quantrs2_ml/
quantum_nas.rs

1//! Quantum Neural Architecture Search (NAS)
2//!
3//! This module implements automated search algorithms for finding optimal quantum
4//! circuit architectures, including evolutionary algorithms, reinforcement learning-based
5//! search, and gradient-based methods adapted for quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13    single::{RotationX, RotationY, RotationZ},
14    GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{s, Array1, Array2, Array3, Axis};
18use scirs2_core::random::prelude::*;
19use std::collections::{HashMap, HashSet};
20use std::fmt;
21
22/// Search strategy for quantum architecture search
23#[derive(Debug, Clone, Copy)]
24pub enum SearchStrategy {
25    /// Evolutionary algorithm search
26    Evolutionary {
27        population_size: usize,
28        mutation_rate: f64,
29        crossover_rate: f64,
30        elitism_ratio: f64,
31    },
32
33    /// Reinforcement learning-based search
34    ReinforcementLearning {
35        agent_type: RLAgentType,
36        exploration_rate: f64,
37        learning_rate: f64,
38    },
39
40    /// Random search baseline
41    Random { num_samples: usize },
42
43    /// Bayesian optimization
44    BayesianOptimization {
45        acquisition_function: AcquisitionFunction,
46        num_initial_points: usize,
47    },
48
49    /// Differentiable architecture search
50    DARTS {
51        learning_rate: f64,
52        weight_decay: f64,
53    },
54}
55
56/// RL agent types for NAS
57#[derive(Debug, Clone, Copy)]
58pub enum RLAgentType {
59    /// Deep Q-Network
60    DQN,
61    /// Policy Gradient
62    PolicyGradient,
63    /// Actor-Critic
64    ActorCritic,
65}
66
67/// Acquisition functions for Bayesian optimization
68#[derive(Debug, Clone, Copy)]
69pub enum AcquisitionFunction {
70    /// Expected Improvement
71    ExpectedImprovement,
72    /// Upper Confidence Bound
73    UpperConfidenceBound,
74    /// Probability of Improvement
75    ProbabilityOfImprovement,
76}
77
78/// Architecture search space definition
79#[derive(Debug, Clone)]
80pub struct SearchSpace {
81    /// Available layer types
82    pub layer_types: Vec<QNNLayerType>,
83
84    /// Minimum/maximum depth
85    pub depth_range: (usize, usize),
86
87    /// Qubit count constraints
88    pub qubit_constraints: QubitConstraints,
89
90    /// Parameter ranges for variational layers
91    pub param_ranges: HashMap<String, (usize, usize)>,
92
93    /// Connectivity patterns
94    pub connectivity_patterns: Vec<String>,
95
96    /// Measurement basis options
97    pub measurement_bases: Vec<String>,
98}
99
100/// Qubit constraints for architecture search
101#[derive(Debug, Clone)]
102pub struct QubitConstraints {
103    /// Minimum number of qubits
104    pub min_qubits: usize,
105
106    /// Maximum number of qubits
107    pub max_qubits: usize,
108
109    /// Hardware topology constraints
110    pub topology: Option<QuantumTopology>,
111}
112
113/// Quantum hardware topology
114#[derive(Debug, Clone)]
115pub enum QuantumTopology {
116    /// Linear chain topology
117    Linear,
118    /// Ring/circular topology
119    Ring,
120    /// 2D grid topology
121    Grid { width: usize, height: usize },
122    /// Complete graph (all-to-all)
123    Complete,
124    /// Custom connectivity
125    Custom { edges: Vec<(usize, usize)> },
126}
127
128/// Architecture candidate with evaluation metrics
129#[derive(Debug, Clone)]
130pub struct ArchitectureCandidate {
131    /// Unique identifier
132    pub id: String,
133
134    /// Layer configuration
135    pub layers: Vec<QNNLayerType>,
136
137    /// Number of qubits
138    pub num_qubits: usize,
139
140    /// Performance metrics
141    pub metrics: ArchitectureMetrics,
142
143    /// Architecture properties
144    pub properties: ArchitectureProperties,
145}
146
147/// Performance metrics for architecture evaluation
148#[derive(Debug, Clone)]
149pub struct ArchitectureMetrics {
150    /// Validation accuracy
151    pub accuracy: Option<f64>,
152
153    /// Training loss
154    pub loss: Option<f64>,
155
156    /// Circuit depth
157    pub circuit_depth: usize,
158
159    /// Parameter count
160    pub parameter_count: usize,
161
162    /// Training time
163    pub training_time: Option<f64>,
164
165    /// Memory usage
166    pub memory_usage: Option<usize>,
167
168    /// Hardware efficiency score
169    pub hardware_efficiency: Option<f64>,
170}
171
172/// Architecture properties for analysis
173#[derive(Debug, Clone)]
174pub struct ArchitectureProperties {
175    /// Expressivity measure
176    pub expressivity: Option<f64>,
177
178    /// Entanglement capability
179    pub entanglement_capability: Option<f64>,
180
181    /// Gradient variance
182    pub gradient_variance: Option<f64>,
183
184    /// Barren plateau susceptibility
185    pub barren_plateau_score: Option<f64>,
186
187    /// Noise resilience
188    pub noise_resilience: Option<f64>,
189}
190
191/// Main quantum neural architecture search engine
192pub struct QuantumNAS {
193    /// Search strategy
194    strategy: SearchStrategy,
195
196    /// Search space definition
197    search_space: SearchSpace,
198
199    /// Evaluation dataset
200    eval_data: Option<(Array2<f64>, Array1<usize>)>,
201
202    /// Best architectures found
203    best_architectures: Vec<ArchitectureCandidate>,
204
205    /// Search history
206    search_history: Vec<ArchitectureCandidate>,
207
