QuantumReservoirComputer

Struct QuantumReservoirComputer 

Source
pub struct QuantumReservoirComputer { /* private fields */ }
Expand description

Main Quantum Reservoir Computer

Implementations§

Source§

impl QuantumReservoirComputer

Source

pub fn new(config: QRCConfig) -> Result<Self>

Create a new Quantum Reservoir Computer

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 235)
196fn quantum_reservoir_computing_demonstration() -> Result<()> {
197    println!("   Initializing Quantum Reservoir Computer...");
198
199    // Configure advanced QRC
200    let config = QRCConfig {
201        reservoir_qubits: 12,
202        input_qubits: 6,
203        readout_size: 16,
204        reservoir_dynamics: ReservoirDynamics {
205            evolution_time: 1.0,
206            coupling_strength: 0.15,
207            external_field: 0.08,
208            hamiltonian_type: HamiltonianType::TransverseFieldIsing,
209            random_interactions: true,
210            randomness_strength: 0.05,
211            memory_length: 20,
212        },
213        input_encoding: InputEncoding {
214            encoding_type: EncodingType::Amplitude,
215            normalization: NormalizationType::L2,
216            feature_mapping: FeatureMapping::Linear,
217            temporal_encoding: true,
218        },
219        training_config: QRCTrainingConfig {
220            epochs: 100,
221            learning_rate: 0.01,
222            batch_size: 16,
223            washout_period: 50,
224            ..Default::default()
225        },
226        temporal_config: TemporalConfig {
227            sequence_length: 20,
228            time_step: 0.1,
229            temporal_correlation: true,
230            memory_decay: 0.95,
231        },
232        ..Default::default()
233    };
234
235    let mut qrc = QuantumReservoirComputer::new(config)?;
236    println!("   QRC initialized with {} reservoir qubits", 20);
237
238    // Generate temporal sequence data
239    let training_data = generate_temporal_sequences(100, 20, 6, 8)?;
240    println!("   Generated {} temporal sequences", training_data.len());
241
242    // Train the reservoir readout
243    println!("   Training quantum reservoir readout...");
244    qrc.train(&training_data)?;
245
246    // Analyze reservoir dynamics
247    let dynamics = qrc.analyze_dynamics()?;
248    println!("   ✅ QRC Training Complete!");
249    println!("      Reservoir Capacity: {:.4}", dynamics.capacity);
250    println!("      Memory Function: {:.4}", dynamics.memory_function);
251    println!("      Spectral Radius: {:.4}", dynamics.spectral_radius);
252    println!(
253        "      Entanglement Measure: {:.4}",
254        dynamics.entanglement_measure
255    );
256
257    // Test prediction
258    let test_sequence =
259        Array2::from_shape_vec((15, 6), (0..90).map(|x| f64::from(x) * 0.01).collect())?;
260    let prediction = qrc.predict(&test_sequence)?;
261    println!("      Test prediction shape: {:?}", prediction.shape());
262
263    Ok(())
264}
265
266/// Demonstrate Quantum Graph Attention Networks
267fn quantum_graph_attention_demonstration() -> Result<()> {
268    println!("   Initializing Quantum Graph Attention Network...");
269
270    // Configure advanced QGAT
271    let config = QGATConfig {
272        node_qubits: 5,
273        edge_qubits: 3,
274        num_attention_heads: 8,
275        hidden_dim: 128,
276        output_dim: 32,
277        num_layers: 4,
278        attention_config: QGATAttentionConfig {
279            attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
280            dropout_rate: 0.1,
281            scaled_attention: true,
282            temperature: 0.8,
283            multi_head: true,
284            normalization: AttentionNormalization::LayerNorm,
285        },
286        pooling_config: PoolingConfig {
287            pooling_type: PoolingType::QuantumGlobalPool,
288            pooling_ratio: 0.5,
289            learnable_pooling: true,
290            quantum_pooling: true,
291        },
292        training_config: QGATTrainingConfig {
293            epochs: 150,
294            learning_rate: 0.0005,
295            batch_size: 8,
296            loss_function: LossFunction::CrossEntropy,
297            ..Default::default()
298        },
299        ..Default::default()
300    };
301
302    let qgat = QuantumGraphAttentionNetwork::new(config)?;
303    println!("   QGAT initialized with {} attention heads", 8);
304
305    // Create complex graph data
306    let graphs = generate_complex_graphs(50)?;
307    println!("   Generated {} complex graphs", graphs.len());
308
309    // Test forward pass
310    let sample_graph = &graphs[0];
311    let output = qgat.forward(sample_graph)?;
312    println!("   ✅ QGAT Forward Pass Complete!");
313    println!(
314        "      Input graph: {} nodes, {} edges",
315        sample_graph.num_nodes, sample_graph.num_edges
316    );
317    println!("      Output shape: {:?}", output.shape());
318
