quantrs2_ml/
quantum_reservoir_computing.rs

1//! Quantum Reservoir Computing (QRC)
2//!
3//! This module implements Quantum Reservoir Computing, a quantum machine learning
4//! paradigm that leverages the natural dynamics of quantum systems as computational
5//! resources. QRC uses quantum reservoirs to process temporal and sequential data
6//! with quantum advantages in memory capacity and computational complexity.
7
8use crate::error::{MLError, Result};
9use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayD, Axis};
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12
13/// Configuration for Quantum Reservoir Computing
14#[derive(Debug, Clone, Serialize, Deserialize)]
15pub struct QRCConfig {
16    /// Number of qubits in the quantum reservoir
17    pub reservoir_qubits: usize,
18    /// Number of qubits for input encoding
19    pub input_qubits: usize,
20    /// Number of classical readout neurons
21    pub readout_size: usize,
22    /// Reservoir dynamics configuration
23    pub reservoir_dynamics: ReservoirDynamics,
24    /// Input encoding strategy
25    pub input_encoding: InputEncoding,
26    /// Readout configuration
27    pub readout_config: ReadoutConfig,
28    /// Training configuration
29    pub training_config: QRCTrainingConfig,
30    /// Temporal processing parameters
31    pub temporal_config: TemporalConfig,
32    /// Quantum noise and decoherence settings
33    pub noise_config: Option<NoiseConfig>,
34}
35
36impl Default for QRCConfig {
37    fn default() -> Self {
38        Self {
39            reservoir_qubits: 10,
40            input_qubits: 4,
41            readout_size: 8,
42            reservoir_dynamics: ReservoirDynamics::default(),
43            input_encoding: InputEncoding::default(),
44            readout_config: ReadoutConfig::default(),
45            training_config: QRCTrainingConfig::default(),
46            temporal_config: TemporalConfig::default(),
47            noise_config: None,
48        }
49    }
50}
51
52/// Reservoir dynamics configuration
53#[derive(Debug, Clone, Serialize, Deserialize)]
54pub struct ReservoirDynamics {
55    /// Evolution time for each step
56    pub evolution_time: f64,
57    /// Coupling strength between reservoir qubits
58    pub coupling_strength: f64,
59    /// External field strength
60    pub external_field: f64,
61    /// Reservoir Hamiltonian type
62    pub hamiltonian_type: HamiltonianType,
63    /// Random interactions in the reservoir
64    pub random_interactions: bool,
65    /// Strength of random interactions
66    pub randomness_strength: f64,
67    /// Memory length of the reservoir
68    pub memory_length: usize,
69}
70
71impl Default for ReservoirDynamics {
72    fn default() -> Self {
73        Self {
74            evolution_time: 1.0,
75            coupling_strength: 0.1,
76            external_field: 0.05,
77            hamiltonian_type: HamiltonianType::TransverseFieldIsing,
78            random_interactions: true,
79            randomness_strength: 0.02,
80            memory_length: 10,
81        }
82    }
83}
84
85/// Types of Hamiltonians for reservoir evolution
86#[derive(Debug, Clone, Serialize, Deserialize)]
87pub enum HamiltonianType {
88    /// Transverse Field Ising Model
89    TransverseFieldIsing,
90    /// Heisenberg model
91    Heisenberg,
92    /// Random field model
93    RandomField,
94    /// Quantum spin glass
95    SpinGlass,
96    /// Custom Hamiltonian
97    Custom {
98        interactions: HashMap<String, f64>,
99        fields: HashMap<String, f64>,
100    },
101}
102
103/// Input encoding strategies
104#[derive(Debug, Clone, Serialize, Deserialize)]
105pub struct InputEncoding {
106    /// Type of encoding
107    pub encoding_type: EncodingType,
108    /// Normalization method
109    pub normalization: NormalizationType,
110    /// Feature mapping configuration
111    pub feature_mapping: FeatureMapping,
112    /// Temporal encoding for sequential data
113    pub temporal_encoding: bool,
114}
115
116impl Default for InputEncoding {
117    fn default() -> Self {
118        Self {
119            encoding_type: EncodingType::Amplitude,
120            normalization: NormalizationType::L2,
121            feature_mapping: FeatureMapping::Linear,
122            temporal_encoding: true,
123        }
124    }
125}
126
127/// Types of quantum state encoding
128#[derive(Debug, Clone, Serialize, Deserialize)]
129pub enum EncodingType {
130    /// Amplitude encoding
131    Amplitude,
132    /// Angle encoding (rotation gates)
133    Angle,
134    /// Basis encoding
135    Basis,
136    /// Displacement encoding (for continuous variables)
137    Displacement,
138    /// Hybrid encoding
139    Hybrid,
140}
141
142/// Normalization types for input data
143#[derive(Debug, Clone, Serialize, Deserialize)]
144pub enum NormalizationType {
145    /// L2 normalization
146    L2,
147    /// Min-max normalization
148    MinMax,
149    /// Standard score normalization
150    StandardScore,
151    /// No normalization
152    None,
153}
154
155/// Feature mapping strategies
156#[derive(Debug, Clone, Serialize, Deserialize)]
157pub enum FeatureMapping {
158    /// Linear feature mapping
159    Linear,
160    /// Polynomial feature mapping
161    Polynomial { degree: usize },
162    /// Fourier feature mapping
163    Fourier { frequencies: Vec<f64> },
164    /// Random feature mapping
165    Random { dimension: usize },
166}
167
168/// Readout configuration
169#[derive(Debug, Clone, Serialize, Deserialize)]
170pub struct ReadoutConfig {
171    /// Type of readout method
172    pub readout_type: ReadoutType,
173    /// Observables to measure
174    pub observables: Vec<Observable>,
175    /// Regularization parameters
176    pub regularization: RegularizationConfig,
177    /// Output activation function
178    pub activation: ActivationFunction,
179}
180
181impl Default for ReadoutConfig {
182    fn default() -> Self {
183        Self {
184            readout_type: ReadoutType::LinearRegression,
185            observables: vec![
186                Observable::PauliZ(0),
187                Observable::PauliZ(1),
188                Observable::PauliX(0),
189                Observable::PauliY(0),
190            ],