208    /// Current generation (for evolutionary)
209    current_generation: usize,
210
211    /// RL agent state (for RL-based search)
212    rl_state: Option<RLSearchState>,
213
214    /// Pareto front for multi-objective optimization
215    pareto_front: Vec<ArchitectureCandidate>,
216}
217
218/// RL agent state for reinforcement learning NAS
219#[derive(Debug, Clone)]
220pub struct RLSearchState {
221    /// Q-values for actions
222    q_values: HashMap<String, f64>,
223
224    /// Policy parameters
225    policy_params: Array1<f64>,
226
227    /// Experience replay buffer
228    replay_buffer: Vec<RLExperience>,
229
230    /// Current state representation
231    current_state: Array1<f64>,
232}
233
234/// Experience for RL training
235#[derive(Debug, Clone)]
236pub struct RLExperience {
237    /// State before action
238    pub state: Array1<f64>,
239
240    /// Action taken
241    pub action: ArchitectureAction,
242
243    /// Reward received
244    pub reward: f64,
245
246    /// Next state
247    pub next_state: Array1<f64>,
248
249    /// Whether episode ended
250    pub done: bool,
251}
252
253/// Actions for RL-based architecture search
254#[derive(Debug, Clone)]
255pub enum ArchitectureAction {
256    /// Add a layer
257    AddLayer(QNNLayerType),
258
259    /// Remove a layer
260    RemoveLayer(usize),
261
262    /// Modify layer parameters
263    ModifyLayer(usize, HashMap<String, f64>),
264
265    /// Change connectivity
266    ChangeConnectivity(String),
267
268    /// Finish architecture
269    Finish,
270}
271
272impl QuantumNAS {
273    /// Create a new quantum NAS instance
274    pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self {
275        Self {
276            strategy,
277            search_space,
278            eval_data: None,
279            best_architectures: Vec::new(),
280            search_history: Vec::new(),
281            current_generation: 0,
282            rl_state: None,
283            pareto_front: Vec::new(),
284        }
285    }
286
287    /// Set evaluation dataset
288    pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>) {
289        self.eval_data = Some((data, labels));
290    }
291
292    /// Search for optimal architectures
293    pub fn search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
294        println!("Starting quantum neural architecture search...");
295
296        match self.strategy {
297            SearchStrategy::Evolutionary { .. } => self.evolutionary_search(max_iterations),
298            SearchStrategy::ReinforcementLearning { .. } => self.rl_search(max_iterations),
299            SearchStrategy::Random { .. } => self.random_search(max_iterations),
300            SearchStrategy::BayesianOptimization { .. } => self.bayesian_search(max_iterations),
301            SearchStrategy::DARTS { .. } => self.darts_search(max_iterations),
302        }
303    }
304
305    /// Evolutionary algorithm search
306    fn evolutionary_search(
307        &mut self,
308        max_generations: usize,
309    ) -> Result<Vec<ArchitectureCandidate>> {
310        let (population_size, mutation_rate, crossover_rate, elitism_ratio) = match self.strategy {
311            SearchStrategy::Evolutionary {
312                population_size,
313                mutation_rate,
314                crossover_rate,
315                elitism_ratio,
316            } => (
317                population_size,
318                mutation_rate,
319                crossover_rate,
320                elitism_ratio,
321            ),
322            _ => unreachable!(),
323        };
324
325        // Initialize population
326        let mut population = self.initialize_population(population_size)?;
327
328        for generation in 0..max_generations {
329            self.current_generation = generation;
330
331            // Evaluate population
332            for candidate in &mut population {
333                if candidate.metrics.accuracy.is_none() {
334                    self.evaluate_architecture(candidate)?;
335                }
336            }
337
338            // Sort by fitness
339            population.sort_by(|a, b| {
340                let fitness_a = self.compute_fitness(a);
341                let fitness_b = self.compute_fitness(b);
342                fitness_b
343                    .partial_cmp(&fitness_a)
344                    .unwrap_or(std::cmp::Ordering::Equal)
345            });
346
347            // Update best architectures
348            self.update_best_architectures(&population);
349
350            // Update Pareto front
351            self.update_pareto_front(&population);
352
353            println!(
354                "Generation {}: Best fitness = {:.4}",
355                generation,
356                self.compute_fitness(&population[0])
357            );
358
359            // Create next generation
360            let elite_count = (population_size as f64 * elitism_ratio) as usize;
361            let mut next_generation = population[..elite_count].to_vec();
362
363            while next_generation.len() < population_size {
364                // Tournament selection
365                let parent1 = self.tournament_selection(&population, 3)?;
366                let parent2 = self.tournament_selection(&population, 3)?;
367
368                // Crossover
369                let mut offspring = if thread_rng().gen::<f64>() < crossover_rate {
370                    self.crossover(&parent1, &parent2)?
