quantrs2_ml/
quantum_nas.rs

1//! Quantum Neural Architecture Search (NAS)
2//!
3//! This module implements automated search algorithms for finding optimal quantum
4//! circuit architectures, including evolutionary algorithms, reinforcement learning-based
5//! search, and gradient-based methods adapted for quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13    single::{RotationX, RotationY, RotationZ},
14    GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{s, Array1, Array2, Array3, Axis};
18use scirs2_core::random::prelude::*;
19use std::collections::{HashMap, HashSet};
20use std::fmt;
21
22/// Search strategy for quantum architecture search
23#[derive(Debug, Clone, Copy)]
24pub enum SearchStrategy {
25    /// Evolutionary algorithm search
26    Evolutionary {
27        population_size: usize,
28        mutation_rate: f64,
29        crossover_rate: f64,
30        elitism_ratio: f64,
31    },
32
33    /// Reinforcement learning-based search
34    ReinforcementLearning {
35        agent_type: RLAgentType,
36        exploration_rate: f64,
37        learning_rate: f64,
38    },
39
40    /// Random search baseline
41    Random { num_samples: usize },
42
43    /// Bayesian optimization
44    BayesianOptimization {
45        acquisition_function: AcquisitionFunction,
46        num_initial_points: usize,
47    },
48
49    /// Differentiable architecture search
50    DARTS {
51        learning_rate: f64,
52        weight_decay: f64,
53    },
54}
55
56/// RL agent types for NAS
57#[derive(Debug, Clone, Copy)]
58pub enum RLAgentType {
59    /// Deep Q-Network
60    DQN,
61    /// Policy Gradient
62    PolicyGradient,
63    /// Actor-Critic
64    ActorCritic,
65}
66
67/// Acquisition functions for Bayesian optimization
68#[derive(Debug, Clone, Copy)]
69pub enum AcquisitionFunction {
70    /// Expected Improvement
71    ExpectedImprovement,
72    /// Upper Confidence Bound
73    UpperConfidenceBound,
74    /// Probability of Improvement
75    ProbabilityOfImprovement,
76}
77
78/// Architecture search space definition
79#[derive(Debug, Clone)]
80pub struct SearchSpace {
81    /// Available layer types
82    pub layer_types: Vec<QNNLayerType>,
83
84    /// Minimum/maximum depth
85    pub depth_range: (usize, usize),
86
87    /// Qubit count constraints
88    pub qubit_constraints: QubitConstraints,
89
90    /// Parameter ranges for variational layers
91    pub param_ranges: HashMap<String, (usize, usize)>,
92
93    /// Connectivity patterns
94    pub connectivity_patterns: Vec<String>,
95
96    /// Measurement basis options
97    pub measurement_bases: Vec<String>,
98}
99
100/// Qubit constraints for architecture search
101#[derive(Debug, Clone)]
102pub struct QubitConstraints {
103    /// Minimum number of qubits
104    pub min_qubits: usize,
105
106    /// Maximum number of qubits
107    pub max_qubits: usize,
108
109    /// Hardware topology constraints
110    pub topology: Option<QuantumTopology>,
111}
112
113/// Quantum hardware topology
114#[derive(Debug, Clone)]
115pub enum QuantumTopology {
116    /// Linear chain topology
117    Linear,
118    /// Ring/circular topology
119    Ring,
120    /// 2D grid topology
121    Grid { width: usize, height: usize },
122    /// Complete graph (all-to-all)
123    Complete,
124    /// Custom connectivity
125    Custom { edges: Vec<(usize, usize)> },
126}
127
128/// Architecture candidate with evaluation metrics
129#[derive(Debug, Clone)]
130pub struct ArchitectureCandidate {
131    /// Unique identifier
132    pub id: String,
133
134    /// Layer configuration
135    pub layers: Vec<QNNLayerType>,
136
137    /// Number of qubits
138    pub num_qubits: usize,
139
140    /// Performance metrics
141    pub metrics: ArchitectureMetrics,
142
143    /// Architecture properties
144    pub properties: ArchitectureProperties,
145}
146
147/// Performance metrics for architecture evaluation
148#[derive(Debug, Clone)]
149pub struct ArchitectureMetrics {
150    /// Validation accuracy
151    pub accuracy: Option<f64>,
152
153    /// Training loss
154    pub loss: Option<f64>,
155
156    /// Circuit depth
157    pub circuit_depth: usize,
158
159    /// Parameter count
160    pub parameter_count: usize,
161
162    /// Training time
163    pub training_time: Option<f64>,
164
165    /// Memory usage
166    pub memory_usage: Option<usize>,
167
168    /// Hardware efficiency score
169    pub hardware_efficiency: Option<f64>,
170}
171
172/// Architecture properties for analysis
173#[derive(Debug, Clone)]
174pub struct ArchitectureProperties {
175    /// Expressivity measure
176    pub expressivity: Option<f64>,
177
178    /// Entanglement capability
179    pub entanglement_capability: Option<f64>,
180
181    /// Gradient variance
182    pub gradient_variance: Option<f64>,
183
184    /// Barren plateau susceptibility
185    pub barren_plateau_score: Option<f64>,
186
187    /// Noise resilience
188    pub noise_resilience: Option<f64>,
189}
190
191/// Main quantum neural architecture search engine
192pub struct QuantumNAS {
193    /// Search strategy
194    strategy: SearchStrategy,
195
196    /// Search space definition
197    search_space: SearchSpace,
198
199    /// Evaluation dataset
200    eval_data: Option<(Array2<f64>, Array1<usize>)>,
201
202    /// Best architectures found
203    best_architectures: Vec<ArchitectureCandidate>,
204
205    /// Search history
206    search_history: Vec<ArchitectureCandidate>,
