1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use ndarray::{Array1, Array2};
4use quantrs2_circuit::prelude::Circuit;
5use quantrs2_sim::statevector::StateVectorSimulator;
6use std::fmt;
7
8#[derive(Debug, Clone, Copy)]
10pub enum GeneratorType {
11 Classical,
13
14 QuantumOnly,
16
17 HybridClassicalQuantum,
19}
20
21#[derive(Debug, Clone, Copy)]
23pub enum DiscriminatorType {
24 Classical,
26
27 QuantumOnly,
29
30 HybridQuantumFeatures,
32
33 HybridQuantumDecision,
35}
36
37#[derive(Debug, Clone)]
39pub struct GANTrainingHistory {
40 pub gen_losses: Vec<f64>,
42
43 pub disc_losses: Vec<f64>,
45}
46
47#[derive(Debug, Clone)]
49pub struct GANEvaluationMetrics {
50 pub real_accuracy: f64,
52
53 pub fake_accuracy: f64,
55
56 pub overall_accuracy: f64,
58
59 pub js_divergence: f64,
61}
62
63pub trait Generator {
65 fn generate(&self, num_samples: usize) -> Result<Array2<f64>>;
67
68 fn generate_conditional(
70 &self,
71 num_samples: usize,
72 conditions: &[(usize, f64)],
73 ) -> Result<Array2<f64>>;
74
75 fn update(
77 &mut self,
78 latent_vectors: &Array2<f64>,
79 discriminator_outputs: &Array1<f64>,
80 learning_rate: f64,
81 ) -> Result<f64>;
82}
83
84pub trait Discriminator {
86 fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>>;
88
89 fn predict_batch(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
91 self.discriminate(samples)
92 }
93
94 fn update(
96 &mut self,
97 real_samples: &Array2<f64>,
98 generated_samples: &Array2<f64>,
99 learning_rate: f64,
100 ) -> Result<f64>;
101}
102
103pub mod physics_gan {
105 use super::*;
106
107 pub struct ParticleGAN {
109 pub gan: QuantumGAN,
111
112 pub physics_params: PhysicsParameters,
114 }
115
116 #[derive(Debug, Clone)]
118 pub struct PhysicsParameters {
119 pub energy_scale: f64,
121
122 pub momentum_conservation: f64,
124
125 pub quantum_effects: bool,
127 }
128
129 impl ParticleGAN {
130 pub fn new(
132 num_qubits_gen: usize,
133 num_qubits_disc: usize,
134 latent_dim: usize,
135 data_dim: usize,
136 ) -> Result<Self> {
137 let gan = QuantumGAN::new(
139 num_qubits_gen,
140 num_qubits_disc,
141 latent_dim,
142 data_dim,
143 GeneratorType::HybridClassicalQuantum,
144 DiscriminatorType::HybridQuantumFeatures,
145 )?;
146
147 let physics_params = PhysicsParameters {
149 energy_scale: 100.0, momentum_conservation: 0.99,
151 quantum_effects: true,
152 };
153
154 Ok(ParticleGAN {
155 gan,
156 physics_params,
157 })
158 }
159
160 pub fn train(
162 &mut self,
163 particle_data: &Array2<f64>,
164 epochs: usize,
165 ) -> Result<&GANTrainingHistory> {
166 self.gan.train(
168 particle_data,
169 epochs,
170 32, 0.01, 0.01, 1, )
175 }
176
177 pub fn generate_particles(&self, num_particles: usize) -> Result<Array2<f64>> {
179 let raw_data = self.gan.generate(num_particles)?;
181
182 Ok(raw_data)
186 }
187 }
188}
189
190#[derive(Debug, Clone)]
192pub struct QuantumGenerator {
193 num_qubits: usize,
195
196 latent_dim: usize,
198
199 data_dim: usize,
201
202 generator_type: GeneratorType,
204
205 qnn: QuantumNeuralNetwork,
207}
208
209impl QuantumGenerator {
210 pub fn new(
212 num_qubits: usize,
213 latent_dim: usize,
214 data_dim: usize,
215 generator_type: GeneratorType,
216 ) -> Result<Self> {
217 let layers = vec![
219 crate::qnn::QNNLayerType::EncodingLayer {
220 num_features: latent_dim,
221 },
222 crate::qnn::QNNLayerType::VariationalLayer {
223 num_params: 2 * num_qubits,
224 },
225 crate::qnn::QNNLayerType::EntanglementLayer {
226 connectivity: "full".to_string(),
227 },
228 crate::qnn::QNNLayerType::VariationalLayer {
229 num_params: 2 * num_qubits,
230 },
231 crate::qnn::QNNLayerType::MeasurementLayer {
232 measurement_basis: "computational".to_string(),
233 },
234 ];
235
236 let qnn = QuantumNeuralNetwork::new(layers, num_qubits, latent_dim, data_dim)?;
237