371                } else {
372                    parent1.clone()
373                };
374
375                // Mutation
376                if thread_rng().gen::<f64>() < mutation_rate {
377                    self.mutate(&mut offspring)?;
378                }
379
380                next_generation.push(offspring);
381            }
382
383            population = next_generation;
384
385            // Add to search history
386            self.search_history.extend(population.clone());
387        }
388
389        Ok(self.best_architectures.clone())
390    }
391
392    /// Reinforcement learning-based search
393    fn rl_search(&mut self, max_episodes: usize) -> Result<Vec<ArchitectureCandidate>> {
394        let (agent_type, exploration_rate, learning_rate) = match self.strategy {
395            SearchStrategy::ReinforcementLearning {
396                agent_type,
397                exploration_rate,
398                learning_rate,
399            } => (agent_type, exploration_rate, learning_rate),
400            _ => unreachable!(),
401        };
402
403        // Initialize RL agent
404        self.initialize_rl_agent(agent_type, learning_rate)?;
405
406        for episode in 0..max_episodes {
407            let mut current_architecture = self.create_empty_architecture();
408            let mut episode_reward = 0.0;
409            let mut step = 0;
410
411            loop {
412                // Get current state
413                let state = self.architecture_to_state(&current_architecture)?;
414
415                // Choose action (epsilon-greedy)
416                let action = if thread_rng().gen::<f64>() < exploration_rate {
417                    self.sample_random_action(&current_architecture)?
418                } else {
419                    self.choose_best_action(&state)?
420                };
421
422                // Apply action
423                let (next_architecture, reward, done) =
424                    self.apply_action(&current_architecture, &action)?;
425
426                // Update experience
427                let next_state = self.architecture_to_state(&next_architecture)?;
428                let experience = RLExperience {
429                    state: state.clone(),
430                    action: action.clone(),
431                    reward,
432                    next_state: next_state.clone(),
433                    done,
434                };
435
436                if let Some(ref mut rl_state) = self.rl_state {
437                    rl_state.replay_buffer.push(experience);
438                }
439
440                // Train agent
441                if step % 10 == 0 {
442                    self.train_rl_agent()?;
443                }
444
445                episode_reward += reward;
446                current_architecture = next_architecture;
447                step += 1;
448
449                if done || step > 20 {
450                    break;
451                }
452            }
453
454            // Evaluate final architecture
455            let mut final_candidate = current_architecture;
456            self.evaluate_architecture(&mut final_candidate)?;
457            self.search_history.push(final_candidate.clone());
458            self.update_best_architectures(&[final_candidate]);
459
460            if episode % 100 == 0 {
461                println!("Episode {}: Reward = {:.4}", episode, episode_reward);
462            }
463        }
464
465        Ok(self.best_architectures.clone())
466    }
467
468    /// Random search baseline
469    fn random_search(&mut self, num_samples: usize) -> Result<Vec<ArchitectureCandidate>> {
470        for i in 0..num_samples {
471            let mut candidate = self.sample_random_architecture()?;
472            self.evaluate_architecture(&mut candidate)?;
473
474            self.search_history.push(candidate.clone());
475            self.update_best_architectures(&[candidate]);
476
477            if i % 100 == 0 {
478                println!("Evaluated {} random architectures", i + 1);
479            }
480        }
481
482        Ok(self.best_architectures.clone())
483    }
484
485    /// Bayesian optimization search
486    fn bayesian_search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
487        let (acquisition_fn, num_initial) = match self.strategy {
488            SearchStrategy::BayesianOptimization {
489                acquisition_function,
490                num_initial_points,
491            } => (acquisition_function, num_initial_points),
492            _ => unreachable!(),
493        };
494
495        // Initial random sampling
496        let mut candidates = Vec::new();
497        for _ in 0..num_initial {
498            let mut candidate = self.sample_random_architecture()?;
499            self.evaluate_architecture(&mut candidate)?;
500            candidates.push(candidate);
501        }
502
503        // Bayesian optimization loop
504        for iteration in num_initial..max_iterations {
505            // Fit surrogate model (simplified)
506            let surrogate = self.fit_surrogate_model(&candidates)?;
507
508            // Optimize acquisition function
509            let next_candidate = self.optimize_acquisition(&surrogate, acquisition_fn)?;
510
511            // Evaluate candidate
512            let mut evaluated_candidate = next_candidate;
513            self.evaluate_architecture(&mut evaluated_candidate)?;
514
515            candidates.push(evaluated_candidate.clone());
516            self.search_history.push(evaluated_candidate.clone());
517            self.update_best_architectures(&[evaluated_candidate]);
518
519            if iteration % 50 == 0 {
520                let best_acc = self.best_architectures[0].metrics.accuracy.unwrap_or(0.0);
521                println!("Iteration {}: Best accuracy = {:.4}", iteration, best_acc);
522            }
523        }
524
525        Ok(self.best_architectures.clone())
526    }
527
528    /// DARTS (Differentiable Architecture Search)
529    fn darts_search(&mut self, max_epochs: usize) -> Result<Vec<ArchitectureCandidate>> {