207
208    /// Current generation (for evolutionary)
209    current_generation: usize,
210
211    /// RL agent state (for RL-based search)
212    rl_state: Option<RLSearchState>,
213
214    /// Pareto front for multi-objective optimization
215    pareto_front: Vec<ArchitectureCandidate>,
216}
217
218/// RL agent state for reinforcement learning NAS
219#[derive(Debug, Clone)]
220pub struct RLSearchState {
221    /// Q-values for actions
222    q_values: HashMap<String, f64>,
223
224    /// Policy parameters
225    policy_params: Array1<f64>,
226
227    /// Experience replay buffer
228    replay_buffer: Vec<RLExperience>,
229
230    /// Current state representation
231    current_state: Array1<f64>,
232}
233
234/// Experience for RL training
235#[derive(Debug, Clone)]
236pub struct RLExperience {
237    /// State before action
238    pub state: Array1<f64>,
239
240    /// Action taken
241    pub action: ArchitectureAction,
242
243    /// Reward received
244    pub reward: f64,
245
246    /// Next state
247    pub next_state: Array1<f64>,
248
249    /// Whether episode ended
250    pub done: bool,
251}
252
253/// Actions for RL-based architecture search
254#[derive(Debug, Clone)]
255pub enum ArchitectureAction {
256    /// Add a layer
257    AddLayer(QNNLayerType),
258
259    /// Remove a layer
260    RemoveLayer(usize),
261
262    /// Modify layer parameters
263    ModifyLayer(usize, HashMap<String, f64>),
264
265    /// Change connectivity
266    ChangeConnectivity(String),
267
268    /// Finish architecture
269    Finish,
270}
271
272impl QuantumNAS {
273    /// Create a new quantum NAS instance
274    pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self {
275        Self {
276            strategy,
277            search_space,
278            eval_data: None,
279            best_architectures: Vec::new(),
280            search_history: Vec::new(),
281            current_generation: 0,
282            rl_state: None,
283            pareto_front: Vec::new(),
284        }
285    }
286
287    /// Set evaluation dataset
288    pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>) {
289        self.eval_data = Some((data, labels));
290    }
291
292    /// Search for optimal architectures
293    pub fn search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
294        println!("Starting quantum neural architecture search...");
295
296        match self.strategy {
297            SearchStrategy::Evolutionary { .. } => self.evolutionary_search(max_iterations),
298            SearchStrategy::ReinforcementLearning { .. } => self.rl_search(max_iterations),
299            SearchStrategy::Random { .. } => self.random_search(max_iterations),
300            SearchStrategy::BayesianOptimization { .. } => self.bayesian_search(max_iterations),
301            SearchStrategy::DARTS { .. } => self.darts_search(max_iterations),
302        }
303    }
304
305    /// Evolutionary algorithm search
306    fn evolutionary_search(
307        &mut self,
308        max_generations: usize,
309    ) -> Result<Vec<ArchitectureCandidate>> {
310        let (population_size, mutation_rate, crossover_rate, elitism_ratio) = match self.strategy {
311            SearchStrategy::Evolutionary {
312                population_size,
313                mutation_rate,
314                crossover_rate,
315                elitism_ratio,
316            } => (
317                population_size,
318                mutation_rate,
319                crossover_rate,
320                elitism_ratio,
321            ),
322            _ => unreachable!(),
323        };
324
325        // Initialize population
326        let mut population = self.initialize_population(population_size)?;
327
328        for generation in 0..max_generations {
329            self.current_generation = generation;
330
331            // Evaluate population
332            for candidate in &mut population {
333                if candidate.metrics.accuracy.is_none() {
334                    self.evaluate_architecture(candidate)?;
335                }
336            }
337
338            // Sort by fitness
339            population.sort_by(|a, b| {
340                let fitness_a = self.compute_fitness(a);
341                let fitness_b = self.compute_fitness(b);
342                fitness_b.partial_cmp(&fitness_a).unwrap()
343            });
344
345            // Update best architectures
346            self.update_best_architectures(&population);
347
348            // Update Pareto front
349            self.update_pareto_front(&population);
350
351            println!(
352                "Generation {}: Best fitness = {:.4}",
353                generation,
354                self.compute_fitness(&population[0])
355            );
356
357            // Create next generation
358            let elite_count = (population_size as f64 * elitism_ratio) as usize;
359            let mut next_generation = population[..elite_count].to_vec();
360
361            while next_generation.len() < population_size {
362                // Tournament selection
363                let parent1 = self.tournament_selection(&population, 3)?;
364                let parent2 = self.tournament_selection(&population, 3)?;
365
366                // Crossover
367                let mut offspring = if thread_rng().gen::<f64>() < crossover_rate {
368                    self.crossover(&parent1, &parent2)?