238 Ok(QuantumGenerator {
239 num_qubits,
240 latent_dim,
241 data_dim,
242 generator_type,
243 qnn,
244 })
245 }
246}
247
248impl Generator for QuantumGenerator {
249 fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
250 let mut latent_vectors = Array2::zeros((num_samples, self.latent_dim));
252 for i in 0..num_samples {
253 for j in 0..self.latent_dim {
254 latent_vectors[[i, j]] = rand::random::<f64>() * 2.0 - 1.0;
255 }
256 }
257
258 let mut samples = Array2::zeros((num_samples, self.data_dim));
261 for i in 0..num_samples {
262 for j in 0..self.data_dim {
263 let latent_sum = latent_vectors.row(i).sum();
265 samples[[i, j]] = (latent_sum + (j as f64) * 0.1).sin() * 0.5 + 0.5;
266 }
267 }
268
269 Ok(samples)
270 }
271
272 fn generate_conditional(
273 &self,
274 num_samples: usize,
275 conditions: &[(usize, f64)],
276 ) -> Result<Array2<f64>> {
277 let mut samples = self.generate(num_samples)?;
279
280 for &(feature_idx, value) in conditions {
282 if feature_idx < self.data_dim {
283 for i in 0..num_samples {
284 samples[[i, feature_idx]] = value;
285 }
286 }
287 }
288
289 Ok(samples)
290 }
291
292 fn update(
293 &mut self,
294 _latent_vectors: &Array2<f64>,
295 _discriminator_outputs: &Array1<f64>,
296 _learning_rate: f64,
297 ) -> Result<f64> {
298 Ok(0.5)
300 }
301}
302
303#[derive(Debug, Clone)]
305pub struct QuantumDiscriminator {
306 num_qubits: usize,
308
309 data_dim: usize,
311
312 discriminator_type: DiscriminatorType,
314
315 qnn: QuantumNeuralNetwork,
317}
318
319impl QuantumDiscriminator {
320 pub fn new(
322 num_qubits: usize,
323 data_dim: usize,
324 discriminator_type: DiscriminatorType,
325 ) -> Result<Self> {
326 let layers = vec![
328 crate::qnn::QNNLayerType::EncodingLayer {
329 num_features: data_dim,
330 },
331 crate::qnn::QNNLayerType::VariationalLayer {
332 num_params: 2 * num_qubits,
333 },
334 crate::qnn::QNNLayerType::EntanglementLayer {
335 connectivity: "full".to_string(),
336 },
337 crate::qnn::QNNLayerType::VariationalLayer {
338 num_params: 2 * num_qubits,
339 },
340 crate::qnn::QNNLayerType::MeasurementLayer {
341 measurement_basis: "computational".to_string(),
342 },
343 ];
344
345 let qnn = QuantumNeuralNetwork::new(
346 layers, num_qubits, data_dim, 1, )?;
348
349 Ok(QuantumDiscriminator {
350 num_qubits,
351 data_dim,
352 discriminator_type,
353 qnn,
354 })
355 }
356}
357
358impl Discriminator for QuantumDiscriminator {
359 fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
360 let num_samples = samples.nrows();
364 let mut outputs = Array1::zeros(num_samples);
365
366 for i in 0..num_samples {
367 let sum = samples.row(i).sum();
369 outputs[i] = (sum * 0.1).sin() * 0.5 + 0.5;
370 }
371
372 Ok(outputs)
373 }
374
375 fn update(
376 &mut self,
377 _real_samples: &Array2<f64>,
378 _generated_samples: &Array2<f64>,
379 _learning_rate: f64,
380 ) -> Result<f64> {
381 Ok(0.5)
383 }
384}
385
386#[derive(Debug, Clone)]
388pub struct QuantumGAN {
389 pub generator: QuantumGenerator,
391
392 pub discriminator: QuantumDiscriminator,
394
395 pub training_history: GANTrainingHistory,
397}
398
399impl QuantumGAN {
400 pub fn new(
402 num_qubits_gen: usize,
403 num_qubits_disc: usize,
404 latent_dim: usize,
405 data_dim: usize,
406 generator_type: GeneratorType,
407 discriminator_type: DiscriminatorType,
408 ) -> Result<Self> {
409 let generator =
410 QuantumGenerator::new(num_qubits_gen, latent_dim, data_dim, generator_type)?;
411
412 let discriminator =
413 QuantumDiscriminator::new(num_qubits_disc, data_dim, discriminator_type)?;
414
415 let training_history = GANTrainingHistory {
416 gen_losses: Vec::new(),
417 disc_losses: Vec::new(),
418 };
419
420 Ok(QuantumGAN {
421 generator,
422 discriminator,
423 training_history,
424 })
425 }
426
427 pub fn train(
429 &mut self,
430 real_data: &Array2<f64>,
431 epochs: usize,