530        let (learning_rate, weight_decay) = match self.strategy {
531            SearchStrategy::DARTS {
532                learning_rate,
533                weight_decay,
534            } => (learning_rate, weight_decay),
535            _ => unreachable!(),
536        };
537
538        // Initialize architecture weights (alpha parameters)
539        let num_layers = 8; // Fixed depth for DARTS
540        let num_ops = self.search_space.layer_types.len();
541        let mut alpha = Array2::zeros((num_layers, num_ops));
542
543        // Initialize with uniform distribution
544        for i in 0..num_layers {
545            for j in 0..num_ops {
546                alpha[[i, j]] = 1.0 / num_ops as f64;
547            }
548        }
549
550        for epoch in 0..max_epochs {
551            // Update alpha parameters using gradient descent
552            let alpha_grad = self.compute_architecture_gradients(&alpha)?;
553            alpha = alpha - learning_rate * &alpha_grad;
554
555            // Apply softmax to alpha
556            for i in 0..num_layers {
557                let row_sum: f64 = alpha.row(i).iter().map(|x| x.exp()).sum();
558                for j in 0..num_ops {
559                    alpha[[i, j]] = alpha[[i, j]].exp() / row_sum;
560                }
561            }
562
563            if epoch % 100 == 0 {
564                println!("DARTS epoch {}: Architecture weights updated", epoch);
565            }
566        }
567
568        // Derive final architecture from learned weights
569        let final_architecture = self.derive_architecture_from_weights(&alpha)?;
570        let mut candidate = final_architecture;
571        self.evaluate_architecture(&mut candidate)?;
572
573        self.search_history.push(candidate.clone());
574        self.update_best_architectures(&[candidate]);
575
576        Ok(self.best_architectures.clone())
577    }
578
579    /// Initialize random population for evolutionary search
580    fn initialize_population(&self, size: usize) -> Result<Vec<ArchitectureCandidate>> {
581        let mut population = Vec::new();
582        for i in 0..size {
583            let candidate = self.sample_random_architecture()?;
584            population.push(candidate);
585        }
586        Ok(population)
587    }
588
589    /// Sample a random architecture from search space
590    fn sample_random_architecture(&self) -> Result<ArchitectureCandidate> {
591        let depth =
592            fastrand::usize(self.search_space.depth_range.0..=self.search_space.depth_range.1);
593        let num_qubits = fastrand::usize(
594            self.search_space.qubit_constraints.min_qubits
595                ..=self.search_space.qubit_constraints.max_qubits,
596        );
597
598        let mut layers = Vec::new();
599
600        // Add encoding layer
601        layers.push(QNNLayerType::EncodingLayer {
602            num_features: fastrand::usize(2..8),
603        });
604
605        // Add random layers
606        for _ in 0..depth {
607            let layer_type_idx = fastrand::usize(0..self.search_space.layer_types.len());
608            let layer_type = self.search_space.layer_types[layer_type_idx].clone();
609            layers.push(layer_type);
610        }
611
612        // Add measurement layer
613        let basis_idx = fastrand::usize(0..self.search_space.measurement_bases.len());
614        layers.push(QNNLayerType::MeasurementLayer {
615            measurement_basis: self.search_space.measurement_bases[basis_idx].clone(),
616        });
617
618        Ok(ArchitectureCandidate {
619            id: format!("arch_{}", fastrand::u64(..)),
620            layers,
621            num_qubits,
622            metrics: ArchitectureMetrics {
623                accuracy: None,
624                loss: None,
625                circuit_depth: 0,
626                parameter_count: 0,
627                training_time: None,
628                memory_usage: None,
629                hardware_efficiency: None,
630            },
631            properties: ArchitectureProperties {
632                expressivity: None,
633                entanglement_capability: None,
634                gradient_variance: None,
635                barren_plateau_score: None,
636                noise_resilience: None,
637            },
638        })
639    }
640
641    /// Evaluate architecture performance
642    fn evaluate_architecture(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
643        // Create QNN from architecture
644        let qnn = QuantumNeuralNetwork::new(
645            candidate.layers.clone(),
646            candidate.num_qubits,
647            4, // input_dim
648            2, // output_dim
649        )?;
650
651        // Compute metrics
652        candidate.metrics.parameter_count = qnn.parameters.len();
653        candidate.metrics.circuit_depth = self.estimate_circuit_depth(&candidate.layers);
654
655        // Evaluate on dataset if available
656        if let Some((data, labels)) = &self.eval_data {
657            let (accuracy, loss) = self.evaluate_on_dataset(&qnn, data, labels)?;
658            candidate.metrics.accuracy = Some(accuracy);
659            candidate.metrics.loss = Some(loss);
660        } else {
661            // Synthetic evaluation
662            candidate.metrics.accuracy = Some(0.5 + 0.4 * thread_rng().gen::<f64>());
663            candidate.metrics.loss = Some(0.5 + 0.5 * thread_rng().gen::<f64>());
664        }
665
666        // Compute architecture properties
667        self.compute_architecture_properties(candidate)?;
668
669        Ok(())
670    }
671
672    /// Compute fitness score for evolutionary algorithm
673    fn compute_fitness(&self, candidate: &ArchitectureCandidate) -> f64 {
674        let accuracy = candidate.metrics.accuracy.unwrap_or(0.0);
675        let param_penalty = candidate.metrics.parameter_count as f64 / 1000.0;
676        let depth_penalty = candidate.metrics.circuit_depth as f64 / 100.0;
677
678        // Multi-objective fitness
679        accuracy - 0.1 * param_penalty - 0.05 * depth_penalty
680    }
681
