usize,
1177 pub search_generations: usize,
1178}
1179
1180impl fmt::Display for ArchitectureCandidate {
1181 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1182 write!(
1183 f,
1184 "Architecture {} (layers: {}, qubits: {}, accuracy: {:.3})",
1185 self.id,
1186 self.layers.len(),
1187 self.num_qubits,
1188 self.metrics.accuracy.unwrap_or(0.0)
1189 )
1190 }
1191}
1192
1193pub fn create_default_search_space() -> SearchSpace {
1195 SearchSpace {
1196 layer_types: vec![
1197 QNNLayerType::VariationalLayer { num_params: 6 },
1198 QNNLayerType::VariationalLayer { num_params: 9 },
1199 QNNLayerType::VariationalLayer { num_params: 12 },
1200 QNNLayerType::EntanglementLayer {
1201 connectivity: "circular".to_string(),
1202 },
1203 QNNLayerType::EntanglementLayer {
1204 connectivity: "full".to_string(),
1205 },
1206 ],
1207 depth_range: (2, 8),
1208 qubit_constraints: QubitConstraints {
1209 min_qubits: 3,
1210 max_qubits: 8,
1211 topology: Some(QuantumTopology::Complete),
1212 },
1213 param_ranges: vec![
1214 ("variational_params".to_string(), (3, 15)),
1215 ("encoding_features".to_string(), (2, 8)),
1216 ]
1217 .into_iter()
1218 .collect(),
1219 connectivity_patterns: vec![
1220 "linear".to_string(),
1221 "circular".to_string(),
1222 "full".to_string(),
1223 ],
1224 measurement_bases: vec![
1225 "computational".to_string(),
1226 "Pauli-Z".to_string(),
1227 "Pauli-X".to_string(),
1228 "Pauli-Y".to_string(),
1229 ],
1230 }
1231}
1232
1233#[cfg(test)]
1234mod tests {
1235 use super::*;
1236
1237 #[test]
1238 fn test_search_space_creation() {
1239 let search_space = create_default_search_space();
1240 assert!(search_space.layer_types.len() > 0);
1241 assert!(search_space.depth_range.0 < search_space.depth_range.1);
1242 assert!(
1243 search_space.qubit_constraints.min_qubits <= search_space.qubit_constraints.max_qubits
1244 );
1245 }
1246
1247 #[test]
1248 fn test_nas_initialization() {
1249 let search_space = create_default_search_space();
1250 let strategy = SearchStrategy::Random { num_samples: 10 };
1251 let nas = QuantumNAS::new(strategy, search_space);
1252
1253 assert_eq!(nas.current_generation, 0);
1254 assert_eq!(nas.best_architectures.len(), 0);
1255 }
1256
1257 #[test]
1258 fn test_random_architecture_sampling() {
1259 let search_space = create_default_search_space();
1260 let strategy = SearchStrategy::Random { num_samples: 10 };
1261 let nas = QuantumNAS::new(strategy, search_space);
1262
1263 let arch = nas.sample_random_architecture().unwrap();
1264 assert!(arch.layers.len() >= 2); assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1266 assert!(arch.num_qubits <= nas.search_space.qubit_constraints.max_qubits);
1267 }
1268
1269 #[test]
1270 fn test_fitness_computation() {
1271 let search_space = create_default_search_space();
1272 let strategy = SearchStrategy::Random { num_samples: 10 };
1273 let nas = QuantumNAS::new(strategy, search_space);
1274
1275 let mut arch = nas.sample_random_architecture().unwrap();
1276 arch.metrics.accuracy = Some(0.8);
1277 arch.metrics.parameter_count = 50;
1278 arch.metrics.circuit_depth = 10;
1279
1280 let fitness = nas.compute_fitness(&arch);
1281 assert!(fitness > 0.0);
1282 }
1283
1284 #[test]
1285 fn test_architecture_mutation() {
1286 let search_space = create_default_search_space();
1287 let strategy = SearchStrategy::Evolutionary {
1288 population_size: 10,
1289 mutation_rate: 0.1,
1290 crossover_rate: 0.7,
1291 elitism_ratio: 0.1,
1292 };
1293 let nas = QuantumNAS::new(strategy, search_space);
1294
1295 let mut arch = nas.sample_random_architecture().unwrap();
1296 let original_layers = arch.layers.len();
1297
1298 nas.mutate(&mut arch).unwrap();
1299
1300 assert!(arch.layers.len() >= 2);
1302 assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1303 }
1304}