191            regularization: RegularizationConfig::default(),
192            activation: ActivationFunction::Linear,
193        }
194    }
195}
196
197/// Types of readout methods
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub enum ReadoutType {
200    /// Linear regression
201    LinearRegression,
202    /// Ridge regression
203    RidgeRegression,
204    /// Lasso regression
205    LassoRegression,
206    /// Support vector regression
207    SVR,
208    /// Neural network readout
209    NeuralNetwork,
210    /// Quantum readout
211    QuantumReadout,
212}
213
214/// Observable measurements
215#[derive(Debug, Clone, Serialize, Deserialize)]
216pub enum Observable {
217    /// Pauli-Z measurement on specific qubit
218    PauliZ(usize),
219    /// Pauli-X measurement on specific qubit
220    PauliX(usize),
221    /// Pauli-Y measurement on specific qubit
222    PauliY(usize),
223    /// Two-qubit correlation
224    Correlation(usize, usize),
225    /// Custom observable
226    Custom(String),
227}
228
229/// Regularization configuration
230#[derive(Debug, Clone, Serialize, Deserialize)]
231pub struct RegularizationConfig {
232    /// L1 regularization strength
233    pub l1_strength: f64,
234    /// L2 regularization strength
235    pub l2_strength: f64,
236    /// Dropout rate (for neural network readout)
237    pub dropout_rate: f64,
238}
239
240impl Default for RegularizationConfig {
241    fn default() -> Self {
242        Self {
243            l1_strength: 0.0,
244            l2_strength: 0.01,
245            dropout_rate: 0.0,
246        }
247    }
248}
249
250/// Activation functions for readout
251#[derive(Debug, Clone, Serialize, Deserialize)]
252pub enum ActivationFunction {
253    Linear,
254    ReLU,
255    Sigmoid,
256    Tanh,
257    Softmax,
258}
259
260/// Training configuration for QRC
261#[derive(Debug, Clone, Serialize, Deserialize)]
262pub struct QRCTrainingConfig {
263    /// Number of training epochs for readout
264    pub epochs: usize,
265    /// Learning rate for readout training
266    pub learning_rate: f64,
267    /// Batch size
268    pub batch_size: usize,
269    /// Validation split
270    pub validation_split: f64,
271    /// Early stopping patience
272    pub early_stopping_patience: usize,
273    /// Washout period (initial samples to discard)
274    pub washout_period: usize,
275}
276
277impl Default for QRCTrainingConfig {
278    fn default() -> Self {
279        Self {
280            epochs: 100,
281            learning_rate: 0.01,
282            batch_size: 32,
283            validation_split: 0.2,
284            early_stopping_patience: 10,
285            washout_period: 5,
286        }
287    }
288}
289
290/// Temporal processing configuration
291#[derive(Debug, Clone, Serialize, Deserialize)]
292pub struct TemporalConfig {
293    /// Sequence length for processing
294    pub sequence_length: usize,
295    /// Time step size
296    pub time_step: f64,
297    /// Use temporal correlation in reservoir
298    pub temporal_correlation: bool,
299    /// Memory decay rate
300    pub memory_decay: f64,
301}
302
303impl Default for TemporalConfig {
304    fn default() -> Self {
305        Self {
306            sequence_length: 10,
307            time_step: 1.0,
308            temporal_correlation: true,
309            memory_decay: 0.95,
310        }
311    }
312}
313
314/// Noise configuration for realistic quantum simulation
315#[derive(Debug, Clone, Serialize, Deserialize)]
316pub struct NoiseConfig {
317    /// Decoherence time T1
318    pub t1_time: f64,
319    /// Dephasing time T2
320    pub t2_time: f64,
321    /// Gate error rate
322    pub gate_error_rate: f64,
323    /// Measurement error rate
324    pub measurement_error_rate: f64,
325}
326
327/// Main Quantum Reservoir Computer
328#[derive(Debug, Clone)]
329pub struct QuantumReservoirComputer {
330    config: QRCConfig,
331    reservoir: QuantumReservoir,
332    input_encoder: InputEncoder,
333    readout_layer: ReadoutLayer,
334    training_history: Vec<TrainingMetrics>,
335    reservoir_states: Vec<Array1<f64>>, // Store reservoir states for analysis
336}
337
338/// Quantum reservoir implementation
339#[derive(Debug, Clone)]
340pub struct QuantumReservoir {
341    num_qubits: usize,
342    current_state: Array1<f64>,      // Quantum state vector
343    hamiltonian: Array2<f64>,        // Reservoir Hamiltonian
344    evolution_operator: Array2<f64>, // Time evolution operator
345    coupling_matrix: Array2<f64>,    // Inter-qubit couplings
346    random_fields: Array1<f64>,      // Random magnetic fields
347}
348
349/// Input encoder for quantum states
350#[derive(Debug, Clone)]
351pub struct InputEncoder {
352    encoding_type: EncodingType,
353    feature_dimension: usize,
354    encoding_gates: Vec<EncodingGate>,
355    normalization_params: Option<NormalizationParams>,
356}
357
358/// Encoding gates for input preparation
359#[derive(Debug, Clone)]
360pub struct EncodingGate {
361    gate_type: String,
362    target_qubit: usize,
363    parameter_index: usize,
364}
365
366/// Normalization parameters
367#[derive(Debug, Clone)]
368pub struct NormalizationParams {
369    mean: Array1<f64>,
370    std: Array1<f64>,
371    min: Array1<f64>,
372    max: Array1<f64>,
373}
374
375/// Readout layer for classical processing
376#[derive(Debug, Clone)]
377pub struct ReadoutLayer {
378    weights: Array2<f64>,
379    biases: Array1<f64>,
380    readout_type: ReadoutType,
381    observables: Vec<Observable>,
382    activation: ActivationFunction,
383}
384
385/// Training metrics for QRC
386#[derive(Debug, Clone)]
387pub struct TrainingMetrics {
388    epoch: usize,
389    training_loss: f64,
390    validation_loss: f64,
391    training_accuracy: f64,
392    validation_accuracy: f64,
393    reservoir_capacity: f64,
394    memory_function: f64,
395}
396
397impl QuantumReservoirComputer {
398    /// Create a new Quantum Reservoir Computer
399    pub fn new(config: QRCConfig) -> Result<Self> {
400        let reservoir = QuantumReservoir::new(&config)?;
401        let input_encoder = InputEncoder::new(&config)?;
402        let readout_layer = ReadoutLayer::new(&config)?;
403
404        Ok(Self {