369                } else {
370                    parent1.clone()
371                };
372
373                // Mutation
374                if thread_rng().gen::<f64>() < mutation_rate {
375                    self.mutate(&mut offspring)?;
376                }
377
378                next_generation.push(offspring);
379            }
380
381            population = next_generation;
382
383            // Add to search history
384            self.search_history.extend(population.clone());
385        }
386
387        Ok(self.best_architectures.clone())
388    }
389
390    /// Reinforcement learning-based search
391    fn rl_search(&mut self, max_episodes: usize) -> Result<Vec<ArchitectureCandidate>> {
392        let (agent_type, exploration_rate, learning_rate) = match self.strategy {
393            SearchStrategy::ReinforcementLearning {
394                agent_type,
395                exploration_rate,
396                learning_rate,
397            } => (agent_type, exploration_rate, learning_rate),
398            _ => unreachable!(),
399        };
400
401        // Initialize RL agent
402        self.initialize_rl_agent(agent_type, learning_rate)?;
403
404        for episode in 0..max_episodes {
405            let mut current_architecture = self.create_empty_architecture();
406            let mut episode_reward = 0.0;
407            let mut step = 0;
408
409            loop {
410                // Get current state
411                let state = self.architecture_to_state(&current_architecture)?;
412
413                // Choose action (epsilon-greedy)
414                let action = if thread_rng().gen::<f64>() < exploration_rate {
415                    self.sample_random_action(&current_architecture)?
416                } else {
417                    self.choose_best_action(&state)?
418                };
419
420                // Apply action
421                let (next_architecture, reward, done) =
422                    self.apply_action(&current_architecture, &action)?;
423
424                // Update experience
425                let next_state = self.architecture_to_state(&next_architecture)?;
426                let experience = RLExperience {
427                    state: state.clone(),
428                    action: action.clone(),
429                    reward,
430                    next_state: next_state.clone(),
431                    done,
432                };
433
434                if let Some(ref mut rl_state) = self.rl_state {
435                    rl_state.replay_buffer.push(experience);
436                }
437
438                // Train agent
439                if step % 10 == 0 {
440                    self.train_rl_agent()?;
441                }
442
443                episode_reward += reward;
444                current_architecture = next_architecture;
445                step += 1;
446
447                if done || step > 20 {
448                    break;
449                }
450            }
451
452            // Evaluate final architecture
453            let mut final_candidate = current_architecture;
454            self.evaluate_architecture(&mut final_candidate)?;
455            self.search_history.push(final_candidate.clone());
456            self.update_best_architectures(&[final_candidate]);
457
458            if episode % 100 == 0 {
459                println!("Episode {}: Reward = {:.4}", episode, episode_reward);
460            }
461        }
462
463        Ok(self.best_architectures.clone())
464    }
465
466    /// Random search baseline
467    fn random_search(&mut self, num_samples: usize) -> Result<Vec<ArchitectureCandidate>> {
468        for i in 0..num_samples {
469            let mut candidate = self.sample_random_architecture()?;
470            self.evaluate_architecture(&mut candidate)?;
471
472            self.search_history.push(candidate.clone());
473            self.update_best_architectures(&[candidate]);
474
475            if i % 100 == 0 {
476                println!("Evaluated {} random architectures", i + 1);
477            }
478        }
479
480        Ok(self.best_architectures.clone())
481    }
482
483    /// Bayesian optimization search
484    fn bayesian_search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
485        let (acquisition_fn, num_initial) = match self.strategy {
486            SearchStrategy::BayesianOptimization {
487                acquisition_function,
488                num_initial_points,
489            } => (acquisition_function, num_initial_points),
490            _ => unreachable!(),
491        };
492
493        // Initial random sampling
494        let mut candidates = Vec::new();
495        for _ in 0..num_initial {
496            let mut candidate = self.sample_random_architecture()?;
497            self.evaluate_architecture(&mut candidate)?;
498            candidates.push(candidate);
499        }
500
501        // Bayesian optimization loop
502        for iteration in num_initial..max_iterations {
503            // Fit surrogate model (simplified)
504            let surrogate = self.fit_surrogate_model(&candidates)?;
505
506            // Optimize acquisition function
507            let next_candidate = self.optimize_acquisition(&surrogate, acquisition_fn)?;
508
509            // Evaluate candidate
510            let mut evaluated_candidate = next_candidate;
511            self.evaluate_architecture(&mut evaluated_candidate)?;
512
513            candidates.push(evaluated_candidate.clone());
514            self.search_history.push(evaluated_candidate.clone());
515            self.update_best_architectures(&[evaluated_candidate]);
516
517            if iteration % 50 == 0 {
518                let best_acc = self.best_architectures[0].metrics.accuracy.unwrap_or(0.0);
519                println!("Iteration {}: Best accuracy = {:.4}", iteration, best_acc);
520            }
521        }
522
523        Ok(self.best_architectures.clone())
524    }
525
526    /// DARTS (Differentiable Architecture Search)
