1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13 single::{RotationX, RotationY, RotationZ},
14 GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{s, Array1, Array2, Array3, Axis};
18use scirs2_core::random::prelude::*;
19use std::collections::{HashMap, HashSet};
20use std::fmt;
21
22#[derive(Debug, Clone, Copy)]
24pub enum SearchStrategy {
25 Evolutionary {
27 population_size: usize,
28 mutation_rate: f64,
29 crossover_rate: f64,
30 elitism_ratio: f64,
31 },
32
33 ReinforcementLearning {
35 agent_type: RLAgentType,
36 exploration_rate: f64,
37 learning_rate: f64,
38 },
39
40 Random { num_samples: usize },
42
43 BayesianOptimization {
45 acquisition_function: AcquisitionFunction,
46 num_initial_points: usize,
47 },
48
49 DARTS {
51 learning_rate: f64,
52 weight_decay: f64,
53 },
54}
55
56#[derive(Debug, Clone, Copy)]
58pub enum RLAgentType {
59 DQN,
61 PolicyGradient,
63 ActorCritic,
65}
66
67#[derive(Debug, Clone, Copy)]
69pub enum AcquisitionFunction {
70 ExpectedImprovement,
72 UpperConfidenceBound,
74 ProbabilityOfImprovement,
76}
77
78#[derive(Debug, Clone)]
80pub struct SearchSpace {
81 pub layer_types: Vec<QNNLayerType>,
83
84 pub depth_range: (usize, usize),
86
87 pub qubit_constraints: QubitConstraints,
89
90 pub param_ranges: HashMap<String, (usize, usize)>,
92
93 pub connectivity_patterns: Vec<String>,
95
96 pub measurement_bases: Vec<String>,
98}
99
100#[derive(Debug, Clone)]
102pub struct QubitConstraints {
103 pub min_qubits: usize,
105
106 pub max_qubits: usize,
108
109 pub topology: Option<QuantumTopology>,
111}
112
113#[derive(Debug, Clone)]
115pub enum QuantumTopology {
116 Linear,
118 Ring,
120 Grid { width: usize, height: usize },
122 Complete,
124 Custom { edges: Vec<(usize, usize)> },
126}
127
128#[derive(Debug, Clone)]
130pub struct ArchitectureCandidate {
131 pub id: String,
133
134 pub layers: Vec<QNNLayerType>,
136
137 pub num_qubits: usize,
139
140 pub metrics: ArchitectureMetrics,
142
143 pub properties: ArchitectureProperties,
145}
146
147#[derive(Debug, Clone)]
149pub struct ArchitectureMetrics {
150 pub accuracy: Option<f64>,
152
153 pub loss: Option<f64>,
155
156 pub circuit_depth: usize,
158
159 pub parameter_count: usize,
161
162 pub training_time: Option<f64>,
164
165 pub memory_usage: Option<usize>,
167
168 pub hardware_efficiency: Option<f64>,
170}
171
172#[derive(Debug, Clone)]
174pub struct ArchitectureProperties {
175 pub expressivity: Option<f64>,
177
178 pub entanglement_capability: Option<f64>,
180
181 pub gradient_variance: Option<f64>,
183
184 pub barren_plateau_score: Option<f64>,
186
187 pub noise_resilience: Option<f64>,
189}
190
191pub struct QuantumNAS {
193 strategy: SearchStrategy,
195
196 search_space: SearchSpace,
198
199 eval_data: Option<(Array2<f64>, Array1<usize>)>,
201
202 best_architectures: Vec<ArchitectureCandidate>,
204
205 search_history: Vec<ArchitectureCandidate>,
207
208 current_generation: usize,
210
211 rl_state: Option<RLSearchState>,
213
214 pareto_front: Vec<ArchitectureCandidate>,
216}
217
218#[derive(Debug, Clone)]
220pub struct RLSearchState {
221 q_values: HashMap<String, f64>,
223
224 policy_params: Array1<f64>,
226
227 replay_buffer: Vec<RLExperience>,
229
230 current_state: Array1<f64>,
232}
233
234#[derive(Debug, Clone)]
236pub struct RLExperience {
237 pub state: Array1<f64>,
239
240 pub action: ArchitectureAction,
242
243 pub reward: f64,
245
246 pub next_state: Array1<f64>,
248
249 pub done: bool,
251}
252
253#[derive(Debug, Clone)]
255pub enum ArchitectureAction {
256 AddLayer(QNNLayerType),
258
259 RemoveLayer(usize),
261
262 ModifyLayer(usize, HashMap<String, f64>),
264
265 ChangeConnectivity(String),
267
268 Finish,
270}
271
272impl QuantumNAS {
273 pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self {