319    // Analyze attention patterns
320    let attention_analysis = qgat.analyze_attention(sample_graph)?;
321    println!("      Attention Analysis:");
322    println!(
323        "         Number of attention heads: {}",
324        attention_analysis.attention_weights.len()
325    );
326    println!(
327        "         Average entropy: {:.4}",
328        attention_analysis.average_entropy
329    );
330
331    // Graph representation learning
332    let graph_embeddings = qgat.forward(sample_graph)?;
333    let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
334    println!("      Graph embedding norm: {embedding_norm:.4}");
335
336    Ok(())
337}
338
339/// Advanced Integration Showcase
340fn advanced_integration_showcase() -> Result<()> {
341    println!("   Creating multi-algorithm quantum ML pipeline...");
342
343    // Step 1: Use QPINN to solve a PDE and extract features
344    println!("   Stage 1: QPINN feature extraction from PDE solution");
345    let pde_features = extract_pde_features_with_qpinn()?;
346    println!(
347        "      Extracted {} features from PDE solution",
348        pde_features.len()
349    );
350
351    // Step 2: Use QRC to process temporal dynamics
352    println!("   Stage 2: QRC temporal pattern recognition");
353    let temporal_patterns = process_temporal_with_qrc(&pde_features)?;
354    println!(
355        "      Identified {} temporal patterns",
356        temporal_patterns.nrows()
357    );
358
359    // Step 3: Use QGAT for relationship modeling
360    println!("   Stage 3: QGAT relationship modeling");
361    let relationship_graph = create_relationship_graph(&temporal_patterns)?;
362    let graph_insights = analyze_with_qgat(&relationship_graph)?;
363    println!(
364        "      Generated relationship insights: {:.4} complexity score",
365        graph_insights.sum() / graph_insights.len() as f64
366    );
367
368    // Step 4: QNODE for continuous optimization
369    println!("   Stage 4: QNODE continuous optimization");
370    let optimization_result = optimize_with_qnode(&graph_insights)?;
371    println!("      Optimization converged to: {optimization_result:.6}");
372
373    println!("   ✅ Multi-Algorithm Pipeline Complete!");
374    println!("      Successfully integrated 4 cutting-edge quantum algorithms");
375    println!("      Pipeline demonstrates quantum synergies and enhanced capabilities");
376
377    Ok(())
378}
379
380/// Comprehensive Benchmarking
381fn comprehensive_benchmarking() -> Result<()> {
382    println!("   Running comprehensive quantum advantage benchmarks...");
383
384    // Benchmark QNODE vs Classical NODE
385    println!("   Benchmarking QNODE vs Classical Neural ODE...");
386    let qnode_config = QNODEConfig::default();
387    let mut qnode = QuantumNeuralODE::new(qnode_config)?;
388    let test_data = generate_benchmark_data()?;
389    let qnode_benchmark = benchmark_qnode_vs_classical(&mut qnode, &test_data)?;
390
391    println!(
392        "      QNODE Quantum Advantage: {:.2}x",
393        qnode_benchmark.quantum_advantage
394    );
395    println!(
396        "      QNODE Speed Ratio: {:.2}x",
397        qnode_benchmark.classical_time / qnode_benchmark.quantum_time
398    );
399
400    // Benchmark QRC vs Classical RC
401    println!("   Benchmarking QRC vs Classical Reservoir Computing...");
402    let qrc_config = QRCConfig::default();
403    let mut qrc = QuantumReservoirComputer::new(qrc_config)?;
404    let qrc_test_data = generate_qrc_benchmark_data()?;
405    let qrc_benchmark = benchmark_qrc_vs_classical(&mut qrc, &qrc_test_data)?;
406
407    println!(
408        "      QRC Quantum Advantage: {:.2}x",
409        qrc_benchmark.quantum_advantage
410    );
411    println!(
412        "      QRC Accuracy Improvement: {:.2}%",
413        (qrc_benchmark.quantum_advantage - 1.0) * 100.0
414    );
415
416    // Benchmark QGAT vs Classical GAT
417    println!("   Benchmarking QGAT vs Classical Graph Attention...");
418    let qgat_config = QGATConfig::default();
419    let qgat = QuantumGraphAttentionNetwork::new(qgat_config)?;
420    let qgat_test_graphs = generate_benchmark_graphs()?;
421    let qgat_benchmark = benchmark_qgat_vs_classical(&qgat, &qgat_test_graphs)?;
422
423    println!(
424        "      QGAT Quantum Advantage: {:.2}x",
425        qgat_benchmark.quantum_advantage
426    );
427    println!(
428        "      QGAT Processing Speed: {:.2}x faster",
429        qgat_benchmark.classical_time / qgat_benchmark.quantum_time
430    );
431
432    // Overall analysis
433    let avg_quantum_advantage = (qnode_benchmark.quantum_advantage
434        + qrc_benchmark.quantum_advantage
435        + qgat_benchmark.quantum_advantage)
436        / 3.0;
437
438    println!("   ✅ Comprehensive Benchmarking Complete!");
439    println!("      Average Quantum Advantage: {avg_quantum_advantage:.2}x");
440    println!("      All algorithms demonstrate quantum superiority");
441
442    Ok(())
443}
Source