527    fn darts_search(&mut self, max_epochs: usize) -> Result<Vec<ArchitectureCandidate>> {
528        let (learning_rate, weight_decay) = match self.strategy {
529            SearchStrategy::DARTS {
530                learning_rate,
531                weight_decay,
532            } => (learning_rate, weight_decay),
533            _ => unreachable!(),
534        };
535
536        // Initialize architecture weights (alpha parameters)
537        let num_layers = 8; // Fixed depth for DARTS
538        let num_ops = self.search_space.layer_types.len();
539        let mut alpha = Array2::zeros((num_layers, num_ops));
540
541        // Initialize with uniform distribution
542        for i in 0..num_layers {
543            for j in 0..num_ops {
544                alpha[[i, j]] = 1.0 / num_ops as f64;
545            }
546        }
547
548        for epoch in 0..max_epochs {
549            // Update alpha parameters using gradient descent
550            let alpha_grad = self.compute_architecture_gradients(&alpha)?;
551            alpha = alpha - learning_rate * &alpha_grad;
552
553            // Apply softmax to alpha
554            for i in 0..num_layers {
555                let row_sum: f64 = alpha.row(i).iter().map(|x| x.exp()).sum();
556                for j in 0..num_ops {
557                    alpha[[i, j]] = alpha[[i, j]].exp() / row_sum;
558                }
559            }
560
561            if epoch % 100 == 0 {
562                println!("DARTS epoch {}: Architecture weights updated", epoch);
563            }
564        }
565
566        // Derive final architecture from learned weights
567        let final_architecture = self.derive_architecture_from_weights(&alpha)?;
568        let mut candidate = final_architecture;
569        self.evaluate_architecture(&mut candidate)?;
570
571        self.search_history.push(candidate.clone());
572        self.update_best_architectures(&[candidate]);
573
574        Ok(self.best_architectures.clone())
575    }
576
577    /// Initialize random population for evolutionary search
578    fn initialize_population(&self, size: usize) -> Result<Vec<ArchitectureCandidate>> {
579        let mut population = Vec::new();
580        for i in 0..size {
581            let candidate = self.sample_random_architecture()?;
582            population.push(candidate);
583        }
584        Ok(population)
585    }
586
587    /// Sample a random architecture from search space
588    fn sample_random_architecture(&self) -> Result<ArchitectureCandidate> {
589        let depth =
590            fastrand::usize(self.search_space.depth_range.0..=self.search_space.depth_range.1);
591        let num_qubits = fastrand::usize(
592            self.search_space.qubit_constraints.min_qubits
593                ..=self.search_space.qubit_constraints.max_qubits,
594        );
595
596        let mut layers = Vec::new();
597
598        // Add encoding layer
599        layers.push(QNNLayerType::EncodingLayer {
600            num_features: fastrand::usize(2..8),
601        });
602
603        // Add random layers
604        for _ in 0..depth {
605            let layer_type_idx = fastrand::usize(0..self.search_space.layer_types.len());
606            let layer_type = self.search_space.layer_types[layer_type_idx].clone();
607            layers.push(layer_type);
608        }
609
610        // Add measurement layer
611        let basis_idx = fastrand::usize(0..self.search_space.measurement_bases.len());
612        layers.push(QNNLayerType::MeasurementLayer {
613            measurement_basis: self.search_space.measurement_bases[basis_idx].clone(),
614        });
615
616        Ok(ArchitectureCandidate {
617            id: format!("arch_{}", fastrand::u64(..)),
618            layers,
619            num_qubits,
620            metrics: ArchitectureMetrics {
621                accuracy: None,
622                loss: None,
623                circuit_depth: 0,
624                parameter_count: 0,
625                training_time: None,
626                memory_usage: None,
627                hardware_efficiency: None,
628            },
629            properties: ArchitectureProperties {
630                expressivity: None,
631                entanglement_capability: None,
632                gradient_variance: None,
633                barren_plateau_score: None,
634                noise_resilience: None,
635            },
636        })
637    }
638
639    /// Evaluate architecture performance
640    fn evaluate_architecture(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
641        // Create QNN from architecture
642        let qnn = QuantumNeuralNetwork::new(
643            candidate.layers.clone(),
644            candidate.num_qubits,
645            4, // input_dim
646            2, // output_dim
647        )?;
648
649        // Compute metrics
650        candidate.metrics.parameter_count = qnn.parameters.len();
651        candidate.metrics.circuit_depth = self.estimate_circuit_depth(&candidate.layers);
652
653        // Evaluate on dataset if available
654        if let Some((data, labels)) = &self.eval_data {
655            let (accuracy, loss) = self.evaluate_on_dataset(&qnn, data, labels)?;
656            candidate.metrics.accuracy = Some(accuracy);
657            candidate.metrics.loss = Some(loss);
658        } else {
659            // Synthetic evaluation
660            candidate.metrics.accuracy = Some(0.5 + 0.4 * thread_rng().gen::<f64>());
661            candidate.metrics.loss = Some(0.5 + 0.5 * thread_rng().gen::<f64>());
662        }
663
664        // Compute architecture properties
665        self.compute_architecture_properties(candidate)?;
666
667        Ok(())
668    }
669
670    /// Compute fitness score for evolutionary algorithm
671    fn compute_fitness(&self, candidate: &ArchitectureCandidate) -> f64 {
672        let accuracy = candidate.metrics.accuracy.unwrap_or(0.0);
673        let param_penalty = candidate.metrics.parameter_count as f64 / 1000.0;
674        let depth_penalty = candidate.metrics.circuit_depth as f64 / 100.0;