275 Self {
276 strategy,
277 search_space,
278 eval_data: None,
279 best_architectures: Vec::new(),
280 search_history: Vec::new(),
281 current_generation: 0,
282 rl_state: None,
283 pareto_front: Vec::new(),
284 }
285 }
286
287 pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>) {
289 self.eval_data = Some((data, labels));
290 }
291
292 pub fn search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
294 println!("Starting quantum neural architecture search...");
295
296 match self.strategy {
297 SearchStrategy::Evolutionary { .. } => self.evolutionary_search(max_iterations),
298 SearchStrategy::ReinforcementLearning { .. } => self.rl_search(max_iterations),
299 SearchStrategy::Random { .. } => self.random_search(max_iterations),
300 SearchStrategy::BayesianOptimization { .. } => self.bayesian_search(max_iterations),
301 SearchStrategy::DARTS { .. } => self.darts_search(max_iterations),
302 }
303 }
304
305 fn evolutionary_search(
307 &mut self,
308 max_generations: usize,
309 ) -> Result<Vec<ArchitectureCandidate>> {
310 let (population_size, mutation_rate, crossover_rate, elitism_ratio) = match self.strategy {
311 SearchStrategy::Evolutionary {
312 population_size,
313 mutation_rate,
314 crossover_rate,
315 elitism_ratio,
316 } => (
317 population_size,
318 mutation_rate,
319 crossover_rate,
320 elitism_ratio,
321 ),
322 _ => unreachable!(),
323 };
324
325 let mut population = self.initialize_population(population_size)?;
327
328 for generation in 0..max_generations {
329 self.current_generation = generation;
330
331 for candidate in &mut population {
333 if candidate.metrics.accuracy.is_none() {
334 self.evaluate_architecture(candidate)?;
335 }
336 }
337
338 population.sort_by(|a, b| {
340 let fitness_a = self.compute_fitness(a);
341 let fitness_b = self.compute_fitness(b);
342 fitness_b
343 .partial_cmp(&fitness_a)
344 .unwrap_or(std::cmp::Ordering::Equal)
345 });
346
347 self.update_best_architectures(&population);
349
350 self.update_pareto_front(&population);
352
353 println!(
354 "Generation {}: Best fitness = {:.4}",
355 generation,
356 self.compute_fitness(&population[0])
357 );
358
359 let elite_count = (population_size as f64 * elitism_ratio) as usize;
361 let mut next_generation = population[..elite_count].to_vec();
362
363 while next_generation.len() < population_size {
364 let parent1 = self.tournament_selection(&population, 3)?;
366 let parent2 = self.tournament_selection(&population, 3)?;
367
368 let mut offspring = if thread_rng().gen::<f64>() < crossover_rate {
370 self.crossover(&parent1, &parent2)?
371 } else {
372 parent1.clone()
373 };
374
375 if thread_rng().gen::<f64>() < mutation_rate {
377 self.mutate(&mut offspring)?;
378 }
379
380 next_generation.push(offspring);
381 }
382
383 population = next_generation;
384
385 self.search_history.extend(population.clone());
387 }
388
389 Ok(self.best_architectures.clone())
390 }
391
392 fn rl_search(&mut self, max_episodes: usize) -> Result<Vec<ArchitectureCandidate>> {
394 let (agent_type, exploration_rate, learning_rate) = match self.strategy {
395 SearchStrategy::ReinforcementLearning {
396 agent_type,
397 exploration_rate,
398 learning_rate,
399 } => (agent_type, exploration_rate, learning_rate),
400 _ => unreachable!(),
401 };
402
403 self.initialize_rl_agent(agent_type, learning_rate)?;
405
406 for episode in 0..max_episodes {
407 let mut current_architecture = self.create_empty_architecture();
408 let mut episode_reward = 0.0;
409 let mut step = 0;
410
411 loop {
412 let state = self.architecture_to_state(¤t_architecture)?;
414
415 let action = if thread_rng().gen::<f64>() < exploration_rate {
417 self.sample_random_action(¤t_architecture)?
418 } else {
419 self.choose_best_action(&state)?
