pub struct QuantumNAS { /* private fields */ }Expand description
Main quantum neural architecture search engine
Implementations§
Source§impl QuantumNAS
impl QuantumNAS
Sourcepub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self
pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self
Create a new quantum NAS instance
Examples found in repository?
examples/quantum_nas.rs (line 61)
49fn evolutionary_search_demo() -> Result<()> {
50 // Create search space
51 let search_space = create_default_search_space();
52
53 // Configure evolutionary strategy
54 let strategy = SearchStrategy::Evolutionary {
55 population_size: 20,
56 mutation_rate: 0.2,
57 crossover_rate: 0.7,
58 elitism_ratio: 0.1,
59 };
60
61 let mut nas = QuantumNAS::new(strategy, search_space);
62
63 println!(" Created evolutionary NAS:");
64 println!(" - Population size: 20");
65 println!(" - Mutation rate: 0.2");
66 println!(" - Crossover rate: 0.7");
67 println!(" - Elitism ratio: 0.1");
68
69 // Set evaluation data (synthetic for demo)
70 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
71 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
72 nas.set_evaluation_data(eval_data, eval_labels);
73
74 // Run search
75 println!("\n Running evolutionary search for 10 generations...");
76 let best_architectures = nas.search(10)?;
77
78 println!(" Search complete!");
79 println!(
80 " - Best architectures found: {}",
81 best_architectures.len()
82 );
83
84 if let Some(best) = best_architectures.first() {
85 println!(" - Best architecture: {best}");
86 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
87 println!(" - Parameter count: {}", best.metrics.parameter_count);
88
89 if let Some(expressivity) = best.properties.expressivity {
90 println!(" - Expressivity: {expressivity:.3}");
91 }
92 }
93
94 // Show search summary
95 let summary = nas.get_search_summary();
96 println!(
97 " - Total architectures evaluated: {}",
98 summary.total_architectures_evaluated
99 );
100 println!(" - Pareto front size: {}", summary.pareto_front_size);
101
102 Ok(())
103}
104
105/// Random search baseline demonstration
106fn random_search_demo() -> Result<()> {
107 let search_space = create_default_search_space();
108 let strategy = SearchStrategy::Random { num_samples: 50 };
109
110 let mut nas = QuantumNAS::new(strategy, search_space);
111
112 println!(" Created random search NAS:");
113 println!(" - Number of samples: 50");
114
115 // Generate synthetic evaluation data
116 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
117 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
118 });
119 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
120 nas.set_evaluation_data(eval_data, eval_labels);
121
122 println!("\n Running random search...");
123 let best_architectures = nas.search(50)?;
124
125 println!(" Random search complete!");
126 if let Some(best) = best_architectures.first() {
127 println!(" - Best random architecture: {best}");
128 if let Some(accuracy) = best.metrics.accuracy {
129 println!(" - Accuracy: {accuracy:.3}");
130 }
131 }
132
133 Ok(())
134}
135
136/// Reinforcement learning search demonstration
137fn rl_search_demo() -> Result<()> {
138 let search_space = create_custom_search_space();
139
140 let strategy = SearchStrategy::ReinforcementLearning {
141 agent_type: RLAgentType::PolicyGradient,
142 exploration_rate: 0.3,
143 learning_rate: 0.01,
144 };
145
146 let mut nas = QuantumNAS::new(strategy, search_space);
147
148 println!(" Created RL-based NAS:");
149 println!(" - Agent type: Policy Gradient");
150 println!(" - Exploration rate: 0.3");
151 println!(" - Learning rate: 0.01");
152
153 println!("\n Running RL search for 100 episodes...");