675
676        // Multi-objective fitness
677        accuracy - 0.1 * param_penalty - 0.05 * depth_penalty
678    }
679
680    /// Tournament selection for evolutionary algorithm
681    fn tournament_selection(
682        &self,
683        population: &[ArchitectureCandidate],
684        tournament_size: usize,
685    ) -> Result<ArchitectureCandidate> {
686        let mut best = None;
687        let mut best_fitness = f64::NEG_INFINITY;
688
689        for _ in 0..tournament_size {
690            let idx = fastrand::usize(0..population.len());
691            let candidate = &population[idx];
692            let fitness = self.compute_fitness(candidate);
693
694            if fitness > best_fitness {
695                best_fitness = fitness;
696                best = Some(candidate.clone());
697            }
698        }
699
700        Ok(best.unwrap())
701    }
702
703    /// Crossover operation for evolutionary algorithm
704    fn crossover(
705        &self,
706        parent1: &ArchitectureCandidate,
707        parent2: &ArchitectureCandidate,
708    ) -> Result<ArchitectureCandidate> {
709        // Simple layer-wise crossover
710        let mut child_layers = Vec::new();
711        let max_len = parent1.layers.len().max(parent2.layers.len());
712
713        for i in 0..max_len {
714            if thread_rng().gen::<bool>() {
715                if i < parent1.layers.len() {
716                    child_layers.push(parent1.layers[i].clone());
717                }
718            } else {
719                if i < parent2.layers.len() {
720                    child_layers.push(parent2.layers[i].clone());
721                }
722            }
723        }
724
725        let num_qubits = if thread_rng().gen::<bool>() {
726            parent1.num_qubits
727        } else {
728            parent2.num_qubits
729        };
730
731        Ok(ArchitectureCandidate {
732            id: format!("crossover_{}", fastrand::u64(..)),
733            layers: child_layers,
734            num_qubits,
735            metrics: ArchitectureMetrics {
736                accuracy: None,
737                loss: None,
738                circuit_depth: 0,
739                parameter_count: 0,
740                training_time: None,
741                memory_usage: None,
742                hardware_efficiency: None,
743            },
744            properties: ArchitectureProperties {
745                expressivity: None,
746                entanglement_capability: None,
747                gradient_variance: None,
748                barren_plateau_score: None,
749                noise_resilience: None,
750            },
751        })
752    }
753
754    /// Mutation operation for evolutionary algorithm
755    fn mutate(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
756        let mutation_type = fastrand::usize(0..4);
757
758        match mutation_type {
759            0 => {
760                // Add layer
761                if candidate.layers.len() < self.search_space.depth_range.1 + 2 {
762                    let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
763                    let new_layer = self.search_space.layer_types[layer_idx].clone();
764                    let insert_pos = fastrand::usize(1..candidate.layers.len()); // Skip encoding layer
765                    candidate.layers.insert(insert_pos, new_layer);
766                }
767            }
768            1 => {
769                // Remove layer
770                if candidate.layers.len() > 3 {
771                    // Keep encoding and measurement
772                    let remove_pos = fastrand::usize(1..candidate.layers.len() - 1);
773                    candidate.layers.remove(remove_pos);
774                }
775            }
776            2 => {
777                // Modify layer
778                if candidate.layers.len() > 2 {
779                    let layer_idx = fastrand::usize(1..candidate.layers.len() - 1);
780                    let new_layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
781                    candidate.layers[layer_idx] =
782                        self.search_space.layer_types[new_layer_idx].clone();
783                }
784            }
785            3 => {
786                // Change qubit count
787                candidate.num_qubits = fastrand::usize(
788                    self.search_space.qubit_constraints.min_qubits
789                        ..=self.search_space.qubit_constraints.max_qubits,
790                );
791            }
792            _ => {}
793        }
794
795        // Reset metrics
796        candidate.metrics.accuracy = None;
797        candidate.metrics.loss = None;
798
799        Ok(())
800    }
801
802    /// Update best architectures list
803    fn update_best_architectures(&mut self, candidates: &[ArchitectureCandidate]) {
804        for candidate in candidates {
805            if candidate.metrics.accuracy.is_some() {
806                self.best_architectures.push(candidate.clone());
807            }
808        }
809
810        // Compute fitness scores for sorting
811        let mut fitness_scores: Vec<(usize, f64)> = self
812            .best_architectures
813            .iter()
814            .enumerate()
815            .map(|(i, arch)| (i, self.compute_fitness(arch)))
816            .collect();
817
818        // Sort by fitness (descending)
819        fitness_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
820
821        // Reorder architectures based on fitness
822        let sorted_architectures: Vec<_> = fitness_scores
823            .into_iter()
824            .take(10)
825            .map(|(i, _)| self.best_architectures[i].clone())
826            .collect();
827
828        self.best_architectures = sorted_architectures;
829    }
830
831    /// Update Pareto front for multi-objective optimization
832    fn update_pareto_front(&mut self, candidates: &[ArchitectureCandidate]) {
833        for candidate in candidates {
834            let is_dominated = self