420 };
421
422 let (next_architecture, reward, done) =
424 self.apply_action(¤t_architecture, &action)?;
425
426 let next_state = self.architecture_to_state(&next_architecture)?;
428 let experience = RLExperience {
429 state: state.clone(),
430 action: action.clone(),
431 reward,
432 next_state: next_state.clone(),
433 done,
434 };
435
436 if let Some(ref mut rl_state) = self.rl_state {
437 rl_state.replay_buffer.push(experience);
438 }
439
440 if step % 10 == 0 {
442 self.train_rl_agent()?;
443 }
444
445 episode_reward += reward;
446 current_architecture = next_architecture;
447 step += 1;
448
449 if done || step > 20 {
450 break;
451 }
452 }
453
454 let mut final_candidate = current_architecture;
456 self.evaluate_architecture(&mut final_candidate)?;
457 self.search_history.push(final_candidate.clone());
458 self.update_best_architectures(&[final_candidate]);
459
460 if episode % 100 == 0 {
461 println!("Episode {}: Reward = {:.4}", episode, episode_reward);
462 }
463 }
464
465 Ok(self.best_architectures.clone())
466 }
467
468 fn random_search(&mut self, num_samples: usize) -> Result<Vec<ArchitectureCandidate>> {
470 for i in 0..num_samples {
471 let mut candidate = self.sample_random_architecture()?;
472 self.evaluate_architecture(&mut candidate)?;
473
474 self.search_history.push(candidate.clone());
475 self.update_best_architectures(&[candidate]);
476
477 if i % 100 == 0 {
478 println!("Evaluated {} random architectures", i + 1);
479 }
480 }
481
482 Ok(self.best_architectures.clone())
483 }
484
485 fn bayesian_search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
487 let (acquisition_fn, num_initial) = match self.strategy {
488 SearchStrategy::BayesianOptimization {
489 acquisition_function,
490 num_initial_points,
491 } => (acquisition_function, num_initial_points),
492 _ => unreachable!(),
493 };
494
495 let mut candidates = Vec::new();
497 for _ in 0..num_initial {
498 let mut candidate = self.sample_random_architecture()?;
499 self.evaluate_architecture(&mut candidate)?;
500 candidates.push(candidate);
501 }
502
503 for iteration in num_initial..max_iterations {
505 let surrogate = self.fit_surrogate_model(&candidates)?;
507
508 let next_candidate = self.optimize_acquisition(&surrogate, acquisition_fn)?;
510
511 let mut evaluated_candidate = next_candidate;
513 self.evaluate_architecture(&mut evaluated_candidate)?;
514
515 candidates.push(evaluated_candidate.clone());
516 self.search_history.push(evaluated_candidate.clone());
517 self.update_best_architectures(&[evaluated_candidate]);
518
519 if iteration % 50 == 0 {
520 let best_acc = self.best_architectures[0].metrics.accuracy.unwrap_or(0.0);
521 println!("Iteration {}: Best accuracy = {:.4}", iteration, best_acc);
522 }
523 }
524
525 Ok(self.best_architectures.clone())
526 }
527
528 fn darts_search(&mut self, max_epochs: usize) -> Result<Vec<ArchitectureCandidate>> {
530 let (learning_rate, weight_decay) = match self.strategy {
531 SearchStrategy::DARTS {
532 learning_rate,
533 weight_decay,
534 } => (learning_rate, weight_decay),
535 _ => unreachable!(),
536 };
537
538 let num_layers = 8; let num_ops = self.search_space.layer_types.len();
541 let mut alpha = Array2::zeros((num_layers, num_ops));
542
543 for i in 0..num_layers {
545 for j in 0..num_ops {
546 alpha[[i, j]] = 1.0 / num_ops as f64;
547 }
548 }
549
550 for epoch in 0..max_epochs {
551 let alpha_grad = self.compute_architecture_gradients(&alpha)?;
553 alpha = alpha - learning_rate * &alpha_grad;
554
555 for i in 0..num_layers {
557 let row_sum: f64 = alpha.row(i).iter().map(|x| x.exp()).sum();
558 for j in 0..num_ops {
559 alpha[[i, j]] = alpha[[i, j]].exp() / row_sum;
560 }
561 }
562
563 if epoch % 100 == 0 {
564 println!("DARTS epoch {}: Architecture weights updated", epoch);
565 }
566 }
567
568 let final_architecture = self.derive_architecture_from_weights(&alpha)?;
570 let mut candidate = final_architecture;
571 self.evaluate_architecture(&mut candidate)?;