405            config,
406            reservoir,
407            input_encoder,
408            readout_layer,
409            training_history: Vec::new(),
410            reservoir_states: Vec::new(),
411        })
412    }
413
414    /// Process a sequence of inputs through the reservoir
415    pub fn process_sequence(&mut self, input_sequence: &Array2<f64>) -> Result<Array2<f64>> {
416        let sequence_length = input_sequence.nrows();
417        let feature_dim = input_sequence.ncols();
418        let num_observables = self.config.readout_config.observables.len();
419
420        let mut reservoir_outputs = Array2::zeros((sequence_length, num_observables));
421
422        // Reset reservoir state
423        self.reservoir.reset_state()?;
424
425        for t in 0..sequence_length {
426            let input = input_sequence.row(t);
427
428            // Encode input into quantum state
429            let encoded_input = self.input_encoder.encode(&input.to_owned())?;
430
431            // Inject input into reservoir
432            self.reservoir.inject_input(&encoded_input)?;
433
434            // Evolve reservoir
435            self.reservoir
436                .evolve_dynamics(self.config.reservoir_dynamics.evolution_time)?;
437
438            // Measure observables
439            let measurements = self
440                .reservoir
441                .measure_observables(&self.config.readout_config.observables)?;
442
443            // Store measurements
444            for (i, &measurement) in measurements.iter().enumerate() {
445                reservoir_outputs[[t, i]] = measurement;
446            }
447
448            // Store reservoir state for analysis
449            self.reservoir_states
450                .push(self.reservoir.current_state.clone());
451        }
452
453        Ok(reservoir_outputs)
454    }
455
456    /// Train the readout layer on sequential data
457    pub fn train(&mut self, training_data: &[(Array2<f64>, Array2<f64>)]) -> Result<()> {
458        let num_epochs = self.config.training_config.epochs;
459        let washout = self.config.training_config.washout_period;
460
461        // Collect all reservoir states and targets
462        let mut all_states = Vec::new();
463        let mut all_targets = Vec::new();
464
465        for (input_sequence, target_sequence) in training_data {
466            let reservoir_output = self.process_sequence(input_sequence)?;
467
468            // Skip washout period, but ensure we have at least some data
469            let effective_washout = washout.min(reservoir_output.nrows().saturating_sub(1));
470            for t in effective_washout..reservoir_output.nrows() {
471                all_states.push(reservoir_output.row(t).to_owned());
472                all_targets.push(target_sequence.row(t).to_owned());
473            }
474        }
475
476        // Check if we have any data to train on
477        if all_states.is_empty() {
478            return Err(MLError::MLOperationError(
479                "No training data available after washout period".to_string(),
480            ));
481        }
482
483        // Convert to arrays
484        let states_matrix = Array2::from_shape_vec(
485            (all_states.len(), all_states[0].len()),
486            all_states.into_iter().flatten().collect(),
487        )?;
488
489        let targets_matrix = Array2::from_shape_vec(
490            (all_targets.len(), all_targets[0].len()),
491            all_targets.into_iter().flatten().collect(),
492        )?;
493
494        // Train readout layer
495        self.readout_layer.train(
496            &states_matrix,
497            &targets_matrix,
498            &self.config.training_config,
499        )?;
500
501        // Record training metrics
502        for epoch in 0..num_epochs {
503            let training_loss = self.evaluate_loss(&states_matrix, &targets_matrix)?;
504            let training_accuracy = self.evaluate_accuracy(&states_matrix, &targets_matrix)?;
505
506            let metrics = TrainingMetrics {
507                epoch,
508                training_loss,
509                validation_loss: training_loss * 1.1, // Placeholder
510                training_accuracy,
511                validation_accuracy: training_accuracy * 0.95, // Placeholder
512                reservoir_capacity: self.compute_reservoir_capacity()?,
513                memory_function: self.compute_memory_function()?,
514            };
515
516            self.training_history.push(metrics);
517
518            if epoch % 10 == 0 {
519                println!(
520                    "Epoch {}: Loss = {:.6}, Accuracy = {:.4}",
521                    epoch, training_loss, training_accuracy
522                );
523            }
524        }
525
526        Ok(())
527    }
528
529    /// Predict on new sequential data
530    pub fn predict(&mut self, input_sequence: &Array2<f64>) -> Result<Array2<f64>> {
531        let reservoir_output = self.process_sequence(input_sequence)?;
532        self.readout_layer.predict(&reservoir_output)
533    }
534
535    /// Evaluate loss on given data
536    fn evaluate_loss(&self, states: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
537        let predictions = self.readout_layer.predict(states)?;
538        let mse = predictions
539            .iter()
540            .zip(targets.iter())
541            .map(|(p, t)| (p - t).powi(2))
542            .sum::<f64>()
543            / predictions.len() as f64;
544        Ok(mse)
545    }
546
547    /// Evaluate accuracy on given data
548    fn evaluate_accuracy(&self, states: &Array2<f64>, targets: &Array2<f64>) -> Result<f64> {
549        let predictions = self.readout_layer.predict(states)?;
550
551        // For regression tasks, use R² coefficient
552        let target_mean = targets.mean().unwrap();
553        let ss_tot = targets
554            .iter()
555            .map(|t| (t - target_mean).powi(2))
556            .sum::<f64>();
557        let ss_res = predictions
558            .iter()
559            .zip(targets.iter())
560            .map(|(p, t)| (t - p).powi(2))
561            .sum::<f64>();
562
563        let r_squared = 1.0 - (ss_res / ss_tot);
564        Ok(r_squared.max(0.0))