835                .pareto_front
836                .iter()
837                .any(|other| self.dominates(other, candidate));
838
839            if !is_dominated {
840                // Find indices of dominated solutions
841                let mut to_remove = Vec::new();
842                for (i, other) in self.pareto_front.iter().enumerate() {
843                    if self.dominates(candidate, other) {
844                        to_remove.push(i);
845                    }
846                }
847
848                // Remove dominated solutions (in reverse order to maintain indices)
849                for &i in to_remove.iter().rev() {
850                    self.pareto_front.remove(i);
851                }
852
853                // Add new candidate
854                self.pareto_front.push(candidate.clone());
855            }
856        }
857    }
858
859    /// Check if one candidate dominates another (Pareto dominance)
860    fn dominates(&self, a: &ArchitectureCandidate, b: &ArchitectureCandidate) -> bool {
861        let acc_a = a.metrics.accuracy.unwrap_or(0.0);
862        let acc_b = b.metrics.accuracy.unwrap_or(0.0);
863        let params_a = a.metrics.parameter_count as f64;
864        let params_b = b.metrics.parameter_count as f64;
865
866        (acc_a >= acc_b && params_a <= params_b) && (acc_a > acc_b || params_a < params_b)
867    }
868
869    /// Estimate circuit depth from layers
870    fn estimate_circuit_depth(&self, layers: &[QNNLayerType]) -> usize {
871        layers
872            .iter()
873            .map(|layer| match layer {
874                QNNLayerType::EncodingLayer { .. } => 1,
875                QNNLayerType::VariationalLayer { num_params } => num_params / 3, // Roughly gates per qubit
876                QNNLayerType::EntanglementLayer { .. } => 1,
877                QNNLayerType::MeasurementLayer { .. } => 1,
878            })
879            .sum()
880    }
881
882    /// Evaluate QNN on dataset
883    fn evaluate_on_dataset(
884        &self,
885        qnn: &QuantumNeuralNetwork,
886        data: &Array2<f64>,
887        labels: &Array1<usize>,
888    ) -> Result<(f64, f64)> {
889        // Simplified evaluation - would use actual training/validation
890        let accuracy = 0.6 + 0.3 * thread_rng().gen::<f64>();
891        let loss = 0.2 + 0.8 * thread_rng().gen::<f64>();
892        Ok((accuracy, loss))
893    }
894
895    /// Compute architecture properties
896    fn compute_architecture_properties(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
897        // Estimate expressivity based on parameter count and depth
898        let expressivity = (candidate.metrics.parameter_count as f64).ln()
899            * (candidate.metrics.circuit_depth as f64).sqrt()
900            / 100.0;
901        candidate.properties.expressivity = Some(expressivity.min(1.0));
902
903        // Estimate entanglement capability
904        let entanglement_layers = candidate
905            .layers
906            .iter()
907            .filter(|layer| matches!(layer, QNNLayerType::EntanglementLayer { .. }))
908            .count();
909        candidate.properties.entanglement_capability =
910            Some((entanglement_layers as f64 / candidate.layers.len() as f64).min(1.0));
911
912        // Placeholder values for other properties
913        candidate.properties.gradient_variance = Some(0.1 + 0.3 * thread_rng().gen::<f64>());
914        candidate.properties.barren_plateau_score = Some(0.2 + 0.6 * thread_rng().gen::<f64>());
915        candidate.properties.noise_resilience = Some(0.3 + 0.4 * thread_rng().gen::<f64>());
916
917        Ok(())
918    }
919
920    /// Initialize RL agent
921    fn initialize_rl_agent(&mut self, agent_type: RLAgentType, learning_rate: f64) -> Result<()> {
922        let state_dim = 64; // State representation dimension
923
924        self.rl_state = Some(RLSearchState {
925            q_values: HashMap::new(),
926            policy_params: Array1::zeros(state_dim),
927            replay_buffer: Vec::new(),
928            current_state: Array1::zeros(state_dim),
929        });
930
931        Ok(())
932    }
933
934    /// Convert architecture to state representation
935    fn architecture_to_state(&self, arch: &ArchitectureCandidate) -> Result<Array1<f64>> {
936        let mut state = Array1::zeros(64);
937
938        // Encode architecture features
939        state[0] = arch.layers.len() as f64 / 20.0; // Normalized depth
940        state[1] = arch.num_qubits as f64 / 16.0; // Normalized qubit count
941
942        // Encode layer types
943        for (i, layer) in arch.layers.iter().enumerate().take(30) {
944            let layer_code = match layer {
945                QNNLayerType::EncodingLayer { .. } => 0.1,
946                QNNLayerType::VariationalLayer { .. } => 0.3,
947                QNNLayerType::EntanglementLayer { .. } => 0.5,
948                QNNLayerType::MeasurementLayer { .. } => 0.7,
949            };
950            state[2 + i] = layer_code;
951        }
952
953        Ok(state)
954    }
955
956    /// Sample random action for RL
957    fn sample_random_action(&self, arch: &ArchitectureCandidate) -> Result<ArchitectureAction> {
958        let action_type = fastrand::usize(0..5);
959
960        match action_type {
961            0 => {
962                let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
963                Ok(ArchitectureAction::AddLayer(
964                    self.search_space.layer_types[layer_idx].clone(),
965                ))
966            }
967            1 => {
968                if arch.layers.len() > 3 {
969                    let layer_idx = fastrand::usize(1..arch.layers.len() - 1);
970                    Ok(ArchitectureAction::RemoveLayer(layer_idx))
971                } else {
972                    self.sample_random_action(arch)
973                }
974            }
975            2 => {
976                let layer_idx = fastrand::usize(0..arch.layers.len());
977                Ok(ArchitectureAction::ModifyLayer(layer_idx, HashMap::new()))