682    /// Tournament selection for evolutionary algorithm
683    fn tournament_selection(
684        &self,
685        population: &[ArchitectureCandidate],
686        tournament_size: usize,
687    ) -> Result<ArchitectureCandidate> {
688        let mut best = None;
689        let mut best_fitness = f64::NEG_INFINITY;
690
691        for _ in 0..tournament_size {
692            let idx = fastrand::usize(0..population.len());
693            let candidate = &population[idx];
694            let fitness = self.compute_fitness(candidate);
695
696            if fitness > best_fitness {
697                best_fitness = fitness;
698                best = Some(candidate.clone());
699            }
700        }
701
702        best.ok_or_else(|| {
703            MLError::MLOperationError("Tournament selection failed: no candidates".to_string())
704        })
705    }
706
707    /// Crossover operation for evolutionary algorithm
708    fn crossover(
709        &self,
710        parent1: &ArchitectureCandidate,
711        parent2: &ArchitectureCandidate,
712    ) -> Result<ArchitectureCandidate> {
713        // Simple layer-wise crossover
714        let mut child_layers = Vec::new();
715        let max_len = parent1.layers.len().max(parent2.layers.len());
716
717        for i in 0..max_len {
718            if thread_rng().gen::<bool>() {
719                if i < parent1.layers.len() {
720                    child_layers.push(parent1.layers[i].clone());
721                }
722            } else {
723                if i < parent2.layers.len() {
724                    child_layers.push(parent2.layers[i].clone());
725                }
726            }
727        }
728
729        let num_qubits = if thread_rng().gen::<bool>() {
730            parent1.num_qubits
731        } else {
732            parent2.num_qubits
733        };
734
735        Ok(ArchitectureCandidate {
736            id: format!("crossover_{}", fastrand::u64(..)),
737            layers: child_layers,
738            num_qubits,
739            metrics: ArchitectureMetrics {
740                accuracy: None,
741                loss: None,
742                circuit_depth: 0,
743                parameter_count: 0,
744                training_time: None,
745                memory_usage: None,
746                hardware_efficiency: None,
747            },
748            properties: ArchitectureProperties {
749                expressivity: None,
750                entanglement_capability: None,
751                gradient_variance: None,
752                barren_plateau_score: None,
753                noise_resilience: None,
754            },
755        })
756    }
757
758    /// Mutation operation for evolutionary algorithm
759    fn mutate(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
760        let mutation_type = fastrand::usize(0..4);
761
762        match mutation_type {
763            0 => {
764                // Add layer
765                if candidate.layers.len() < self.search_space.depth_range.1 + 2 {
766                    let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
767                    let new_layer = self.search_space.layer_types[layer_idx].clone();
768                    let insert_pos = fastrand::usize(1..candidate.layers.len()); // Skip encoding layer
769                    candidate.layers.insert(insert_pos, new_layer);
770                }
771            }
772            1 => {
773                // Remove layer
774                if candidate.layers.len() > 3 {
775                    // Keep encoding and measurement
776                    let remove_pos = fastrand::usize(1..candidate.layers.len() - 1);
777                    candidate.layers.remove(remove_pos);
778                }
779            }
780            2 => {
781                // Modify layer
782                if candidate.layers.len() > 2 {
783                    let layer_idx = fastrand::usize(1..candidate.layers.len() - 1);
784                    let new_layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
785                    candidate.layers[layer_idx] =
786                        self.search_space.layer_types[new_layer_idx].clone();
787                }
788            }
789            3 => {
790                // Change qubit count
791                candidate.num_qubits = fastrand::usize(
792                    self.search_space.qubit_constraints.min_qubits
793                        ..=self.search_space.qubit_constraints.max_qubits,
794                );
795            }
796            _ => {}
797        }
798
799        // Reset metrics
800        candidate.metrics.accuracy = None;
801        candidate.metrics.loss = None;
802
803        Ok(())
804    }
805
806    /// Update best architectures list
807    fn update_best_architectures(&mut self, candidates: &[ArchitectureCandidate]) {
808        for candidate in candidates {
809            if candidate.metrics.accuracy.is_some() {
810                self.best_architectures.push(candidate.clone());
811            }
812        }
813
814        // Compute fitness scores for sorting
815        let mut fitness_scores: Vec<(usize, f64)> = self
816            .best_architectures
817            .iter()
818            .enumerate()
819            .map(|(i, arch)| (i, self.compute_fitness(arch)))
820            .collect();
821
822        // Sort by fitness (descending)
823        fitness_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
824
825        // Reorder architectures based on fitness
826        let sorted_architectures: Vec<_> = fitness_scores
827            .into_iter()
828            .take(10)
829            .map(|(i, _)| self.best_architectures[i].clone())
830            .collect();
831
832        self.best_architectures = sorted_architectures;
833    }
834
835    /// Update Pareto front for multi-objective optimization
836    fn update_pareto_front(&mut self, candidates: &[ArchitectureCandidate]) {
837        for candidate in candidates {
838            let is_dominated = self
839                .pareto_front
840                .iter()