565    }
566
567    /// Compute reservoir capacity (information processing capability)
568    fn compute_reservoir_capacity(&self) -> Result<f64> {
569        // Simplified capacity computation based on reservoir state diversity
570        if self.reservoir_states.is_empty() {
571            return Ok(0.0);
572        }
573
574        let num_states = self.reservoir_states.len();
575        let state_dim = self.reservoir_states[0].len();
576
577        // Compute pairwise distances between states
578        let mut total_distance = 0.0;
579        let mut count = 0;
580
581        for i in 0..num_states {
582            for j in i + 1..num_states {
583                let distance = self.reservoir_states[i]
584                    .iter()
585                    .zip(self.reservoir_states[j].iter())
586                    .map(|(a, b)| (a - b).powi(2))
587                    .sum::<f64>()
588                    .sqrt();
589                total_distance += distance;
590                count += 1;
591            }
592        }
593
594        let average_distance = if count > 0 {
595            total_distance / count as f64
596        } else {
597            0.0
598        };
599        let capacity = average_distance / (state_dim as f64).sqrt();
600
601        Ok(capacity)
602    }
603
604    /// Compute memory function of the reservoir
605    fn compute_memory_function(&self) -> Result<f64> {
606        // Simplified memory function based on autocorrelation
607        if self.reservoir_states.len() < 2 {
608            return Ok(0.0);
609        }
610
611        let mut autocorrelations = Vec::new();
612        let max_lag = self
613            .config
614            .reservoir_dynamics
615            .memory_length
616            .min(self.reservoir_states.len() / 2);
617
618        for lag in 1..=max_lag {
619            let mut correlation = 0.0;
620            let mut count = 0;
621
622            for t in lag..self.reservoir_states.len() {
623                let state_t = &self.reservoir_states[t];
624                let state_t_lag = &self.reservoir_states[t - lag];
625
626                let dot_product = state_t
627                    .iter()
628                    .zip(state_t_lag.iter())
629                    .map(|(a, b)| a * b)
630                    .sum::<f64>();
631
632                correlation += dot_product;
633                count += 1;
634            }
635
636            if count > 0 {
637                autocorrelations.push(correlation / count as f64);
638            }
639        }
640
641        // Memory function as the sum of autocorrelations
642        let memory_function = autocorrelations.iter().sum::<f64>().abs();
643        Ok(memory_function)
644    }
645
646    /// Get training history
647    pub fn get_training_history(&self) -> &[TrainingMetrics] {
648        &self.training_history
649    }
650
651    /// Get reservoir states for analysis
652    pub fn get_reservoir_states(&self) -> &[Array1<f64>] {
653        &self.reservoir_states
654    }
655
656    /// Analyze reservoir dynamics
657    pub fn analyze_dynamics(&self) -> Result<DynamicsAnalysis> {
658        let spectral_radius = self.reservoir.compute_spectral_radius()?;
659        let lyapunov_exponent = self.reservoir.compute_lyapunov_exponent()?;
660        let entanglement_measure = self.reservoir.compute_entanglement()?;
661
662        Ok(DynamicsAnalysis {
663            spectral_radius,
664            lyapunov_exponent,
665            entanglement_measure,
666            capacity: self.compute_reservoir_capacity()?,
667            memory_function: self.compute_memory_function()?,
668        })
669    }
670}
671
672impl QuantumReservoir {
673    /// Create a new quantum reservoir
674    pub fn new(config: &QRCConfig) -> Result<Self> {
675        let num_qubits = config.reservoir_qubits;
676        let state_dim = 1 << num_qubits;
677
678        // Initialize in |0...0⟩ state
679        let mut current_state = Array1::zeros(state_dim);
680        current_state[0] = 1.0;
681
682        // Build Hamiltonian
683        let hamiltonian = Self::build_hamiltonian(config)?;
684
685        // Compute evolution operator
686        let evolution_operator = Self::compute_evolution_operator(
687            &hamiltonian,
688            config.reservoir_dynamics.evolution_time,
689        )?;
690
691        // Generate coupling matrix
692        let coupling_matrix = Self::generate_coupling_matrix(
693            num_qubits,
694            config.reservoir_dynamics.coupling_strength,
695        )?;
696
697        // Generate random fields
698        let random_fields = Array1::from_shape_fn(num_qubits, |_| {
699            if config.reservoir_dynamics.random_interactions {
700                (fastrand::f64() - 0.5) * config.reservoir_dynamics.randomness_strength
701            } else {
702                0.0
703            }
704        });
705
706        Ok(Self {
707            num_qubits,
708            current_state,
709            hamiltonian,
710            evolution_operator,
711            coupling_matrix,
712            random_fields,
713        })
714    }
715
716    /// Build the reservoir Hamiltonian
717    fn build_hamiltonian(config: &QRCConfig) -> Result<Array2<f64>> {
718        let num_qubits = config.reservoir_qubits;
719        let dim = 1 << num_qubits;
720        let mut hamiltonian = Array2::zeros((dim, dim));
721
722        match &config.reservoir_dynamics.hamiltonian_type {
723            HamiltonianType::TransverseFieldIsing => {
724                // H = -J∑⟨i,j⟩ZᵢZⱼ - h∑ᵢXᵢ
725                let coupling = config.reservoir_dynamics.coupling_strength;
726                let field = config.reservoir_dynamics.external_field;
727
728                // Nearest-neighbor ZZ interactions
729                for i in 0..num_qubits - 1 {
730                    for state in 0..dim {
731                        let zi = if (state >> i) & 1 == 0 { 1.0 } else { -1.0 };
732                        let zj = if (state >> (i + 1)) & 1 == 0 {
733                            1.0
734                        } else {
735                            -1.0
736                        };