978            }
979            3 => {
980                let conn_idx = fastrand::usize(0..self.search_space.connectivity_patterns.len());
981                Ok(ArchitectureAction::ChangeConnectivity(
982                    self.search_space.connectivity_patterns[conn_idx].clone(),
983                ))
984            }
985            _ => Ok(ArchitectureAction::Finish),
986        }
987    }
988
989    /// Choose best action using RL policy
990    fn choose_best_action(&self, state: &Array1<f64>) -> Result<ArchitectureAction> {
991        // Placeholder - would use trained policy
992        Ok(ArchitectureAction::Finish)
993    }
994
995    /// Apply action to architecture
996    fn apply_action(
997        &self,
998        arch: &ArchitectureCandidate,
999        action: &ArchitectureAction,
1000    ) -> Result<(ArchitectureCandidate, f64, bool)> {
1001        let mut new_arch = arch.clone();
1002        let mut reward = 0.0;
1003        let mut done = false;
1004
1005        match action {
1006            ArchitectureAction::AddLayer(layer) => {
1007                if new_arch.layers.len() < self.search_space.depth_range.1 + 2 {
1008                    let insert_pos = fastrand::usize(1..new_arch.layers.len());
1009                    new_arch.layers.insert(insert_pos, layer.clone());
1010                    reward = 0.1;
1011                } else {
1012                    reward = -0.1;
1013                }
1014            }
1015            ArchitectureAction::RemoveLayer(idx) => {
1016                if new_arch.layers.len() > 3 && *idx < new_arch.layers.len() {
1017                    new_arch.layers.remove(*idx);
1018                    reward = 0.05;
1019                } else {
1020                    reward = -0.1;
1021                }
1022            }
1023            ArchitectureAction::Finish => {
1024                done = true;
1025                reward = 1.0; // Will be replaced by actual evaluation
1026            }
1027            _ => {
1028                reward = 0.0;
1029            }
1030        }
1031
1032        new_arch.id = format!("rl_{}", fastrand::u64(..));
1033        Ok((new_arch, reward, done))
1034    }
1035
1036    /// Train RL agent
1037    fn train_rl_agent(&mut self) -> Result<()> {
1038        // Placeholder for RL training
1039        Ok(())
1040    }
1041
1042    /// Create empty architecture
1043    fn create_empty_architecture(&self) -> ArchitectureCandidate {
1044        ArchitectureCandidate {
1045            id: format!("empty_{}", fastrand::u64(..)),
1046            layers: vec![
1047                QNNLayerType::EncodingLayer { num_features: 4 },
1048                QNNLayerType::MeasurementLayer {
1049                    measurement_basis: "computational".to_string(),
1050                },
1051            ],
1052            num_qubits: 4,
1053            metrics: ArchitectureMetrics {
1054                accuracy: None,
1055                loss: None,
1056                circuit_depth: 0,
1057                parameter_count: 0,
1058                training_time: None,
1059                memory_usage: None,
1060                hardware_efficiency: None,
1061            },
1062            properties: ArchitectureProperties {
1063                expressivity: None,
1064                entanglement_capability: None,
1065                gradient_variance: None,
1066                barren_plateau_score: None,
1067                noise_resilience: None,
1068            },
1069        }
1070    }
1071
1072    /// Fit surrogate model for Bayesian optimization
1073    fn fit_surrogate_model(&self, candidates: &[ArchitectureCandidate]) -> Result<SurrogateModel> {
1074        // Placeholder for surrogate model
1075        Ok(SurrogateModel {
1076            mean_prediction: 0.7,
1077            uncertainty: 0.1,
1078        })
1079    }
1080
1081    /// Optimize acquisition function
1082    fn optimize_acquisition(
1083        &self,
1084        surrogate: &SurrogateModel,
1085        acquisition_fn: AcquisitionFunction,
1086    ) -> Result<ArchitectureCandidate> {
1087        // Placeholder - would optimize acquisition function
1088        self.sample_random_architecture()
1089    }
1090
1091    /// Compute architecture gradients for DARTS
1092    fn compute_architecture_gradients(&self, alpha: &Array2<f64>) -> Result<Array2<f64>> {
1093        // Placeholder for architecture gradient computation
1094        Ok(Array2::zeros(alpha.raw_dim()))
1095    }
1096
1097    /// Derive final architecture from DARTS weights
1098    fn derive_architecture_from_weights(
1099        &self,
1100        alpha: &Array2<f64>,
1101    ) -> Result<ArchitectureCandidate> {
1102        let mut layers = vec![QNNLayerType::EncodingLayer { num_features: 4 }];
1103
1104        for i in 0..alpha.nrows() {
1105            // Choose layer with highest weight
1106            let mut best_op = 0;
1107            let mut best_weight = alpha[[i, 0]];
1108
1109            for j in 1..alpha.ncols() {
1110                if alpha[[i, j]] > best_weight {
1111                    best_weight = alpha[[i, j]];
1112                    best_op = j;
1113                }
1114            }
1115
1116            if best_op < self.search_space.layer_types.len() {
1117                layers.push(self.search_space.layer_types[best_op].clone());
1118            }
1119        }
1120
1121        layers.push(QNNLayerType::MeasurementLayer {
1122            measurement_basis: "computational".to_string(),
1123        });
1124
1125        Ok(ArchitectureCandidate {
1126            id: format!("darts_{}", fastrand::u64(..)),
1127            layers,
1128            num_qubits: 4,
1129            metrics: ArchitectureMetrics {
1130                accuracy: None,
1131                loss: None,
1132                circuit_depth: 0,
1133                parameter_count: 0,
1134                training_time: None,
1135                memory_usage: None,
1136                hardware_efficiency: None,
1137            },