572
573 self.search_history.push(candidate.clone());
574 self.update_best_architectures(&[candidate]);
575
576 Ok(self.best_architectures.clone())
577 }
578
579 fn initialize_population(&self, size: usize) -> Result<Vec<ArchitectureCandidate>> {
581 let mut population = Vec::new();
582 for i in 0..size {
583 let candidate = self.sample_random_architecture()?;
584 population.push(candidate);
585 }
586 Ok(population)
587 }
588
589 fn sample_random_architecture(&self) -> Result<ArchitectureCandidate> {
591 let depth =
592 fastrand::usize(self.search_space.depth_range.0..=self.search_space.depth_range.1);
593 let num_qubits = fastrand::usize(
594 self.search_space.qubit_constraints.min_qubits
595 ..=self.search_space.qubit_constraints.max_qubits,
596 );
597
598 let mut layers = Vec::new();
599
600 layers.push(QNNLayerType::EncodingLayer {
602 num_features: fastrand::usize(2..8),
603 });
604
605 for _ in 0..depth {
607 let layer_type_idx = fastrand::usize(0..self.search_space.layer_types.len());
608 let layer_type = self.search_space.layer_types[layer_type_idx].clone();
609 layers.push(layer_type);
610 }
611
612 let basis_idx = fastrand::usize(0..self.search_space.measurement_bases.len());
614 layers.push(QNNLayerType::MeasurementLayer {
615 measurement_basis: self.search_space.measurement_bases[basis_idx].clone(),
616 });
617
618 Ok(ArchitectureCandidate {
619 id: format!("arch_{}", fastrand::u64(..)),
620 layers,
621 num_qubits,
622 metrics: ArchitectureMetrics {
623 accuracy: None,
624 loss: None,
625 circuit_depth: 0,
626 parameter_count: 0,
627 training_time: None,
628 memory_usage: None,
629 hardware_efficiency: None,
630 },
631 properties: ArchitectureProperties {
632 expressivity: None,
633 entanglement_capability: None,
634 gradient_variance: None,
635 barren_plateau_score: None,
636 noise_resilience: None,
637 },
638 })
639 }
640
641 fn evaluate_architecture(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
643 let qnn = QuantumNeuralNetwork::new(
645 candidate.layers.clone(),
646 candidate.num_qubits,
647 4, 2, )?;
650
651 candidate.metrics.parameter_count = qnn.parameters.len();
653 candidate.metrics.circuit_depth = self.estimate_circuit_depth(&candidate.layers);
654
655 if let Some((data, labels)) = &self.eval_data {
657 let (accuracy, loss) = self.evaluate_on_dataset(&qnn, data, labels)?;
658 candidate.metrics.accuracy = Some(accuracy);
659 candidate.metrics.loss = Some(loss);
660 } else {
661 candidate.metrics.accuracy = Some(0.5 + 0.4 * thread_rng().gen::<f64>());
663 candidate.metrics.loss = Some(0.5 + 0.5 * thread_rng().gen::<f64>());
664 }
665
666 self.compute_architecture_properties(candidate)?;
668
669 Ok(())
670 }
671
672 fn compute_fitness(&self, candidate: &ArchitectureCandidate) -> f64 {
674 let accuracy = candidate.metrics.accuracy.unwrap_or(0.0);
675 let param_penalty = candidate.metrics.parameter_count as f64 / 1000.0;
676 let depth_penalty = candidate.metrics.circuit_depth as f64 / 100.0;
677
678 accuracy - 0.1 * param_penalty - 0.05 * depth_penalty
680 }
681
682 fn tournament_selection(
684 &self,
685 population: &[ArchitectureCandidate],
686 tournament_size: usize,
687 ) -> Result<ArchitectureCandidate> {
688 let mut best = None;
689 let mut best_fitness = f64::NEG_INFINITY;
690
691 for _ in 0..tournament_size {
692 let idx = fastrand::usize(0..population.len());
693 let candidate = &population[idx];
694 let fitness = self.compute_fitness(candidate);
695
696 if fitness > best_fitness {
697 best_fitness = fitness;
698 best = Some(candidate.clone());
699 }
700 }
701
702 best.ok_or_else(|| {
703 MLError::MLOperationError("Tournament selection failed: no candidates".to_string())
704 })
705 }
706
707 fn crossover(
709 &self,
710 parent1: &ArchitectureCandidate,
711 parent2: &ArchitectureCandidate,
712 ) -> Result<ArchitectureCandidate> {
713 let mut child_layers = Vec::new();
715 let max_len = parent1.layers.len().max(parent2.layers.len());
716
717 for i in 0..max_len {