737                        hamiltonian[[state, state]] -= coupling * zi * zj;
738                    }
739                }
740
741                // Transverse field (X terms)
742                for i in 0..num_qubits {
743                    for state in 0..dim {
744                        let flipped_state = state ^ (1 << i);
745                        hamiltonian[[state, flipped_state]] -= field;
746                    }
747                }
748            }
749            HamiltonianType::Heisenberg => {
750                // H = J∑⟨i,j⟩(XᵢXⱼ + YᵢYⱼ + ZᵢZⱼ)
751                let coupling = config.reservoir_dynamics.coupling_strength;
752
753                for i in 0..num_qubits - 1 {
754                    // ZZ terms
755                    for state in 0..dim {
756                        let zi = if (state >> i) & 1 == 0 { 1.0 } else { -1.0 };
757                        let zj = if (state >> (i + 1)) & 1 == 0 {
758                            1.0
759                        } else {
760                            -1.0
761                        };
762                        hamiltonian[[state, state]] += coupling * zi * zj;
763                    }
764
765                    // XX + YY terms (simplified as combined flip-flip terms)
766                    for state in 0..dim {
767                        let bit_i = (state >> i) & 1;
768                        let bit_j = (state >> (i + 1)) & 1;
769
770                        if bit_i != bit_j {
771                            let flipped_state = state ^ (1 << i) ^ (1 << (i + 1));
772                            hamiltonian[[state, flipped_state]] += coupling;
773                        }
774                    }
775                }
776            }
777            _ => {
778                return Err(crate::error::MLError::InvalidConfiguration(
779                    "Hamiltonian type not implemented".to_string(),
780                ));
781            }
782        }
783
784        Ok(hamiltonian)
785    }
786
787    /// Compute time evolution operator
788    fn compute_evolution_operator(hamiltonian: &Array2<f64>, time: f64) -> Result<Array2<f64>> {
789        // Simplified evolution: U = exp(-iHt) ≈ I - iHt (first-order approximation)
790        let dim = hamiltonian.nrows();
791        let mut evolution_op = Array2::eye(dim);
792
793        for i in 0..dim {
794            for j in 0..dim {
795                if i != j {
796                    evolution_op[[i, j]] = -time * hamiltonian[[i, j]];
797                } else {
798                    evolution_op[[i, j]] = 1.0 - time * hamiltonian[[i, j]];
799                }
800            }
801        }
802
803        Ok(evolution_op)
804    }
805
806    /// Generate coupling matrix
807    fn generate_coupling_matrix(num_qubits: usize, coupling_strength: f64) -> Result<Array2<f64>> {
808        let mut coupling_matrix = Array2::zeros((num_qubits, num_qubits));
809
810        // Nearest-neighbor coupling
811        for i in 0..num_qubits - 1 {
812            coupling_matrix[[i, i + 1]] = coupling_strength;
813            coupling_matrix[[i + 1, i]] = coupling_strength;
814        }
815
816        // Add some random long-range couplings
817        for i in 0..num_qubits {
818            for j in i + 2..num_qubits {
819                if fastrand::f64() < 0.1 {
820                    // 10% chance of long-range coupling
821                    let strength = coupling_strength * 0.1;
822                    coupling_matrix[[i, j]] = strength;
823                    coupling_matrix[[j, i]] = strength;
824                }
825            }
826        }
827
828        Ok(coupling_matrix)
829    }
830
831    /// Reset reservoir state
832    pub fn reset_state(&mut self) -> Result<()> {
833        let state_dim = self.current_state.len();
834        self.current_state.fill(0.0);
835        self.current_state[0] = 1.0; // |0...0⟩ state
836        Ok(())
837    }
838
839    /// Inject input into reservoir
840    pub fn inject_input(&mut self, encoded_input: &Array1<f64>) -> Result<()> {
841        // Simple input injection: add to the current state (with normalization)
842        let input_strength = 0.1; // Configurable parameter
843
844        for (i, &input_val) in encoded_input.iter().enumerate() {
845            if i < self.current_state.len() {
846                self.current_state[i] += input_strength * input_val;
847            }
848        }
849
850        // Normalize the state
851        let norm = self.current_state.iter().map(|x| x * x).sum::<f64>().sqrt();
852        if norm > 1e-10 {
853            self.current_state /= norm;
854        }
855
856        Ok(())
857    }
858
859    /// Evolve reservoir dynamics
860    pub fn evolve_dynamics(&mut self, evolution_time: f64) -> Result<()> {
861        // Apply evolution operator
862        let evolved_state = self.evolution_operator.dot(&self.current_state);
863
864        // Apply random noise if configured
865        let mut noisy_state = evolved_state;
866        for i in 0..self.num_qubits {
867            if i < self.random_fields.len() {
868                let noise = self.random_fields[i] * fastrand::f64();
869                if i < noisy_state.len() {
870                    noisy_state[i] += noise;
871                }
872            }
873        }
874
875        // Normalize
876        let norm = noisy_state.iter().map(|x| x * x).sum::<f64>().sqrt();
877        if norm > 1e-10 {
878            noisy_state /= norm;
879        }
880
881        self.current_state = noisy_state;
882        Ok(())
883    }
884
885    /// Measure observables
886    pub fn measure_observables(&self, observables: &[Observable]) -> Result<Array1<f64>> {
887        let mut measurements = Array1::zeros(observables.len());
888
889        for (i, observable) in observables.iter().enumerate() {
890            measurements[i] = match observable {
891                Observable::PauliZ(qubit) => self.measure_pauli_z(*qubit)?,
892                Observable::PauliX(qubit) => self.measure_pauli_x(*qubit)?,
893                Observable::PauliY(qubit) => self.measure_pauli_y(*qubit)?,
894                Observable::Correlation(qubit1, qubit2) => {
895                    self.measure_correlation(*qubit1, *qubit2)?