1138            properties: ArchitectureProperties {
1139                expressivity: None,
1140                entanglement_capability: None,
1141                gradient_variance: None,
1142                barren_plateau_score: None,
1143                noise_resilience: None,
1144            },
1145        })
1146    }
1147
1148    /// Get search results summary
1149    pub fn get_search_summary(&self) -> SearchSummary {
1150        SearchSummary {
1151            total_architectures_evaluated: self.search_history.len(),
1152            best_architecture: self.best_architectures.first().cloned(),
1153            pareto_front_size: self.pareto_front.len(),
1154            search_generations: self.current_generation,
1155        }
1156    }
1157
1158    /// Get Pareto front
1159    pub fn get_pareto_front(&self) -> &[ArchitectureCandidate] {
1160        &self.pareto_front
1161    }
1162}
1163
1164/// Surrogate model for Bayesian optimization
1165#[derive(Debug, Clone)]
1166pub struct SurrogateModel {
1167    pub mean_prediction: f64,
1168    pub uncertainty: f64,
1169}
1170
1171/// Search results summary
1172#[derive(Debug, Clone)]
1173pub struct SearchSummary {
1174    pub total_architectures_evaluated: usize,
1175    pub best_architecture: Option<ArchitectureCandidate>,
1176    pub pareto_front_size: usize,
1177    pub search_generations: usize,
1178}
1179
1180impl fmt::Display for ArchitectureCandidate {
1181    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1182        write!(
1183            f,
1184            "Architecture {} (layers: {}, qubits: {}, accuracy: {:.3})",
1185            self.id,
1186            self.layers.len(),
1187            self.num_qubits,
1188            self.metrics.accuracy.unwrap_or(0.0)
1189        )
1190    }
1191}
1192
1193/// Helper function to create default search space
1194pub fn create_default_search_space() -> SearchSpace {
1195    SearchSpace {
1196        layer_types: vec![
1197            QNNLayerType::VariationalLayer { num_params: 6 },
1198            QNNLayerType::VariationalLayer { num_params: 9 },
1199            QNNLayerType::VariationalLayer { num_params: 12 },
1200            QNNLayerType::EntanglementLayer {
1201                connectivity: "circular".to_string(),
1202            },
1203            QNNLayerType::EntanglementLayer {
1204                connectivity: "full".to_string(),
1205            },
1206        ],
1207        depth_range: (2, 8),
1208        qubit_constraints: QubitConstraints {
1209            min_qubits: 3,
1210            max_qubits: 8,
1211            topology: Some(QuantumTopology::Complete),
1212        },
1213        param_ranges: vec![
1214            ("variational_params".to_string(), (3, 15)),
1215            ("encoding_features".to_string(), (2, 8)),
1216        ]
1217        .into_iter()
1218        .collect(),
1219        connectivity_patterns: vec![
1220            "linear".to_string(),
1221            "circular".to_string(),
1222            "full".to_string(),
1223        ],
1224        measurement_bases: vec![
1225            "computational".to_string(),
1226            "Pauli-Z".to_string(),
1227            "Pauli-X".to_string(),
1228            "Pauli-Y".to_string(),
1229        ],
1230    }
1231}
1232
1233#[cfg(test)]
1234mod tests {
1235    use super::*;
1236
1237    #[test]
1238    fn test_search_space_creation() {
1239        let search_space = create_default_search_space();
1240        assert!(search_space.layer_types.len() > 0);
1241        assert!(search_space.depth_range.0 < search_space.depth_range.1);
1242        assert!(
1243            search_space.qubit_constraints.min_qubits <= search_space.qubit_constraints.max_qubits
1244        );
1245    }
1246
1247    #[test]
1248    fn test_nas_initialization() {
1249        let search_space = create_default_search_space();
1250        let strategy = SearchStrategy::Random { num_samples: 10 };
1251        let nas = QuantumNAS::new(strategy, search_space);
1252
1253        assert_eq!(nas.current_generation, 0);
1254        assert_eq!(nas.best_architectures.len(), 0);
1255    }
1256
1257    #[test]
1258    fn test_random_architecture_sampling() {
1259        let search_space = create_default_search_space();
1260        let strategy = SearchStrategy::Random { num_samples: 10 };
1261        let nas = QuantumNAS::new(strategy, search_space);
1262
1263        let arch = nas.sample_random_architecture().unwrap();
1264        assert!(arch.layers.len() >= 2); // At least encoding and measurement
1265        assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1266        assert!(arch.num_qubits <= nas.search_space.qubit_constraints.max_qubits);
1267    }
1268
1269    #[test]
1270    fn test_fitness_computation() {
1271        let search_space = create_default_search_space();
1272        let strategy = SearchStrategy::Random { num_samples: 10 };
1273        let nas = QuantumNAS::new(strategy, search_space);
1274
1275        let mut arch = nas.sample_random_architecture().unwrap();
1276        arch.metrics.accuracy = Some(0.8);
1277        arch.metrics.parameter_count = 50;
1278        arch.metrics.circuit_depth = 10;
1279
1280        let fitness = nas.compute_fitness(&arch);
1281        assert!(fitness > 0.0);
1282    }
1283
1284    #[test]
1285    fn test_architecture_mutation() {
1286        let search_space = create_default_search_space();
1287        let strategy = SearchStrategy::Evolutionary {
1288            population_size: 10,
1289            mutation_rate: 0.1,
1290            crossover_rate: 0.7,
1291            elitism_ratio: 0.1,
1292        };
1293        let nas = QuantumNAS::new(strategy, search_space);
1294
1295        let mut arch = nas.sample_random_architecture().unwrap();
1296        let original_layers = arch.layers.len();
1297
1298        nas.mutate(&mut arch).unwrap();
1299
1300        // Architecture should still be valid
1301        assert!(arch.layers.len() >= 2);
1302        assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1303    }
1304}