718 if thread_rng().gen::<bool>() {
719 if i < parent1.layers.len() {
720 child_layers.push(parent1.layers[i].clone());
721 }
722 } else {
723 if i < parent2.layers.len() {
724 child_layers.push(parent2.layers[i].clone());
725 }
726 }
727 }
728
729 let num_qubits = if thread_rng().gen::<bool>() {
730 parent1.num_qubits
731 } else {
732 parent2.num_qubits
733 };
734
735 Ok(ArchitectureCandidate {
736 id: format!("crossover_{}", fastrand::u64(..)),
737 layers: child_layers,
738 num_qubits,
739 metrics: ArchitectureMetrics {
740 accuracy: None,
741 loss: None,
742 circuit_depth: 0,
743 parameter_count: 0,
744 training_time: None,
745 memory_usage: None,
746 hardware_efficiency: None,
747 },
748 properties: ArchitectureProperties {
749 expressivity: None,
750 entanglement_capability: None,
751 gradient_variance: None,
752 barren_plateau_score: None,
753 noise_resilience: None,
754 },
755 })
756 }
757
758 fn mutate(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
760 let mutation_type = fastrand::usize(0..4);
761
762 match mutation_type {
763 0 => {
764 if candidate.layers.len() < self.search_space.depth_range.1 + 2 {
766 let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
767 let new_layer = self.search_space.layer_types[layer_idx].clone();
768 let insert_pos = fastrand::usize(1..candidate.layers.len()); candidate.layers.insert(insert_pos, new_layer);
770 }
771 }
772 1 => {
773 if candidate.layers.len() > 3 {
775 let remove_pos = fastrand::usize(1..candidate.layers.len() - 1);
777 candidate.layers.remove(remove_pos);
778 }
779 }
780 2 => {
781 if candidate.layers.len() > 2 {
783 let layer_idx = fastrand::usize(1..candidate.layers.len() - 1);
784 let new_layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
785 candidate.layers[layer_idx] =
786 self.search_space.layer_types[new_layer_idx].clone();
787 }
788 }
789 3 => {
790 candidate.num_qubits = fastrand::usize(
792 self.search_space.qubit_constraints.min_qubits
793 ..=self.search_space.qubit_constraints.max_qubits,
794 );
795 }
796 _ => {}
797 }
798
799 candidate.metrics.accuracy = None;
801 candidate.metrics.loss = None;
802
803 Ok(())
804 }
805
806 fn update_best_architectures(&mut self, candidates: &[ArchitectureCandidate]) {
808 for candidate in candidates {
809 if candidate.metrics.accuracy.is_some() {
810 self.best_architectures.push(candidate.clone());
811 }
812 }
813
814 let mut fitness_scores: Vec<(usize, f64)> = self
816 .best_architectures
817 .iter()
818 .enumerate()
819 .map(|(i, arch)| (i, self.compute_fitness(arch)))
820 .collect();
821
822 fitness_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
824
825 let sorted_architectures: Vec<_> = fitness_scores
827 .into_iter()
828 .take(10)
829 .map(|(i, _)| self.best_architectures[i].clone())
830 .collect();
831
832 self.best_architectures = sorted_architectures;
833 }
834
835 fn update_pareto_front(&mut self, candidates: &[ArchitectureCandidate]) {
837 for candidate in candidates {
838 let is_dominated = self
839 .pareto_front
840 .iter()
841 .any(|other| self.dominates(other, candidate));
842
843 if !is_dominated {
844 let mut to_remove = Vec::new();
846 for (i, other) in self.pareto_front.iter().enumerate() {
847 if self.dominates(candidate, other) {
848 to_remove.push(i);
849 }
850 }
851
852 for &i in to_remove.iter().rev() {
854 self.pareto_front.remove(i);
855 }
856
857 self.pareto_front.push(candidate.clone());
859 }
860 }
861 }
862
863 fn dominates(&self, a: &ArchitectureCandidate, b: &ArchitectureCandidate) -> bool {
865 let acc_a = a.metrics.accuracy.unwrap_or(0.0);
866 let acc_b = b.metrics.accuracy.unwrap_or(0.0);
867 let params_a = a.metrics.parameter_count as f64;
868 let params_b = b.metrics.parameter_count as f64;
869
870 (acc_a >= acc_b && params_a <= params_b) && (acc_a > acc_b || params_a < params_b)
871 }
872
873 fn estimate_circuit_depth(&self, layers: &[QNNLayerType]) -> usize {
875 layers
876 .iter()
877 .map(|layer| match layer {