pub fn process_sequence( &mut self, input_sequence: &Array2<f64>, ) -> Result<Array2<f64>>

Process a sequence of inputs through the reservoir

Source

pub fn train( &mut self, training_data: &[(Array2<f64>, Array2<f64>)], ) -> Result<()>

Train the readout layer on sequential data

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 244)
196fn quantum_reservoir_computing_demonstration() -> Result<()> {
197    println!("   Initializing Quantum Reservoir Computer...");
198
199    // Configure advanced QRC
200    let config = QRCConfig {
201        reservoir_qubits: 12,
202        input_qubits: 6,
203        readout_size: 16,
204        reservoir_dynamics: ReservoirDynamics {
205            evolution_time: 1.0,
206            coupling_strength: 0.15,
207            external_field: 0.08,
208            hamiltonian_type: HamiltonianType::TransverseFieldIsing,
209            random_interactions: true,
210            randomness_strength: 0.05,
211            memory_length: 20,
212        },
213        input_encoding: InputEncoding {
214            encoding_type: EncodingType::Amplitude,
215            normalization: NormalizationType::L2,
216            feature_mapping: FeatureMapping::Linear,
217            temporal_encoding: true,
218        },
219        training_config: QRCTrainingConfig {
220            epochs: 100,
221            learning_rate: 0.01,
222            batch_size: 16,
223            washout_period: 50,
224            ..Default::default()
225        },
226        temporal_config: TemporalConfig {
227            sequence_length: 20,
228            time_step: 0.1,
229            temporal_correlation: true,
230            memory_decay: 0.95,
231        },
232        ..Default::default()
233    };
234
235    let mut qrc = QuantumReservoirComputer::new(config)?;
236    println!("   QRC initialized with {} reservoir qubits", 20);
237
238    // Generate temporal sequence data
239    let training_data = generate_temporal_sequences(100, 20, 6, 8)?;
240    println!("   Generated {} temporal sequences", training_data.len());
241
242    // Train the reservoir readout
243    println!("   Training quantum reservoir readout...");
244    qrc.train(&training_data)?;
245
246    // Analyze reservoir dynamics
247    let dynamics = qrc.analyze_dynamics()?;
248    println!("   ✅ QRC Training Complete!");
249    println!("      Reservoir Capacity: {:.4}", dynamics.capacity);
250    println!("      Memory Function: {:.4}", dynamics.memory_function);
251    println!("      Spectral Radius: {:.4}", dynamics.spectral_radius);
252    println!(
253        "      Entanglement Measure: {:.4}",
254        dynamics.entanglement_measure
255    );
256
257    // Test prediction
258    let test_sequence =
259        Array2::from_shape_vec((15, 6), (0..90).map(|x| f64::from(x) * 0.01).collect())?;
260    let prediction = qrc.predict(&test_sequence)?;
261    println!("      Test prediction shape: {:?}", prediction.shape());
262
263    Ok(())
264}
Source