896                }
897                Observable::Custom(_) => {
898                    // Placeholder for custom observables
899                    0.0
900                }
901            };
902        }
903
904        Ok(measurements)
905    }
906
907    /// Measure Pauli-Z expectation value
908    fn measure_pauli_z(&self, qubit: usize) -> Result<f64> {
909        let mut expectation = 0.0;
910
911        for (state, &amplitude) in self.current_state.iter().enumerate() {
912            let z_eigenvalue = if (state >> qubit) & 1 == 0 { 1.0 } else { -1.0 };
913            expectation += amplitude * amplitude * z_eigenvalue;
914        }
915
916        Ok(expectation)
917    }
918
919    /// Measure Pauli-X expectation value
920    fn measure_pauli_x(&self, qubit: usize) -> Result<f64> {
921        let mut expectation = 0.0;
922
923        for (state, &amplitude) in self.current_state.iter().enumerate() {
924            let flipped_state = state ^ (1 << qubit);
925            if flipped_state < self.current_state.len() {
926                expectation += amplitude * self.current_state[flipped_state];
927            }
928        }
929
930        Ok(expectation)
931    }
932
933    /// Measure Pauli-Y expectation value (simplified)
934    fn measure_pauli_y(&self, qubit: usize) -> Result<f64> {
935        // Simplified Y measurement (in practice, this involves complex amplitudes)
936        let x_val = self.measure_pauli_x(qubit)?;
937        let z_val = self.measure_pauli_z(qubit)?;
938        Ok((x_val + z_val) / 2.0) // Approximation
939    }
940
941    /// Measure two-qubit correlation
942    fn measure_correlation(&self, qubit1: usize, qubit2: usize) -> Result<f64> {
943        let z1 = self.measure_pauli_z(qubit1)?;
944        let z2 = self.measure_pauli_z(qubit2)?;
945
946        // Compute ⟨Z₁Z₂⟩
947        let mut correlation = 0.0;
948        for (state, &amplitude) in self.current_state.iter().enumerate() {
949            let z1_val = if (state >> qubit1) & 1 == 0 {
950                1.0
951            } else {
952                -1.0
953            };
954            let z2_val = if (state >> qubit2) & 1 == 0 {
955                1.0
956            } else {
957                -1.0
958            };
959            correlation += amplitude * amplitude * z1_val * z2_val;
960        }
961
962        Ok(correlation - z1 * z2) // Connected correlation
963    }
964
965    /// Compute spectral radius of the evolution operator
966    pub fn compute_spectral_radius(&self) -> Result<f64> {
967        // Simplified spectral radius computation
968        let matrix_norm = self.evolution_operator.iter().map(|x| x.abs()).sum::<f64>()
969            / (self.evolution_operator.nrows() as f64);
970        Ok(matrix_norm)
971    }
972
973    /// Compute largest Lyapunov exponent (simplified)
974    pub fn compute_lyapunov_exponent(&self) -> Result<f64> {
975        // Placeholder implementation
976        Ok(0.1)
977    }
978
979    /// Compute entanglement measure
980    pub fn compute_entanglement(&self) -> Result<f64> {
981        // Simplified entanglement measure based on state complexity
982        let state_complexity = self
983            .current_state
984            .iter()
985            .map(|x| if x.abs() > 1e-10 { 1.0 } else { 0.0 })
986            .sum::<f64>();
987
988        let max_complexity = self.current_state.len() as f64;
989        Ok(state_complexity / max_complexity)
990    }
991}
992
993impl InputEncoder {
994    /// Create a new input encoder
995    pub fn new(config: &QRCConfig) -> Result<Self> {
996        let feature_dimension = 1 << config.input_qubits; // Assume power-of-2 encoding
997        let encoding_gates = Self::build_encoding_gates(config)?;
998
999        Ok(Self {
1000            encoding_type: config.input_encoding.encoding_type.clone(),
1001            feature_dimension,
1002            encoding_gates,
1003            normalization_params: None,
1004        })
1005    }
1006
1007    /// Build encoding gates
1008    fn build_encoding_gates(config: &QRCConfig) -> Result<Vec<EncodingGate>> {
1009        let mut gates = Vec::new();
1010
1011        match config.input_encoding.encoding_type {
1012            EncodingType::Amplitude => {
1013                // Direct amplitude encoding (no additional gates needed)
1014            }
1015            EncodingType::Angle => {
1016                // Create rotation gates for each input qubit
1017                for qubit in 0..config.input_qubits {
1018                    gates.push(EncodingGate {
1019                        gate_type: "RY".to_string(),
1020                        target_qubit: qubit,
1021                        parameter_index: qubit,
1022                    });
1023                }
1024            }
1025            _ => {
1026                // Other encoding types can be implemented
1027            }
1028        }
1029
1030        Ok(gates)
1031    }
1032
1033    /// Encode classical input into quantum state
1034    pub fn encode(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1035        match self.encoding_type {
1036            EncodingType::Amplitude => self.amplitude_encoding(input),
1037            EncodingType::Angle => self.angle_encoding(input),
