quantrs2_ml/
gan.rs

1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use quantrs2_circuit::prelude::Circuit;
4use quantrs2_sim::statevector::StateVectorSimulator;
5use scirs2_core::ndarray::{Array1, Array2};
6use scirs2_core::random::prelude::*;
7use std::fmt;
8
9/// Type of generator to use in a quantum GAN
10#[derive(Debug, Clone, Copy)]
11pub enum GeneratorType {
12    /// Pure classical generator
13    Classical,
14
15    /// Pure quantum generator
16    QuantumOnly,
17
18    /// Hybrid classical-quantum generator
19    HybridClassicalQuantum,
20}
21
22/// Type of discriminator to use in a quantum GAN
23#[derive(Debug, Clone, Copy)]
24pub enum DiscriminatorType {
25    /// Pure classical discriminator
26    Classical,
27
28    /// Pure quantum discriminator
29    QuantumOnly,
30
31    /// Hybrid with quantum feature extraction
32    HybridQuantumFeatures,
33
34    /// Hybrid with quantum decision function
35    HybridQuantumDecision,
36}
37
38/// Training metrics for a GAN
39#[derive(Debug, Clone)]
40pub struct GANTrainingHistory {
41    /// Generator loss at each epoch
42    pub gen_losses: Vec<f64>,
43
44    /// Discriminator loss at each epoch
45    pub disc_losses: Vec<f64>,
46}
47
48/// Evaluation metrics for a GAN
49#[derive(Debug, Clone)]
50pub struct GANEvaluationMetrics {
51    /// Accuracy of discriminator on real data
52    pub real_accuracy: f64,
53
54    /// Accuracy of discriminator on fake (generated) data
55    pub fake_accuracy: f64,
56
57    /// Overall discriminator accuracy
58    pub overall_accuracy: f64,
59
60    /// Jensen-Shannon divergence between real and generated distributions
61    pub js_divergence: f64,
62}
63
64/// Trait for generator models
65pub trait Generator {
66    /// Generates samples from the latent space
67    fn generate(&self, num_samples: usize) -> Result<Array2<f64>>;
68
69    /// Generates samples with specific conditions
70    fn generate_conditional(
71        &self,
72        num_samples: usize,
73        conditions: &[(usize, f64)],
74    ) -> Result<Array2<f64>>;
75
76    /// Updates the generator based on discriminator feedback
77    fn update(
78        &mut self,
79        latent_vectors: &Array2<f64>,
80        discriminator_outputs: &Array1<f64>,
81        learning_rate: f64,
82    ) -> Result<f64>;
83}
84
85/// Trait for discriminator models
86pub trait Discriminator {
87    /// Discriminates between real and generated samples
88    fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>>;
89
90    /// Predicts probabilities for a batch of samples
91    fn predict_batch(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
92        self.discriminate(samples)
93    }
94
95    /// Updates the discriminator based on real and generated samples
96    fn update(
97        &mut self,
98        real_samples: &Array2<f64>,
99        generated_samples: &Array2<f64>,
100        learning_rate: f64,
101    ) -> Result<f64>;
102}
103
104/// Physics-specific GAN implementations for particle physics simulations
105pub mod physics_gan {
106    use super::*;
107
108    /// GAN model specialized for particle physics simulations
109    pub struct ParticleGAN {
110        /// The core quantum GAN implementation
111        pub gan: QuantumGAN,
112
113        /// Specialized parameters for physics simulations
114        pub physics_params: PhysicsParameters,
115    }
116
117    /// Physics-specific parameters for the GAN
118    #[derive(Debug, Clone)]
119    pub struct PhysicsParameters {
120        /// Energy scale for particle simulation
121        pub energy_scale: f64,
122
123        /// Momentum conservation factor
124        pub momentum_conservation: f64,
125
126        /// Whether to include quantum effects
127        pub quantum_effects: bool,
128    }
129
130    impl ParticleGAN {
131        /// Creates a new particle physics GAN
132        pub fn new(
133            num_qubits_gen: usize,
134            num_qubits_disc: usize,
135            latent_dim: usize,
136            data_dim: usize,
137        ) -> Result<Self> {
138            // Create a standard quantum GAN
139            let gan = QuantumGAN::new(
140                num_qubits_gen,
141                num_qubits_disc,
142                latent_dim,
143                data_dim,
144                GeneratorType::HybridClassicalQuantum,
145                DiscriminatorType::HybridQuantumFeatures,
146            )?;
147
148            // Default physics parameters
149            let physics_params = PhysicsParameters {
150                energy_scale: 100.0, // GeV
151                momentum_conservation: 0.99,
152                quantum_effects: true,
153            };
154
155            Ok(ParticleGAN {
156                gan,
157                physics_params,
158            })
159        }
160
161        /// Trains the particle GAN on real particle data
162        pub fn train(
163            &mut self,
164            particle_data: &Array2<f64>,
165            epochs: usize,
166        ) -> Result<&GANTrainingHistory> {
167            // Use the underlying GAN's training method
168            self.gan.train(
169                particle_data,
170                epochs,
171                32,   // batch size
172                0.01, // generator learning rate
173                0.01, // discriminator learning rate
174                1,    // discriminator steps
175            )
176        }
177
178        /// Generates simulated particle data
179        pub fn generate_particles(&self, num_particles: usize) -> Result<Array2<f64>> {
180            // Extends basic generation with physics constraints
181            let raw_data = self.gan.generate(num_particles)?;
182
183            // In a full implementation, we would apply physics constraints here
184            // such as momentum conservation, charge conservation, etc.