841                .any(|other| self.dominates(other, candidate));
842
843            if !is_dominated {
844                // Find indices of dominated solutions
845                let mut to_remove = Vec::new();
846                for (i, other) in self.pareto_front.iter().enumerate() {
847                    if self.dominates(candidate, other) {
848                        to_remove.push(i);
849                    }
850                }
851
852                // Remove dominated solutions (in reverse order to maintain indices)
853                for &i in to_remove.iter().rev() {
854                    self.pareto_front.remove(i);
855                }
856
857                // Add new candidate
858                self.pareto_front.push(candidate.clone());
859            }
860        }
861    }
862
863    /// Check if one candidate dominates another (Pareto dominance)
864    fn dominates(&self, a: &ArchitectureCandidate, b: &ArchitectureCandidate) -> bool {
865        let acc_a = a.metrics.accuracy.unwrap_or(0.0);
866        let acc_b = b.metrics.accuracy.unwrap_or(0.0);
867        let params_a = a.metrics.parameter_count as f64;
868        let params_b = b.metrics.parameter_count as f64;
869
870        (acc_a >= acc_b && params_a <= params_b) && (acc_a > acc_b || params_a < params_b)
871    }
872
873    /// Estimate circuit depth from layers
874    fn estimate_circuit_depth(&self, layers: &[QNNLayerType]) -> usize {
875        layers
876            .iter()
877            .map(|layer| match layer {
878                QNNLayerType::EncodingLayer { .. } => 1,
879                QNNLayerType::VariationalLayer { num_params } => num_params / 3, // Roughly gates per qubit
880                QNNLayerType::EntanglementLayer { .. } => 1,
881                QNNLayerType::MeasurementLayer { .. } => 1,
882            })
883            .sum()
884    }
885
886    /// Evaluate QNN on dataset
887    fn evaluate_on_dataset(
888        &self,
889        qnn: &QuantumNeuralNetwork,
890        data: &Array2<f64>,
891        labels: &Array1<usize>,
892    ) -> Result<(f64, f64)> {
893        // Simplified evaluation - would use actual training/validation
894        let accuracy = 0.6 + 0.3 * thread_rng().gen::<f64>();
895        let loss = 0.2 + 0.8 * thread_rng().gen::<f64>();
896        Ok((accuracy, loss))
897    }
898
899    /// Compute architecture properties
900    fn compute_architecture_properties(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
901        // Estimate expressivity based on parameter count and depth
902        let expressivity = (candidate.metrics.parameter_count as f64).ln()
903            * (candidate.metrics.circuit_depth as f64).sqrt()
904            / 100.0;
905        candidate.properties.expressivity = Some(expressivity.min(1.0));
906
907        // Estimate entanglement capability
908        let entanglement_layers = candidate
909            .layers
910            .iter()
911            .filter(|layer| matches!(layer, QNNLayerType::EntanglementLayer { .. }))
912            .count();
913        candidate.properties.entanglement_capability =
914            Some((entanglement_layers as f64 / candidate.layers.len() as f64).min(1.0));
915
916        // Placeholder values for other properties
917        candidate.properties.gradient_variance = Some(0.1 + 0.3 * thread_rng().gen::<f64>());
918        candidate.properties.barren_plateau_score = Some(0.2 + 0.6 * thread_rng().gen::<f64>());
919        candidate.properties.noise_resilience = Some(0.3 + 0.4 * thread_rng().gen::<f64>());
920
921        Ok(())
922    }
923
924    /// Initialize RL agent
925    fn initialize_rl_agent(&mut self, agent_type: RLAgentType, learning_rate: f64) -> Result<()> {
926        let state_dim = 64; // State representation dimension
927
928        self.rl_state = Some(RLSearchState {
929            q_values: HashMap::new(),
930            policy_params: Array1::zeros(state_dim),
931            replay_buffer: Vec::new(),
932            current_state: Array1::zeros(state_dim),
933        });
934
935        Ok(())
936    }
937
938    /// Convert architecture to state representation
939    fn architecture_to_state(&self, arch: &ArchitectureCandidate) -> Result<Array1<f64>> {
940        let mut state = Array1::zeros(64);
941
942        // Encode architecture features
943        state[0] = arch.layers.len() as f64 / 20.0; // Normalized depth
944        state[1] = arch.num_qubits as f64 / 16.0; // Normalized qubit count
945
946        // Encode layer types
947        for (i, layer) in arch.layers.iter().enumerate().take(30) {
948            let layer_code = match layer {
949                QNNLayerType::EncodingLayer { .. } => 0.1,
950                QNNLayerType::VariationalLayer { .. } => 0.3,
951                QNNLayerType::EntanglementLayer { .. } => 0.5,
952                QNNLayerType::MeasurementLayer { .. } => 0.7,
953            };
954            state[2 + i] = layer_code;
955        }
956
957        Ok(state)
958    }
959
960    /// Sample random action for RL
961    fn sample_random_action(&self, arch: &ArchitectureCandidate) -> Result<ArchitectureAction> {
962        let action_type = fastrand::usize(0..5);
963
964        match action_type {
965            0 => {
966                let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
967                Ok(ArchitectureAction::AddLayer(
968                    self.search_space.layer_types[layer_idx].clone(),
969                ))
970            }
971            1 => {
972                if arch.layers.len() > 3 {
973                    let layer_idx = fastrand::usize(1..arch.layers.len() - 1);
974                    Ok(ArchitectureAction::RemoveLayer(layer_idx))
975                } else {
976                    self.sample_random_action(arch)
977                }
978            }
979            2 => {
980                let layer_idx = fastrand::usize(0..arch.layers.len());
981                Ok(ArchitectureAction::ModifyLayer(layer_idx, HashMap::new()))
982            }
983            3 => {
984                let conn_idx = fastrand::usize(0..self.search_space.connectivity_patterns.len());