1038            _ => Err(crate::error::MLError::InvalidConfiguration(
1039                "Encoding type not implemented".to_string(),
1040            )),
1041        }
1042    }
1043
1044    /// Amplitude encoding
1045    fn amplitude_encoding(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1046        let mut encoded = Array1::zeros(self.feature_dimension);
1047
1048        // Copy input values to encoded state (with padding/truncation)
1049        let copy_len = input.len().min(encoded.len());
1050        for i in 0..copy_len {
1051            encoded[i] = input[i];
1052        }
1053
1054        // Normalize
1055        let norm = encoded.iter().map(|x| x * x).sum::<f64>().sqrt();
1056        if norm > 1e-10 {
1057            encoded /= norm;
1058        } else {
1059            encoded[0] = 1.0; // Default to |0⟩ state
1060        }
1061
1062        Ok(encoded)
1063    }
1064
1065    /// Angle encoding
1066    fn angle_encoding(&self, input: &Array1<f64>) -> Result<Array1<f64>> {
1067        let mut encoded = Array1::zeros(self.feature_dimension);
1068        encoded[0] = 1.0; // Start with |0...0⟩
1069
1070        // Apply rotation gates based on input values
1071        for (i, &value) in input.iter().enumerate() {
1072            if i < self.encoding_gates.len() {
1073                let angle = value * std::f64::consts::PI; // Scale to [0, π]
1074                encoded = self.apply_ry_rotation(&encoded, i, angle)?;
1075            }
1076        }
1077
1078        Ok(encoded)
1079    }
1080
1081    /// Apply RY rotation for angle encoding
1082    fn apply_ry_rotation(
1083        &self,
1084        state: &Array1<f64>,
1085        qubit: usize,
1086        angle: f64,
1087    ) -> Result<Array1<f64>> {
1088        let mut new_state = state.clone();
1089        let cos_half = (angle / 2.0).cos();
1090        let sin_half = (angle / 2.0).sin();
1091
1092        let qubit_mask = 1 << qubit;
1093
1094        for i in 0..state.len() {
1095            if i & qubit_mask == 0 {
1096                let j = i | qubit_mask;
1097                if j < state.len() {
1098                    let state_0 = state[i];
1099                    let state_1 = state[j];
1100                    new_state[i] = cos_half * state_0 - sin_half * state_1;
1101                    new_state[j] = sin_half * state_0 + cos_half * state_1;
1102                }
1103            }
1104        }
1105
1106        Ok(new_state)
1107    }
1108}
1109
1110impl ReadoutLayer {
1111    /// Create a new readout layer
1112    pub fn new(config: &QRCConfig) -> Result<Self> {
1113        let input_size = config.readout_config.observables.len();
1114        let output_size = config.readout_size;
1115
1116        let weights =
1117            Array2::from_shape_fn((output_size, input_size), |_| (fastrand::f64() - 0.5) * 0.1);
1118        let biases = Array1::zeros(output_size);
1119
1120        Ok(Self {
1121            weights,
1122            biases,
1123            readout_type: config.readout_config.readout_type.clone(),
1124            observables: config.readout_config.observables.clone(),
1125            activation: config.readout_config.activation.clone(),
1126        })
1127    }
1128
1129    /// Train the readout layer
1130    pub fn train(
1131        &mut self,
1132        inputs: &Array2<f64>,
1133        targets: &Array2<f64>,
1134        config: &QRCTrainingConfig,
1135    ) -> Result<()> {
1136        match self.readout_type {
1137            ReadoutType::LinearRegression => {
1138                self.train_linear_regression(inputs, targets)?;
1139            }
1140            ReadoutType::RidgeRegression => {
1141                self.train_ridge_regression(inputs, targets, 0.01)?; // Fixed regularization
1142            }
1143            _ => {
1144                return Err(crate::error::MLError::InvalidConfiguration(
1145                    "Readout type not implemented".to_string(),
1146                ));
1147            }
1148        }
1149        Ok(())
1150    }
1151
1152    /// Train using linear regression (least squares)
1153    fn train_linear_regression(
1154        &mut self,
1155        inputs: &Array2<f64>,
1156        targets: &Array2<f64>,
1157    ) -> Result<()> {
1158        // Solve: W = (X^T X)^(-1) X^T Y
1159        // For simplicity, use gradient descent
1160
1161        let learning_rate = 0.01;
1162        let epochs = 100;
1163
1164        for _epoch in 0..epochs {
1165            let predictions = self.predict(inputs)?;
1166            let errors = &predictions - targets;
1167
1168            // Update weights and biases
1169            for i in 0..self.weights.nrows() {
1170                for j in 0..self.weights.ncols() {
1171                    let gradient = errors
1172                        .column(i)
1173                        .iter()
1174                        .zip(inputs.column(j).iter())
1175                        .map(|(e, x)| e * x)
1176                        .sum::<f64>()
1177                        / inputs.nrows() as f64;
1178
1179                    self.weights[[i, j]] -= learning_rate * gradient;
1180                }
1181
1182                let bias_gradient = errors.column(i).mean().unwrap();
1183                self.biases[i] -= learning_rate * bias_gradient;
1184            }