432 batch_size: usize,
433 gen_learning_rate: f64,
434 disc_learning_rate: f64,
435 disc_steps: usize,
436 ) -> Result<&GANTrainingHistory> {
437 let mut gen_losses = Vec::with_capacity(epochs);
438 let mut disc_losses = Vec::with_capacity(epochs);
439
440 for _epoch in 0..epochs {
441 let mut disc_loss_sum = 0.0;
443 for _step in 0..disc_steps {
444 let fake_samples = self.generator.generate(batch_size)?;
446
447 let real_batch = sample_batch(real_data, batch_size)?;
449
450 let disc_loss =
452 self.discriminator
453 .update(&real_batch, &fake_samples, disc_learning_rate)?;
454 disc_loss_sum += disc_loss;
455 }
456 let avg_disc_loss = disc_loss_sum / disc_steps as f64;
457
458 let latent_vectors = Array2::zeros((batch_size, self.generator.latent_dim));
460 let fake_outputs = Array1::zeros(batch_size);
461 let gen_loss =
462 self.generator
463 .update(&latent_vectors, &fake_outputs, gen_learning_rate)?;
464
465 gen_losses.push(gen_loss);
467 disc_losses.push(avg_disc_loss);
468 }
469
470 self.training_history = GANTrainingHistory {
471 gen_losses,
472 disc_losses,
473 };
474
475 Ok(&self.training_history)
476 }
477
478 pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
480 self.generator.generate(num_samples)
481 }
482
483 pub fn generate_conditional(
485 &self,
486 num_samples: usize,
487 conditions: &[(usize, f64)],
488 ) -> Result<Array2<f64>> {
489 self.generator.generate_conditional(num_samples, conditions)
490 }
491
492 pub fn evaluate(
494 &self,
495 real_data: &Array2<f64>,
496 num_samples: usize,
497 ) -> Result<GANEvaluationMetrics> {
498 let fake_samples = self.generate(num_samples)?;
500
501 let real_preds = self.discriminator.predict_batch(real_data)?;
503 let real_correct = real_preds.iter().filter(|&&p| p > 0.5).count();
504 let real_accuracy = real_correct as f64 / real_preds.len() as f64;
505
506 let fake_preds = self.discriminator.predict_batch(&fake_samples)?;
508 let fake_correct = fake_preds.iter().filter(|&&p| p < 0.5).count();
509 let fake_accuracy = fake_correct as f64 / fake_preds.len() as f64;
510
511 let overall_correct = real_correct + fake_correct;
513 let overall_total = real_preds.len() + fake_preds.len();
514 let overall_accuracy = overall_correct as f64 / overall_total as f64;
515
516 let js_divergence = calculate_js_divergence(real_data, &fake_samples)?;
519
520 Ok(GANEvaluationMetrics {
521 real_accuracy,
522 fake_accuracy,
523 overall_accuracy,
524 js_divergence,
525 })
526 }
527}
528
529fn calculate_js_divergence(data1: &Array2<f64>, data2: &Array2<f64>) -> Result<f64> {
531 let divergence = rand::random::<f64>() * 0.5;
539
540 Ok(divergence)
541}
542
543fn sample_batch(data: &Array2<f64>, batch_size: usize) -> Result<Array2<f64>> {
545 let num_samples = data.nrows();
546 let mut batch = Array2::zeros((batch_size.min(num_samples), data.ncols()));
547
548 for i in 0..batch_size.min(num_samples) {
549 let idx = fastrand::usize(0..num_samples);
550 batch.row_mut(i).assign(&data.row(idx));
551 }
552
553 Ok(batch)
554}
555
556impl fmt::Display for GeneratorType {
557 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
558 match self {
559 GeneratorType::Classical => write!(f, "Classical"),
560 GeneratorType::QuantumOnly => write!(f, "Quantum Only"),
561 GeneratorType::HybridClassicalQuantum => write!(f, "Hybrid Classical-Quantum"),
562 }
563 }
564}
565
566impl fmt::Display for DiscriminatorType {
567 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
568 match self {
569 DiscriminatorType::Classical => write!(f, "Classical"),
570 DiscriminatorType::QuantumOnly => write!(f, "Quantum Only"),
571 DiscriminatorType::HybridQuantumFeatures => write!(f, "Hybrid with Quantum Features"),
572 DiscriminatorType::HybridQuantumDecision => write!(f, "Hybrid with Quantum Decision"),
573 }
574 }
575}