154 let best_architectures = nas.search(100)?;
155
156 println!(" RL search complete!");
157 println!(" - Architectures found: {}", best_architectures.len());
158
159 if let Some(best) = best_architectures.first() {
160 println!(" - Best RL architecture: {best}");
161 if let Some(entanglement) = best.properties.entanglement_capability {
162 println!(" - Entanglement capability: {entanglement:.3}");
163 }
164 }
165
166 Ok(())
167}
168
169/// Bayesian optimization search demonstration
170fn bayesian_search_demo() -> Result<()> {
171 let search_space = create_default_search_space();
172
173 let strategy = SearchStrategy::BayesianOptimization {
174 acquisition_function: AcquisitionFunction::ExpectedImprovement,
175 num_initial_points: 10,
176 };
177
178 let mut nas = QuantumNAS::new(strategy, search_space);
179
180 println!(" Created Bayesian optimization NAS:");
181 println!(" - Acquisition function: Expected Improvement");
182 println!(" - Initial random points: 10");
183
184 // Set up evaluation data
185 let eval_data = generate_quantum_data(60, 4);
186 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
187 nas.set_evaluation_data(eval_data, eval_labels);
188
189 println!("\n Running Bayesian optimization for 30 iterations...");
190 let best_architectures = nas.search(30)?;
191
192 println!(" Bayesian optimization complete!");
193 if let Some(best) = best_architectures.first() {
194 println!(" - Best Bayesian architecture: {best}");
195 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
196 println!(" - Hardware efficiency: {hardware_eff:.3}");
197 }
198 }
199
200 Ok(())
201}
202
203/// DARTS demonstration
204fn darts_demo() -> Result<()> {
205 let search_space = create_darts_search_space();
206
207 let strategy = SearchStrategy::DARTS {
208 learning_rate: 0.01,
209 weight_decay: 1e-4,
210 };
211
212 let mut nas = QuantumNAS::new(strategy, search_space);
213
214 println!(" Created DARTS NAS:");
215 println!(" - Learning rate: 0.01");
216 println!(" - Weight decay: 1e-4");
217 println!(" - Differentiable architecture search");
218
219 println!("\n Running DARTS for 200 epochs...");
220 let best_architectures = nas.search(200)?;
221
222 println!(" DARTS search complete!");
223 if let Some(best) = best_architectures.first() {
224 println!(" - DARTS architecture: {best}");
225 println!(" - Learned through gradient-based optimization");
226
227 if let Some(gradient_var) = best.properties.gradient_variance {
228 println!(" - Gradient variance: {gradient_var:.3}");
229 }
230 }
231
232 Ok(())
233}
234
235/// Multi-objective optimization demonstration
236fn multi_objective_demo() -> Result<()> {
237 let search_space = create_default_search_space();
238
239 let strategy = SearchStrategy::Evolutionary {
240 population_size: 30,
241 mutation_rate: 0.15,
242 crossover_rate: 0.8,
243 elitism_ratio: 0.2,
244 };
245
246 let mut nas = QuantumNAS::new(strategy, search_space);
247
248 println!(" Multi-objective optimization:");
249 println!(" - Optimizing accuracy vs. complexity");
250 println!(" - Finding Pareto-optimal architectures");
251
252 // Run search
253 nas.search(15)?;
254
255 // Analyze Pareto front
256 let pareto_front = nas.get_pareto_front();
257 println!(" Pareto front analysis:");
258 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
259
260 for (i, arch) in pareto_front.iter().take(3).enumerate() {
261 println!(
262 " Architecture {}: {} params, {:.3} accuracy",
263 i + 1,
264 arch.metrics.parameter_count,
265 arch.metrics.accuracy.unwrap_or(0.0)
266 );
267 }
268
269 Ok(())
270}Sourcepub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>)
pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>)
Set evaluation dataset
Examples found in repository?