878 QNNLayerType::EncodingLayer { .. } => 1,
879 QNNLayerType::VariationalLayer { num_params } => num_params / 3, QNNLayerType::EntanglementLayer { .. } => 1,
881 QNNLayerType::MeasurementLayer { .. } => 1,
882 })
883 .sum()
884 }
885
886 fn evaluate_on_dataset(
888 &self,
889 qnn: &QuantumNeuralNetwork,
890 data: &Array2<f64>,
891 labels: &Array1<usize>,
892 ) -> Result<(f64, f64)> {
893 let accuracy = 0.6 + 0.3 * thread_rng().gen::<f64>();
895 let loss = 0.2 + 0.8 * thread_rng().gen::<f64>();
896 Ok((accuracy, loss))
897 }
898
899 fn compute_architecture_properties(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
901 let expressivity = (candidate.metrics.parameter_count as f64).ln()
903 * (candidate.metrics.circuit_depth as f64).sqrt()
904 / 100.0;
905 candidate.properties.expressivity = Some(expressivity.min(1.0));
906
907 let entanglement_layers = candidate
909 .layers
910 .iter()
911 .filter(|layer| matches!(layer, QNNLayerType::EntanglementLayer { .. }))
912 .count();
913 candidate.properties.entanglement_capability =
914 Some((entanglement_layers as f64 / candidate.layers.len() as f64).min(1.0));
915
916 candidate.properties.gradient_variance = Some(0.1 + 0.3 * thread_rng().gen::<f64>());
918 candidate.properties.barren_plateau_score = Some(0.2 + 0.6 * thread_rng().gen::<f64>());
919 candidate.properties.noise_resilience = Some(0.3 + 0.4 * thread_rng().gen::<f64>());
920
921 Ok(())
922 }
923
924 fn initialize_rl_agent(&mut self, agent_type: RLAgentType, learning_rate: f64) -> Result<()> {
926 let state_dim = 64; self.rl_state = Some(RLSearchState {
929 q_values: HashMap::new(),
930 policy_params: Array1::zeros(state_dim),
931 replay_buffer: Vec::new(),
932 current_state: Array1::zeros(state_dim),
933 });
934
935 Ok(())
936 }
937
938 fn architecture_to_state(&self, arch: &ArchitectureCandidate) -> Result<Array1<f64>> {
940 let mut state = Array1::zeros(64);
941
942 state[0] = arch.layers.len() as f64 / 20.0; state[1] = arch.num_qubits as f64 / 16.0; for (i, layer) in arch.layers.iter().enumerate().take(30) {
948 let layer_code = match layer {
949 QNNLayerType::EncodingLayer { .. } => 0.1,
950 QNNLayerType::VariationalLayer { .. } => 0.3,
951 QNNLayerType::EntanglementLayer { .. } => 0.5,
952 QNNLayerType::MeasurementLayer { .. } => 0.7,
953 };
954 state[2 + i] = layer_code;
955 }
956
957 Ok(state)
958 }
959
960 fn sample_random_action(&self, arch: &ArchitectureCandidate) -> Result<ArchitectureAction> {
962 let action_type = fastrand::usize(0..5);
963
964 match action_type {
965 0 => {
966 let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
967 Ok(ArchitectureAction::AddLayer(
968 self.search_space.layer_types[layer_idx].clone(),
969 ))
970 }
971 1 => {
972 if arch.layers.len() > 3 {
973 let layer_idx = fastrand::usize(1..arch.layers.len() - 1);
974 Ok(ArchitectureAction::RemoveLayer(layer_idx))
975 } else {
976 self.sample_random_action(arch)
977 }
978 }
979 2 => {
980 let layer_idx = fastrand::usize(0..arch.layers.len());
981 Ok(ArchitectureAction::ModifyLayer(layer_idx, HashMap::new()))
982 }
983 3 => {
984 let conn_idx = fastrand::usize(0..self.search_space.connectivity_patterns.len());
985 Ok(ArchitectureAction::ChangeConnectivity(
986 self.search_space.connectivity_patterns[conn_idx].clone(),
987 ))
988 }
989 _ => Ok(ArchitectureAction::Finish),
990 }
991 }
992
993 fn choose_best_action(&self, state: &Array1<f64>) -> Result<ArchitectureAction> {
995 Ok(ArchitectureAction::Finish)
997 }
998
999 fn apply_action(
1001 &self,
1002 arch: &ArchitectureCandidate,
1003 action: &ArchitectureAction,
1004 ) -> Result<(ArchitectureCandidate, f64, bool)> {
1005 let mut new_arch = arch.clone();
1006 let mut reward = 0.0;
1007 let mut done = false;
1008
1009 match action {
1010 ArchitectureAction::AddLayer(layer) => {
1011 if new_arch.layers.len() < self.search_space.depth_range.1 + 2 {
1012 let insert_pos = fastrand::usize(1..new_arch.layers.len());
1013 new_arch.layers.insert(insert_pos, layer.clone());