985                Ok(ArchitectureAction::ChangeConnectivity(
986                    self.search_space.connectivity_patterns[conn_idx].clone(),
987                ))
988            }
989            _ => Ok(ArchitectureAction::Finish),
990        }
991    }
992
993    /// Choose best action using RL policy
994    fn choose_best_action(&self, state: &Array1<f64>) -> Result<ArchitectureAction> {
995        // Placeholder - would use trained policy
996        Ok(ArchitectureAction::Finish)
997    }
998
999    /// Apply action to architecture
1000    fn apply_action(
1001        &self,
1002        arch: &ArchitectureCandidate,
1003        action: &ArchitectureAction,
1004    ) -> Result<(ArchitectureCandidate, f64, bool)> {
1005        let mut new_arch = arch.clone();
1006        let mut reward = 0.0;
1007        let mut done = false;
1008
1009        match action {
1010            ArchitectureAction::AddLayer(layer) => {
1011                if new_arch.layers.len() < self.search_space.depth_range.1 + 2 {
1012                    let insert_pos = fastrand::usize(1..new_arch.layers.len());
1013                    new_arch.layers.insert(insert_pos, layer.clone());
1014                    reward = 0.1;
1015                } else {
1016                    reward = -0.1;
1017                }
1018            }
1019            ArchitectureAction::RemoveLayer(idx) => {
1020                if new_arch.layers.len() > 3 && *idx < new_arch.layers.len() {
1021                    new_arch.layers.remove(*idx);
1022                    reward = 0.05;
1023                } else {
1024                    reward = -0.1;
1025                }
1026            }
1027            ArchitectureAction::Finish => {
1028                done = true;
1029                reward = 1.0; // Will be replaced by actual evaluation
1030            }
1031            _ => {
1032                reward = 0.0;
1033            }
1034        }
1035
1036        new_arch.id = format!("rl_{}", fastrand::u64(..));
1037        Ok((new_arch, reward, done))
1038    }
1039
1040    /// Train RL agent
1041    fn train_rl_agent(&mut self) -> Result<()> {
1042        // Placeholder for RL training
1043        Ok(())
1044    }
1045
1046    /// Create empty architecture
1047    fn create_empty_architecture(&self) -> ArchitectureCandidate {
1048        ArchitectureCandidate {
1049            id: format!("empty_{}", fastrand::u64(..)),
1050            layers: vec![
1051                QNNLayerType::EncodingLayer { num_features: 4 },
1052                QNNLayerType::MeasurementLayer {
1053                    measurement_basis: "computational".to_string(),
1054                },
1055            ],
1056            num_qubits: 4,
1057            metrics: ArchitectureMetrics {
1058                accuracy: None,
1059                loss: None,
1060                circuit_depth: 0,
1061                parameter_count: 0,
1062                training_time: None,
1063                memory_usage: None,
1064                hardware_efficiency: None,
1065            },
1066            properties: ArchitectureProperties {
1067                expressivity: None,
1068                entanglement_capability: None,
1069                gradient_variance: None,
1070                barren_plateau_score: None,
1071                noise_resilience: None,
1072            },
1073        }
1074    }
1075
1076    /// Fit surrogate model for Bayesian optimization
1077    fn fit_surrogate_model(&self, candidates: &[ArchitectureCandidate]) -> Result<SurrogateModel> {
1078        // Placeholder for surrogate model
1079        Ok(SurrogateModel {
1080            mean_prediction: 0.7,
1081            uncertainty: 0.1,
1082        })
1083    }
1084
1085    /// Optimize acquisition function
1086    fn optimize_acquisition(
1087        &self,
1088        surrogate: &SurrogateModel,
1089        acquisition_fn: AcquisitionFunction,
1090    ) -> Result<ArchitectureCandidate> {
1091        // Placeholder - would optimize acquisition function
1092        self.sample_random_architecture()
1093    }
1094
1095    /// Compute architecture gradients for DARTS
1096    fn compute_architecture_gradients(&self, alpha: &Array2<f64>) -> Result<Array2<f64>> {
1097        // Placeholder for architecture gradient computation
1098        Ok(Array2::zeros(alpha.raw_dim()))
1099    }
1100
1101    /// Derive final architecture from DARTS weights
1102    fn derive_architecture_from_weights(
1103        &self,
1104        alpha: &Array2<f64>,
1105    ) -> Result<ArchitectureCandidate> {
1106        let mut layers = vec![QNNLayerType::EncodingLayer { num_features: 4 }];
1107
1108        for i in 0..alpha.nrows() {
1109            // Choose layer with highest weight
1110            let mut best_op = 0;
1111            let mut best_weight = alpha[[i, 0]];
1112
1113            for j in 1..alpha.ncols() {
1114                if alpha[[i, j]] > best_weight {
1115                    best_weight = alpha[[i, j]];
1116                    best_op = j;
1117                }
1118            }
1119
1120            if best_op < self.search_space.layer_types.len() {
1121                layers.push(self.search_space.layer_types[best_op].clone());
1122            }
1123        }
1124
1125        layers.push(QNNLayerType::MeasurementLayer {
1126            measurement_basis: "computational".to_string(),
1127        });
1128
1129        Ok(ArchitectureCandidate {
1130            id: format!("darts_{}", fastrand::u64(..)),
1131            layers,
1132            num_qubits: 4,
1133            metrics: ArchitectureMetrics {
1134                accuracy: None,
1135                loss: None,
1136                circuit_depth: 0,
1137                parameter_count: 0,
1138                training_time: None,
1139                memory_usage: None,
1140                hardware_efficiency: None,
1141            },
1142            properties: ArchitectureProperties {
1143                expressivity: None,
1144                entanglement_capability: None,
1145                gradient_variance: None,