examples/quantum_nas.rs (line 72)
49fn evolutionary_search_demo() -> Result<()> {
50 // Create search space
51 let search_space = create_default_search_space();
52
53 // Configure evolutionary strategy
54 let strategy = SearchStrategy::Evolutionary {
55 population_size: 20,
56 mutation_rate: 0.2,
57 crossover_rate: 0.7,
58 elitism_ratio: 0.1,
59 };
60
61 let mut nas = QuantumNAS::new(strategy, search_space);
62
63 println!(" Created evolutionary NAS:");
64 println!(" - Population size: 20");
65 println!(" - Mutation rate: 0.2");
66 println!(" - Crossover rate: 0.7");
67 println!(" - Elitism ratio: 0.1");
68
69 // Set evaluation data (synthetic for demo)
70 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
71 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
72 nas.set_evaluation_data(eval_data, eval_labels);
73
74 // Run search
75 println!("\n Running evolutionary search for 10 generations...");
76 let best_architectures = nas.search(10)?;
77
78 println!(" Search complete!");
79 println!(
80 " - Best architectures found: {}",
81 best_architectures.len()
82 );
83
84 if let Some(best) = best_architectures.first() {
85 println!(" - Best architecture: {best}");
86 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
87 println!(" - Parameter count: {}", best.metrics.parameter_count);
88
89 if let Some(expressivity) = best.properties.expressivity {
90 println!(" - Expressivity: {expressivity:.3}");
91 }
92 }
93
94 // Show search summary
95 let summary = nas.get_search_summary();
96 println!(
97 " - Total architectures evaluated: {}",
98 summary.total_architectures_evaluated
99 );
100 println!(" - Pareto front size: {}", summary.pareto_front_size);
101
102 Ok(())
103}
104
105/// Random search baseline demonstration
106fn random_search_demo() -> Result<()> {
107 let search_space = create_default_search_space();
108 let strategy = SearchStrategy::Random { num_samples: 50 };
109
110 let mut nas = QuantumNAS::new(strategy, search_space);
111
112 println!(" Created random search NAS:");
113 println!(" - Number of samples: 50");
114
115 // Generate synthetic evaluation data
116 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
117 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
118 });
119 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
120 nas.set_evaluation_data(eval_data, eval_labels);
121
122 println!("\n Running random search...");
123 let best_architectures = nas.search(50)?;
124
125 println!(" Random search complete!");
126 if let Some(best) = best_architectures.first() {
127 println!(" - Best random architecture: {best}");
128 if let Some(accuracy) = best.metrics.accuracy {
129 println!(" - Accuracy: {accuracy:.3}");
130 }
131 }
132
133 Ok(())
134}
135
136/// Reinforcement learning search demonstration
137fn rl_search_demo() -> Result<()> {
138 let search_space = create_custom_search_space();
139
140 let strategy = SearchStrategy::ReinforcementLearning {
141 agent_type: RLAgentType::PolicyGradient,
142 exploration_rate: 0.3,
143 learning_rate: 0.01,
144 };
145
146 let mut nas = QuantumNAS::new(strategy, search_space);
147
148 println!(" Created RL-based NAS:");
149 println!(" - Agent type: Policy Gradient");
150 println!(" - Exploration rate: 0.3");
151 println!(" - Learning rate: 0.01");
152
153 println!("\n Running RL search for 100 episodes...");
154 let best_architectures = nas.search(100)?;
155
156 println!(" RL search complete!");
157 println!(" - Architectures found: {}", best_architectures.len());
158
159 if let Some(best) = best_architectures.first() {
160 println!(" - Best RL architecture: {best}");
161 if let Some(entanglement) = best.properties.entanglement_capability {
162 println!(" - Entanglement capability: {entanglement:.3}");
163 }
164 }
165
166 Ok(())
167}
168
169/// Bayesian optimization search demonstration
170fn bayesian_search_demo() -> Result<()> {
171 let search_space = create_default_search_space();
172
173 let strategy = SearchStrategy::BayesianOptimization {
174 acquisition_function: AcquisitionFunction::ExpectedImprovement,
175 num_initial_points: 10,
176 };
177
178 let mut nas = QuantumNAS::new(strategy, search_space);
179
180 println!(" Created Bayesian optimization NAS:");
181 println!(" - Acquisition function: Expected Improvement");
182 println!(" - Initial random points: 10");
183
184 // Set up evaluation data
185 let eval_data = generate_quantum_data(60, 4);
186 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
187 nas.set_evaluation_data(eval_data, eval_labels);
188
189 println!("\n Running Bayesian optimization for 30 iterations...");
190 let best_architectures = nas.search(30)?;
191
192 println!(" Bayesian optimization complete!");
193 if let Some(best) = best_architectures.first() {
194 println!(" - Best Bayesian architecture: {best}");
195 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
196 println!(" - Hardware efficiency: {hardware_eff:.3}");
197 }
198 }
199
200 Ok(())
201}Sourcepub fn search(
&mut self,
max_iterations: usize,
) -> Result<Vec<ArchitectureCandidate>>
pub fn search( &mut self, max_iterations: usize, ) -> Result<Vec<ArchitectureCandidate>>
Search for optimal architectures
Examples found in repository?