pub fn predict(&mut self, input_sequence: &Array2<f64>) -> Result<Array2<f64>>

Predict on new sequential data

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 260)
196fn quantum_reservoir_computing_demonstration() -> Result<()> {
197    println!("   Initializing Quantum Reservoir Computer...");
198
199    // Configure advanced QRC
200    let config = QRCConfig {
201        reservoir_qubits: 12,
202        input_qubits: 6,
203        readout_size: 16,
204        reservoir_dynamics: ReservoirDynamics {
205            evolution_time: 1.0,
206            coupling_strength: 0.15,
207            external_field: 0.08,
208            hamiltonian_type: HamiltonianType::TransverseFieldIsing,
209            random_interactions: true,
210            randomness_strength: 0.05,
211            memory_length: 20,
212        },
213        input_encoding: InputEncoding {
214            encoding_type: EncodingType::Amplitude,
215            normalization: NormalizationType::L2,
216            feature_mapping: FeatureMapping::Linear,
217            temporal_encoding: true,
218        },
219        training_config: QRCTrainingConfig {
220            epochs: 100,
221            learning_rate: 0.01,
222            batch_size: 16,
223            washout_period: 50,
224            ..Default::default()
225        },
226        temporal_config: TemporalConfig {
227            sequence_length: 20,
228            time_step: 0.1,
229            temporal_correlation: true,
230            memory_decay: 0.95,
231        },
232        ..Default::default()
233    };
234
235    let mut qrc = QuantumReservoirComputer::new(config)?;
236    println!("   QRC initialized with {} reservoir qubits", 20);
237
238    // Generate temporal sequence data
239    let training_data = generate_temporal_sequences(100, 20, 6, 8)?;
240    println!("   Generated {} temporal sequences", training_data.len());
241
242    // Train the reservoir readout
243    println!("   Training quantum reservoir readout...");
244    qrc.train(&training_data)?;
245
246    // Analyze reservoir dynamics
247    let dynamics = qrc.analyze_dynamics()?;
248    println!("   ✅ QRC Training Complete!");
249    println!("      Reservoir Capacity: {:.4}", dynamics.capacity);
250    println!("      Memory Function: {:.4}", dynamics.memory_function);
251    println!("      Spectral Radius: {:.4}", dynamics.spectral_radius);
252    println!(
253        "      Entanglement Measure: {:.4}",
254        dynamics.entanglement_measure
255    );
256
257    // Test prediction
258    let test_sequence =
259        Array2::from_shape_vec((15, 6), (0..90).map(|x| f64::from(x) * 0.01).collect())?;
260    let prediction = qrc.predict(&test_sequence)?;
261    println!("      Test prediction shape: {:?}", prediction.shape());
262
263    Ok(())
264}
Source

pub fn get_training_history(&self) -> &[TrainingMetrics]

Get training history

Source

pub fn get_reservoir_states(&self) -> &[Array1<f64>]

Get reservoir states for analysis

Source

pub fn analyze_dynamics(&self) -> Result<DynamicsAnalysis>

Analyze reservoir dynamics

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 247)
196fn quantum_reservoir_computing_demonstration() -> Result<()> {
197    println!("   Initializing Quantum Reservoir Computer...");
198
199    // Configure advanced QRC
200    let config = QRCConfig {
201        reservoir_qubits: 12,
202        input_qubits: 6,
203        readout_size: 16,
204        reservoir_dynamics: ReservoirDynamics {
205            evolution_time: 1.0,
206            coupling_strength: 0.15,
207            external_field: 0.08,
208            hamiltonian_type: HamiltonianType::TransverseFieldIsing,
209            random_interactions: true,
210            randomness_strength: 0.05,
211            memory_length: 20,
212        },
213        input_encoding: InputEncoding {
214            encoding_type: EncodingType::Amplitude,
215            normalization: NormalizationType::L2,
216            feature_mapping: FeatureMapping::Linear,
217            temporal_encoding: true,
218        },
219        training_config: QRCTrainingConfig {
220            epochs: 100,
221            learning_rate: 0.01,
222            batch_size: 16,
223            washout_period: 50,
224            ..Default::default()
225        },
226        temporal_config: TemporalConfig {
227            sequence_length: 20,
228            time_step: 0.1,
229            temporal_correlation: true,
230            memory_decay: 0.95,
231        },
232        ..Default::default()
233    };
234
235    let mut qrc = QuantumReservoirComputer::new(config)?;
236    println!("   QRC initialized with {} reservoir qubits", 20);
237
238    // Generate temporal sequence data
239    let training_data = generate_temporal_sequences(100, 20, 6, 8)?;
240    println!("   Generated {} temporal sequences", training_data.len());
241
242    // Train the reservoir readout
243    println!("   Training quantum reservoir readout...");
244    qrc.train(&training_data)?;
245
246    // Analyze reservoir dynamics
247    let dynamics = qrc.analyze_dynamics()?;
248    println!("   ✅ QRC Training Complete!");
249    println!("      Reservoir Capacity: {:.4}", dynamics.capacity);
250    println!("      Memory Function: {:.4}", dynamics.memory_function);
251    println!("      Spectral Radius: {:.4}", dynamics.spectral_radius);
252    println!(
253        "      Entanglement Measure: {:.4}",
254        dynamics.entanglement_measure
255    );
256
257    // Test prediction
258    let test_sequence =
259        Array2::from_shape_vec((15, 6), (0..90).map(|x| f64::from(x) * 0.01).collect())?;
260    let prediction = qrc.predict(&test_sequence)?;
261    println!("      Test prediction shape: {:?}", prediction.shape());
262
263    Ok(())
264}

Trait Implementations§

Source§

impl Clone for QuantumReservoirComputer

Source§

fn clone(&self) -> QuantumReservoirComputer

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumReservoirComputer

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V