1014 reward = 0.1;
1015 } else {
1016 reward = -0.1;
1017 }
1018 }
1019 ArchitectureAction::RemoveLayer(idx) => {
1020 if new_arch.layers.len() > 3 && *idx < new_arch.layers.len() {
1021 new_arch.layers.remove(*idx);
1022 reward = 0.05;
1023 } else {
1024 reward = -0.1;
1025 }
1026 }
1027 ArchitectureAction::Finish => {
1028 done = true;
1029 reward = 1.0; }
1031 _ => {
1032 reward = 0.0;
1033 }
1034 }
1035
1036 new_arch.id = format!("rl_{}", fastrand::u64(..));
1037 Ok((new_arch, reward, done))
1038 }
1039
1040 fn train_rl_agent(&mut self) -> Result<()> {
1042 Ok(())
1044 }
1045
1046 fn create_empty_architecture(&self) -> ArchitectureCandidate {
1048 ArchitectureCandidate {
1049 id: format!("empty_{}", fastrand::u64(..)),
1050 layers: vec![
1051 QNNLayerType::EncodingLayer { num_features: 4 },
1052 QNNLayerType::MeasurementLayer {
1053 measurement_basis: "computational".to_string(),
1054 },
1055 ],
1056 num_qubits: 4,
1057 metrics: ArchitectureMetrics {
1058 accuracy: None,
1059 loss: None,
1060 circuit_depth: 0,
1061 parameter_count: 0,
1062 training_time: None,
1063 memory_usage: None,
1064 hardware_efficiency: None,
1065 },
1066 properties: ArchitectureProperties {
1067 expressivity: None,
1068 entanglement_capability: None,
1069 gradient_variance: None,
1070 barren_plateau_score: None,
1071 noise_resilience: None,
1072 },
1073 }
1074 }
1075
1076 fn fit_surrogate_model(&self, candidates: &[ArchitectureCandidate]) -> Result<SurrogateModel> {
1078 Ok(SurrogateModel {
1080 mean_prediction: 0.7,
1081 uncertainty: 0.1,
1082 })
1083 }
1084
1085 fn optimize_acquisition(
1087 &self,
1088 surrogate: &SurrogateModel,
1089 acquisition_fn: AcquisitionFunction,
1090 ) -> Result<ArchitectureCandidate> {
1091 self.sample_random_architecture()
1093 }
1094
1095 fn compute_architecture_gradients(&self, alpha: &Array2<f64>) -> Result<Array2<f64>> {
1097 Ok(Array2::zeros(alpha.raw_dim()))
1099 }
1100
1101 fn derive_architecture_from_weights(
1103 &self,
1104 alpha: &Array2<f64>,
1105 ) -> Result<ArchitectureCandidate> {
1106 let mut layers = vec![QNNLayerType::EncodingLayer { num_features: 4 }];
1107
1108 for i in 0..alpha.nrows() {
1109 let mut best_op = 0;
1111 let mut best_weight = alpha[[i, 0]];
1112
1113 for j in 1..alpha.ncols() {
1114 if alpha[[i, j]] > best_weight {
1115 best_weight = alpha[[i, j]];
1116 best_op = j;
1117 }
1118 }
1119
1120 if best_op < self.search_space.layer_types.len() {
1121 layers.push(self.search_space.layer_types[best_op].clone());
1122 }
1123 }
1124
1125 layers.push(QNNLayerType::MeasurementLayer {
1126 measurement_basis: "computational".to_string(),
1127 });
1128
1129 Ok(ArchitectureCandidate {
1130 id: format!("darts_{}", fastrand::u64(..)),
1131 layers,
1132 num_qubits: 4,
1133 metrics: ArchitectureMetrics {
1134 accuracy: None,
1135 loss: None,
1136 circuit_depth: 0,
1137 parameter_count: 0,
1138 training_time: None,
1139 memory_usage: None,
1140 hardware_efficiency: None,
1141 },
1142 properties: ArchitectureProperties {
1143 expressivity: None,
1144 entanglement_capability: None,
1145 gradient_variance: None,
1146 barren_plateau_score: None,
1147 noise_resilience: None,
1148 },
1149 })
1150 }
1151
1152 pub fn get_search_summary(&self) -> SearchSummary {
1154 SearchSummary {
1155 total_architectures_evaluated: self.search_history.len(),
1156 best_architecture: self.best_architectures.first().cloned(),
1157 pareto_front_size: self.pareto_front.len(),
1158 search_generations: self.current_generation,
1159 }
1160 }
1161
1162 pub fn get_pareto_front(&self) -> &[ArchitectureCandidate] {
1164 &self.pareto_front
1165 }
1166}
1167
1168#[derive(Debug, Clone)]
1170pub struct SurrogateModel {
1171 pub mean_prediction: f64,
1172 pub uncertainty: f64,
1173}
1174
1175#[derive(Debug, Clone)]
1177pub struct SearchSummary {
1178 pub total_architectures_evaluated: usize,
1179 pub best_architecture: Option<ArchitectureCandidate>,
1180 pub pareto_front_size: usize,