1146                barren_plateau_score: None,
1147                noise_resilience: None,
1148            },
1149        })
1150    }
1151
1152    /// Get search results summary
1153    pub fn get_search_summary(&self) -> SearchSummary {
1154        SearchSummary {
1155            total_architectures_evaluated: self.search_history.len(),
1156            best_architecture: self.best_architectures.first().cloned(),
1157            pareto_front_size: self.pareto_front.len(),
1158            search_generations: self.current_generation,
1159        }
1160    }
1161
1162    /// Get Pareto front
1163    pub fn get_pareto_front(&self) -> &[ArchitectureCandidate] {
1164        &self.pareto_front
1165    }
1166}
1167
1168/// Surrogate model for Bayesian optimization
1169#[derive(Debug, Clone)]
1170pub struct SurrogateModel {
1171    pub mean_prediction: f64,
1172    pub uncertainty: f64,
1173}
1174
1175/// Search results summary
1176#[derive(Debug, Clone)]
1177pub struct SearchSummary {
1178    pub total_architectures_evaluated: usize,
1179    pub best_architecture: Option<ArchitectureCandidate>,
1180    pub pareto_front_size: usize,
1181    pub search_generations: usize,
1182}
1183
1184impl fmt::Display for ArchitectureCandidate {
1185    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1186        write!(
1187            f,
1188            "Architecture {} (layers: {}, qubits: {}, accuracy: {:.3})",
1189            self.id,
1190            self.layers.len(),
1191            self.num_qubits,
1192            self.metrics.accuracy.unwrap_or(0.0)
1193        )
1194    }
1195}
1196
1197/// Helper function to create default search space
1198pub fn create_default_search_space() -> SearchSpace {
1199    SearchSpace {
1200        layer_types: vec![
1201            QNNLayerType::VariationalLayer { num_params: 6 },
1202            QNNLayerType::VariationalLayer { num_params: 9 },
1203            QNNLayerType::VariationalLayer { num_params: 12 },
1204            QNNLayerType::EntanglementLayer {
1205                connectivity: "circular".to_string(),
1206            },
1207            QNNLayerType::EntanglementLayer {
1208                connectivity: "full".to_string(),
1209            },
1210        ],
1211        depth_range: (2, 8),
1212        qubit_constraints: QubitConstraints {
1213            min_qubits: 3,
1214            max_qubits: 8,
1215            topology: Some(QuantumTopology::Complete),
1216        },
1217        param_ranges: vec![
1218            ("variational_params".to_string(), (3, 15)),
1219            ("encoding_features".to_string(), (2, 8)),
1220        ]
1221        .into_iter()
1222        .collect(),
1223        connectivity_patterns: vec![
1224            "linear".to_string(),
1225            "circular".to_string(),
1226            "full".to_string(),
1227        ],
1228        measurement_bases: vec![
1229            "computational".to_string(),
1230            "Pauli-Z".to_string(),
1231            "Pauli-X".to_string(),
1232            "Pauli-Y".to_string(),
1233        ],
1234    }
1235}
1236
1237#[cfg(test)]
1238mod tests {
1239    use super::*;
1240
1241    #[test]
1242    fn test_search_space_creation() {
1243        let search_space = create_default_search_space();
1244        assert!(search_space.layer_types.len() > 0);
1245        assert!(search_space.depth_range.0 < search_space.depth_range.1);
1246        assert!(
1247            search_space.qubit_constraints.min_qubits <= search_space.qubit_constraints.max_qubits
1248        );
1249    }
1250
1251    #[test]
1252    fn test_nas_initialization() {
1253        let search_space = create_default_search_space();
1254        let strategy = SearchStrategy::Random { num_samples: 10 };
1255        let nas = QuantumNAS::new(strategy, search_space);
1256
1257        assert_eq!(nas.current_generation, 0);
1258        assert_eq!(nas.best_architectures.len(), 0);
1259    }
1260
1261    #[test]
1262    fn test_random_architecture_sampling() {
1263        let search_space = create_default_search_space();
1264        let strategy = SearchStrategy::Random { num_samples: 10 };
1265        let nas = QuantumNAS::new(strategy, search_space);
1266
1267        let arch = nas
1268            .sample_random_architecture()
1269            .expect("Random architecture sampling should succeed");
1270        assert!(arch.layers.len() >= 2); // At least encoding and measurement
1271        assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1272        assert!(arch.num_qubits <= nas.search_space.qubit_constraints.max_qubits);
1273    }
1274
1275    #[test]
1276    fn test_fitness_computation() {
1277        let search_space = create_default_search_space();
1278        let strategy = SearchStrategy::Random { num_samples: 10 };
1279        let nas = QuantumNAS::new(strategy, search_space);
1280
1281        let mut arch = nas
1282            .sample_random_architecture()
1283            .expect("Random architecture sampling should succeed");
1284        arch.metrics.accuracy = Some(0.8);
1285        arch.metrics.parameter_count = 50;
1286        arch.metrics.circuit_depth = 10;
1287
1288        let fitness = nas.compute_fitness(&arch);
1289        assert!(fitness > 0.0);
1290    }
1291
1292    #[test]
1293    fn test_architecture_mutation() {
1294        let search_space = create_default_search_space();
1295        let strategy = SearchStrategy::Evolutionary {
1296            population_size: 10,
1297            mutation_rate: 0.1,
1298            crossover_rate: 0.7,
1299            elitism_ratio: 0.1,
1300        };
1301        let nas = QuantumNAS::new(strategy, search_space);
1302
1303        let mut arch = nas
1304            .sample_random_architecture()
1305            .expect("Random architecture sampling should succeed");
1306        let original_layers = arch.layers.len();
1307
1308        nas.mutate(&mut arch).expect("Mutation should succeed");
1309
1310        // Architecture should still be valid
1311        assert!(arch.layers.len() >= 2);
1312        assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1313    }
1314}