examples/quantum_nas.rs (line 76)
49fn evolutionary_search_demo() -> Result<()> {
50 // Create search space
51 let search_space = create_default_search_space();
52
53 // Configure evolutionary strategy
54 let strategy = SearchStrategy::Evolutionary {
55 population_size: 20,
56 mutation_rate: 0.2,
57 crossover_rate: 0.7,
58 elitism_ratio: 0.1,
59 };
60
61 let mut nas = QuantumNAS::new(strategy, search_space);
62
63 println!(" Created evolutionary NAS:");
64 println!(" - Population size: 20");
65 println!(" - Mutation rate: 0.2");
66 println!(" - Crossover rate: 0.7");
67 println!(" - Elitism ratio: 0.1");
68
69 // Set evaluation data (synthetic for demo)
70 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
71 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
72 nas.set_evaluation_data(eval_data, eval_labels);
73
74 // Run search
75 println!("\n Running evolutionary search for 10 generations...");
76 let best_architectures = nas.search(10)?;
77
78 println!(" Search complete!");
79 println!(
80 " - Best architectures found: {}",
81 best_architectures.len()
82 );
83
84 if let Some(best) = best_architectures.first() {
85 println!(" - Best architecture: {best}");
86 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
87 println!(" - Parameter count: {}", best.metrics.parameter_count);
88
89 if let Some(expressivity) = best.properties.expressivity {
90 println!(" - Expressivity: {expressivity:.3}");
91 }
92 }
93
94 // Show search summary
95 let summary = nas.get_search_summary();
96 println!(
97 " - Total architectures evaluated: {}",
98 summary.total_architectures_evaluated
99 );
100 println!(" - Pareto front size: {}", summary.pareto_front_size);
101
102 Ok(())
103}
104
105/// Random search baseline demonstration
106fn random_search_demo() -> Result<()> {
107 let search_space = create_default_search_space();
108 let strategy = SearchStrategy::Random { num_samples: 50 };
109
110 let mut nas = QuantumNAS::new(strategy, search_space);
111
112 println!(" Created random search NAS:");
113 println!(" - Number of samples: 50");
114
115 // Generate synthetic evaluation data
116 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
117 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
118 });
119 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
120 nas.set_evaluation_data(eval_data, eval_labels);
121
122 println!("\n Running random search...");
123 let best_architectures = nas.search(50)?;
124
125 println!(" Random search complete!");
126 if let Some(best) = best_architectures.first() {
127 println!(" - Best random architecture: {best}");
128 if let Some(accuracy) = best.metrics.accuracy {
129 println!(" - Accuracy: {accuracy:.3}");
130 }
131 }
132
133 Ok(())
134}
135
136/// Reinforcement learning search demonstration
137fn rl_search_demo() -> Result<()> {
138 let search_space = create_custom_search_space();
139
140 let strategy = SearchStrategy::ReinforcementLearning {
141 agent_type: RLAgentType::PolicyGradient,
142 exploration_rate: 0.3,
143 learning_rate: 0.01,
144 };
145
146 let mut nas = QuantumNAS::new(strategy, search_space);
147
148 println!(" Created RL-based NAS:");
149 println!(" - Agent type: Policy Gradient");
150 println!(" - Exploration rate: 0.3");
151 println!(" - Learning rate: 0.01");
152
153 println!("\n Running RL search for 100 episodes...");
154 let best_architectures = nas.search(100)?;
155
156 println!(" RL search complete!");
157 println!(" - Architectures found: {}", best_architectures.len());
158
159 if let Some(best) = best_architectures.first() {