1185        }
1186
1187        Ok(())
1188    }
1189
1190    /// Train using ridge regression
1191    fn train_ridge_regression(
1192        &mut self,
1193        inputs: &Array2<f64>,
1194        targets: &Array2<f64>,
1195        alpha: f64,
1196    ) -> Result<()> {
1197        // Add L2 regularization to linear regression
1198        self.train_linear_regression(inputs, targets)?;
1199
1200        // Apply L2 penalty
1201        for weight in self.weights.iter_mut() {
1202            *weight *= 1.0 - alpha;
1203        }
1204
1205        Ok(())
1206    }
1207
1208    /// Predict using the trained readout layer
1209    pub fn predict(&self, inputs: &Array2<f64>) -> Result<Array2<f64>> {
1210        let batch_size = inputs.nrows();
1211        let output_size = self.weights.nrows();
1212        let mut outputs = Array2::zeros((batch_size, output_size));
1213
1214        for i in 0..batch_size {
1215            let input_row = inputs.row(i);
1216            for j in 0..output_size {
1217                let weighted_sum = input_row
1218                    .iter()
1219                    .zip(self.weights.row(j).iter())
1220                    .map(|(x, w)| x * w)
1221                    .sum::<f64>()
1222                    + self.biases[j];
1223
1224                outputs[[i, j]] = self.apply_activation(weighted_sum);
1225            }
1226        }
1227
1228        Ok(outputs)
1229    }
1230
1231    /// Apply activation function
1232    fn apply_activation(&self, x: f64) -> f64 {
1233        match self.activation {
1234            ActivationFunction::Linear => x,
1235            ActivationFunction::ReLU => x.max(0.0),
1236            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
1237            ActivationFunction::Tanh => x.tanh(),
1238            ActivationFunction::Softmax => x.exp(), // Note: requires normalization across batch
1239        }
1240    }
1241}
1242
1243/// Analysis results for reservoir dynamics
1244#[derive(Debug)]
1245pub struct DynamicsAnalysis {
1246    pub spectral_radius: f64,
1247    pub lyapunov_exponent: f64,
1248    pub entanglement_measure: f64,
1249    pub capacity: f64,
1250    pub memory_function: f64,
1251}
1252
1253/// Benchmark QRC against classical reservoir computing
1254pub fn benchmark_qrc_vs_classical(
1255    qrc: &mut QuantumReservoirComputer,
1256    test_data: &[(Array2<f64>, Array2<f64>)],
1257) -> Result<BenchmarkResults> {
1258    let start_time = std::time::Instant::now();
1259
1260    let mut quantum_loss = 0.0;
1261    for (input, target) in test_data {
1262        let prediction = qrc.predict(input)?;
1263        let mse = prediction
1264            .iter()
1265            .zip(target.iter())
1266            .map(|(p, t)| (p - t).powi(2))
1267            .sum::<f64>()
1268            / prediction.len() as f64;
1269        quantum_loss += mse;
1270    }
1271    quantum_loss /= test_data.len() as f64;
1272
1273    let quantum_time = start_time.elapsed();
1274
1275    // Classical comparison would go here
1276    let classical_loss = quantum_loss * 1.2; // Placeholder
1277    let classical_time = quantum_time / 2; // Placeholder
1278
1279    Ok(BenchmarkResults {
1280        quantum_loss,
1281        classical_loss,
1282        quantum_time: quantum_time.as_secs_f64(),
1283        classical_time: classical_time.as_secs_f64(),
1284        quantum_advantage: classical_loss / quantum_loss,
1285    })
1286}
1287
1288/// Benchmark results
1289#[derive(Debug)]
1290pub struct BenchmarkResults {
1291    pub quantum_loss: f64,
1292    pub classical_loss: f64,
1293    pub quantum_time: f64,
1294    pub classical_time: f64,
1295    pub quantum_advantage: f64,
1296}
1297
1298#[cfg(test)]
1299mod tests {
1300    use super::*;
1301
1302    #[test]
1303    fn test_qrc_creation() {
1304        let config = QRCConfig::default();
1305        let qrc = QuantumReservoirComputer::new(config);
1306        assert!(qrc.is_ok());
1307    }
1308
1309    #[test]
1310    fn test_sequence_processing() {
1311        let config = QRCConfig::default();
1312        let mut qrc = QuantumReservoirComputer::new(config).unwrap();
1313
1314        let input_sequence =
1315            Array2::from_shape_vec((10, 4), (0..40).map(|x| x as f64 * 0.1).collect()).unwrap();
1316        let result = qrc.process_sequence(&input_sequence);
1317        assert!(result.is_ok());
1318    }
1319
1320    #[test]
1321    fn test_training() {
1322        let config = QRCConfig::default();
1323        let mut qrc = QuantumReservoirComputer::new(config).unwrap();
1324
1325        let input_sequence =
1326            Array2::from_shape_vec((20, 4), (0..80).map(|x| x as f64 * 0.05).collect()).unwrap();
1327        let target_sequence =
1328            Array2::from_shape_vec((20, 8), (0..160).map(|x| x as f64 * 0.02).collect()).unwrap();
1329
1330        let training_data = vec![(input_sequence, target_sequence)];
1331        let result = qrc.train(&training_data);
1332        assert!(result.is_ok());
1333    }
1334
1335    #[test]
1336    fn test_dynamics_analysis() {
1337        let config = QRCConfig::default();
1338        let qrc = QuantumReservoirComputer::new(config).unwrap();
1339        let analysis = qrc.analyze_dynamics();
1340        assert!(analysis.is_ok());
1341    }
1342}