1181 pub search_generations: usize,
1182}
1183
1184impl fmt::Display for ArchitectureCandidate {
1185 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1186 write!(
1187 f,
1188 "Architecture {} (layers: {}, qubits: {}, accuracy: {:.3})",
1189 self.id,
1190 self.layers.len(),
1191 self.num_qubits,
1192 self.metrics.accuracy.unwrap_or(0.0)
1193 )
1194 }
1195}
1196
1197pub fn create_default_search_space() -> SearchSpace {
1199 SearchSpace {
1200 layer_types: vec![
1201 QNNLayerType::VariationalLayer { num_params: 6 },
1202 QNNLayerType::VariationalLayer { num_params: 9 },
1203 QNNLayerType::VariationalLayer { num_params: 12 },
1204 QNNLayerType::EntanglementLayer {
1205 connectivity: "circular".to_string(),
1206 },
1207 QNNLayerType::EntanglementLayer {
1208 connectivity: "full".to_string(),
1209 },
1210 ],
1211 depth_range: (2, 8),
1212 qubit_constraints: QubitConstraints {
1213 min_qubits: 3,
1214 max_qubits: 8,
1215 topology: Some(QuantumTopology::Complete),
1216 },
1217 param_ranges: vec![
1218 ("variational_params".to_string(), (3, 15)),
1219 ("encoding_features".to_string(), (2, 8)),
1220 ]
1221 .into_iter()
1222 .collect(),
1223 connectivity_patterns: vec![
1224 "linear".to_string(),
1225 "circular".to_string(),
1226 "full".to_string(),
1227 ],
1228 measurement_bases: vec![
1229 "computational".to_string(),
1230 "Pauli-Z".to_string(),
1231 "Pauli-X".to_string(),
1232 "Pauli-Y".to_string(),
1233 ],
1234 }
1235}
1236
1237#[cfg(test)]
1238mod tests {
1239 use super::*;
1240
1241 #[test]
1242 fn test_search_space_creation() {
1243 let search_space = create_default_search_space();
1244 assert!(search_space.layer_types.len() > 0);
1245 assert!(search_space.depth_range.0 < search_space.depth_range.1);
1246 assert!(
1247 search_space.qubit_constraints.min_qubits <= search_space.qubit_constraints.max_qubits
1248 );
1249 }
1250
1251 #[test]
1252 fn test_nas_initialization() {
1253 let search_space = create_default_search_space();
1254 let strategy = SearchStrategy::Random { num_samples: 10 };
1255 let nas = QuantumNAS::new(strategy, search_space);
1256
1257 assert_eq!(nas.current_generation, 0);
1258 assert_eq!(nas.best_architectures.len(), 0);
1259 }
1260
1261 #[test]
1262 fn test_random_architecture_sampling() {
1263 let search_space = create_default_search_space();
1264 let strategy = SearchStrategy::Random { num_samples: 10 };
1265 let nas = QuantumNAS::new(strategy, search_space);
1266
1267 let arch = nas
1268 .sample_random_architecture()
1269 .expect("Random architecture sampling should succeed");
1270 assert!(arch.layers.len() >= 2); assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1272 assert!(arch.num_qubits <= nas.search_space.qubit_constraints.max_qubits);
1273 }
1274
1275 #[test]
1276 fn test_fitness_computation() {
1277 let search_space = create_default_search_space();
1278 let strategy = SearchStrategy::Random { num_samples: 10 };
1279 let nas = QuantumNAS::new(strategy, search_space);
1280
1281 let mut arch = nas
1282 .sample_random_architecture()
1283 .expect("Random architecture sampling should succeed");
1284 arch.metrics.accuracy = Some(0.8);
1285 arch.metrics.parameter_count = 50;
1286 arch.metrics.circuit_depth = 10;
1287
1288 let fitness = nas.compute_fitness(&arch);
1289 assert!(fitness > 0.0);
1290 }
1291
1292 #[test]
1293 fn test_architecture_mutation() {
1294 let search_space = create_default_search_space();
1295 let strategy = SearchStrategy::Evolutionary {
1296 population_size: 10,
1297 mutation_rate: 0.1,
1298 crossover_rate: 0.7,
1299 elitism_ratio: 0.1,
1300 };
1301 let nas = QuantumNAS::new(strategy, search_space);
1302
1303 let mut arch = nas
1304 .sample_random_architecture()
1305 .expect("Random architecture sampling should succeed");
1306 let original_layers = arch.layers.len();
1307
1308 nas.mutate(&mut arch).expect("Mutation should succeed");
1309
1310 assert!(arch.layers.len() >= 2);
1312 assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1313 }
1314}