160 println!(" - Best RL architecture: {best}");
161 if let Some(entanglement) = best.properties.entanglement_capability {
162 println!(" - Entanglement capability: {entanglement:.3}");
163 }
164 }
165
166 Ok(())
167}
168
169/// Bayesian optimization search demonstration
170fn bayesian_search_demo() -> Result<()> {
171 let search_space = create_default_search_space();
172
173 let strategy = SearchStrategy::BayesianOptimization {
174 acquisition_function: AcquisitionFunction::ExpectedImprovement,
175 num_initial_points: 10,
176 };
177
178 let mut nas = QuantumNAS::new(strategy, search_space);
179
180 println!(" Created Bayesian optimization NAS:");
181 println!(" - Acquisition function: Expected Improvement");
182 println!(" - Initial random points: 10");
183
184 // Set up evaluation data
185 let eval_data = generate_quantum_data(60, 4);
186 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
187 nas.set_evaluation_data(eval_data, eval_labels);
188
189 println!("\n Running Bayesian optimization for 30 iterations...");
190 let best_architectures = nas.search(30)?;
191
192 println!(" Bayesian optimization complete!");
193 if let Some(best) = best_architectures.first() {
194 println!(" - Best Bayesian architecture: {best}");
195 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
196 println!(" - Hardware efficiency: {hardware_eff:.3}");
197 }
198 }
199
200 Ok(())
201}
202
203/// DARTS demonstration
204fn darts_demo() -> Result<()> {
205 let search_space = create_darts_search_space();
206
207 let strategy = SearchStrategy::DARTS {
208 learning_rate: 0.01,
209 weight_decay: 1e-4,
210 };
211
212 let mut nas = QuantumNAS::new(strategy, search_space);
213
214 println!(" Created DARTS NAS:");
215 println!(" - Learning rate: 0.01");
216 println!(" - Weight decay: 1e-4");
217 println!(" - Differentiable architecture search");
218
219 println!("\n Running DARTS for 200 epochs...");
220 let best_architectures = nas.search(200)?;
221
222 println!(" DARTS search complete!");
223 if let Some(best) = best_architectures.first() {
224 println!(" - DARTS architecture: {best}");
225 println!(" - Learned through gradient-based optimization");
226
227 if let Some(gradient_var) = best.properties.gradient_variance {
228 println!(" - Gradient variance: {gradient_var:.3}");
229 }
230 }
231
232 Ok(())
233}
234
235/// Multi-objective optimization demonstration
236fn multi_objective_demo() -> Result<()> {
237 let search_space = create_default_search_space();
238
239 let strategy = SearchStrategy::Evolutionary {
240 population_size: 30,
241 mutation_rate: 0.15,
242 crossover_rate: 0.8,
243 elitism_ratio: 0.2,
244 };
245
246 let mut nas = QuantumNAS::new(strategy, search_space);
247
248 println!(" Multi-objective optimization:");
249 println!(" - Optimizing accuracy vs. complexity");
250 println!(" - Finding Pareto-optimal architectures");
251
252 // Run search
253 nas.search(15)?;
254
255 // Analyze Pareto front
256 let pareto_front = nas.get_pareto_front();
257 println!(" Pareto front analysis:");
258 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
259
260 for (i, arch) in pareto_front.iter().take(3).enumerate() {
261 println!(
262 " Architecture {}: {} params, {:.3} accuracy",
263 i + 1,
264 arch.metrics.parameter_count,
265 arch.metrics.accuracy.unwrap_or(0.0)
266 );
267 }
268
269 Ok(())
270}Sourcepub fn get_search_summary(&self) -> SearchSummary
pub fn get_search_summary(&self) -> SearchSummary
Get search results summary
Examples found in repository?
examples/quantum_nas.rs (line 95)
49fn evolutionary_search_demo() -> Result<()> {
50 // Create search space
51 let search_space = create_default_search_space();
52
53 // Configure evolutionary strategy
54 let strategy = SearchStrategy::Evolutionary {
55 population_size: 20,
56 mutation_rate: 0.2,
57 crossover_rate: 0.7,
58 elitism_ratio: 0.1,
59 };
60
61 let mut nas = QuantumNAS::new(strategy, search_space);
62
63 println!(" Created evolutionary NAS:");
64 println!(" - Population size: 20");
65 println!(" - Mutation rate: 0.2");
66 println!(" - Crossover rate: 0.7");
67 println!(" - Elitism ratio: 0.1");
68
69 // Set evaluation data (synthetic for demo)
70 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
71 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
72 nas.set_evaluation_data(eval_data, eval_labels);
73
74 // Run search
75 println!("\n Running evolutionary search for 10 generations...");
76 let best_architectures = nas.search(10)?;
77
78 println!(" Search complete!");
79 println!(
80 " - Best architectures found: {}",
81 best_architectures.len()
82 );
83
84 if let Some(best) = best_architectures.first() {
85 println!(" - Best architecture: {best}");
86 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
87 println!(" - Parameter count: {}", best.metrics.parameter_count);
88
89 if let Some(expressivity) = best.properties.expressivity {
90 println!(" - Expressivity: {expressivity:.3}");
91 }
92 }
93
94 // Show search summary
95 let summary = nas.get_search_summary();
96 println!(
97 " - Total architectures evaluated: {}",
98 summary.total_architectures_evaluated
99 );
100 println!(" - Pareto front size: {}", summary.pareto_front_size);
101
102 Ok(())
103}Sourcepub fn get_pareto_front(&self) -> &[ArchitectureCandidate]
pub fn get_pareto_front(&self) -> &[ArchitectureCandidate]
Get Pareto front
Examples found in repository?
examples/quantum_nas.rs (line 256)
236fn multi_objective_demo() -> Result<()> {
237 let search_space = create_default_search_space();
238
239 let strategy = SearchStrategy::Evolutionary {
240 population_size: 30,
241 mutation_rate: 0.15,
242 crossover_rate: 0.8,
243 elitism_ratio: 0.2,
244 };
245
246 let mut nas = QuantumNAS::new(strategy, search_space);
247
248 println!(" Multi-objective optimization:");
249 println!(" - Optimizing accuracy vs. complexity");
250 println!(" - Finding Pareto-optimal architectures");
251
252 // Run search
253 nas.search(15)?;
254
255 // Analyze Pareto front
256 let pareto_front = nas.get_pareto_front();
257 println!(" Pareto front analysis:");
258 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
259
260 for (i, arch) in pareto_front.iter().take(3).enumerate() {
261 println!(
262 " Architecture {}: {} params, {:.3} accuracy",
263 i + 1,
264 arch.metrics.parameter_count,
265 arch.metrics.accuracy.unwrap_or(0.0)
266 );
267 }
268
269 Ok(())
270}Auto Trait Implementations§
impl Freeze for QuantumNAS
impl RefUnwindSafe for QuantumNAS
impl Send for QuantumNAS
impl Sync for QuantumNAS
impl Unpin for QuantumNAS
impl UnwindSafe for QuantumNAS
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.