185
186            Ok(raw_data)
187        }
188    }
189}
190
191/// Quantum Generator for GAN
192#[derive(Debug, Clone)]
193pub struct QuantumGenerator {
194    /// Number of qubits
195    num_qubits: usize,
196
197    /// Dimension of latent space
198    latent_dim: usize,
199
200    /// Dimension of output data
201    data_dim: usize,
202
203    /// Type of generator
204    generator_type: GeneratorType,
205
206    /// Quantum neural network for generation
207    qnn: QuantumNeuralNetwork,
208}
209
210impl QuantumGenerator {
211    /// Creates a new quantum generator
212    pub fn new(
213        num_qubits: usize,
214        latent_dim: usize,
215        data_dim: usize,
216        generator_type: GeneratorType,
217    ) -> Result<Self> {
218        // Create a QNN architecture suitable for generation
219        let layers = vec![
220            crate::qnn::QNNLayerType::EncodingLayer {
221                num_features: latent_dim,
222            },
223            crate::qnn::QNNLayerType::VariationalLayer {
224                num_params: 2 * num_qubits,
225            },
226            crate::qnn::QNNLayerType::EntanglementLayer {
227                connectivity: "full".to_string(),
228            },
229            crate::qnn::QNNLayerType::VariationalLayer {
230                num_params: 2 * num_qubits,
231            },
232            crate::qnn::QNNLayerType::MeasurementLayer {
233                measurement_basis: "computational".to_string(),
234            },
235        ];
236
237        let qnn = QuantumNeuralNetwork::new(layers, num_qubits, latent_dim, data_dim)?;
238
239        Ok(QuantumGenerator {
240            num_qubits,
241            latent_dim,
242            data_dim,
243            generator_type,
244            qnn,
245        })
246    }
247}
248
249impl Generator for QuantumGenerator {
250    fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
251        // Generate random latent vectors
252        let mut latent_vectors = Array2::zeros((num_samples, self.latent_dim));
253        for i in 0..num_samples {
254            for j in 0..self.latent_dim {
255                latent_vectors[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0;
256            }
257        }
258
259        // Generate samples from latent vectors
260        // In a real implementation, this would use the QNN to generate samples
261        let mut samples = Array2::zeros((num_samples, self.data_dim));
262        for i in 0..num_samples {
263            for j in 0..self.data_dim {
264                // Simple dummy implementation
265                let latent_sum = latent_vectors.row(i).sum();
266                samples[[i, j]] = (latent_sum + (j as f64) * 0.1).sin() * 0.5 + 0.5;
267            }
268        }
269
270        Ok(samples)
271    }
272
273    fn generate_conditional(
274        &self,
275        num_samples: usize,
276        conditions: &[(usize, f64)],
277    ) -> Result<Array2<f64>> {
278        // Generate samples
279        let mut samples = self.generate(num_samples)?;
280
281        // Apply conditions
282        for &(feature_idx, value) in conditions {
283            if feature_idx < self.data_dim {
284                for i in 0..num_samples {
285                    samples[[i, feature_idx]] = value;
286                }
287            }
288        }
289
290        Ok(samples)
291    }
292
293    fn update(
294        &mut self,
295        _latent_vectors: &Array2<f64>,
296        _discriminator_outputs: &Array1<f64>,
297        _learning_rate: f64,
298    ) -> Result<f64> {
299        // Dummy implementation
300        Ok(0.5)
301    }
302}
303
304/// Quantum Discriminator for GAN
305#[derive(Debug, Clone)]
306pub struct QuantumDiscriminator {
307    /// Number of qubits
308    num_qubits: usize,
309
310    /// Dimension of input data
311    data_dim: usize,
312
313    /// Type of discriminator
314    discriminator_type: DiscriminatorType,
315
316    /// Quantum neural network for discrimination
317    qnn: QuantumNeuralNetwork,
318}
319
320impl QuantumDiscriminator {
321    /// Creates a new quantum discriminator
322    pub fn new(
323        num_qubits: usize,
324        data_dim: usize,
325        discriminator_type: DiscriminatorType,
326    ) -> Result<Self> {
327        // Create a QNN architecture suitable for discrimination
328        let layers = vec![
329            crate::qnn::QNNLayerType::EncodingLayer {
330                num_features: data_dim,
331            },
332            crate::qnn::QNNLayerType::VariationalLayer {
333                num_params: 2 * num_qubits,
334            },
335            crate::qnn::QNNLayerType::EntanglementLayer {
336                connectivity: "full".to_string(),
337            },
338            crate::qnn::QNNLayerType::VariationalLayer {
339                num_params: 2 * num_qubits,
340            },
341            crate::qnn::QNNLayerType::MeasurementLayer {
342                measurement_basis: "computational".to_string(),
343            },
344        ];
345
346        let qnn = QuantumNeuralNetwork::new(
347            layers, num_qubits, data_dim, 1, // Binary output (real or fake)
348        )?;
349
350        Ok(QuantumDiscriminator {
351            num_qubits,
352            data_dim,
353            discriminator_type,
354            qnn,
355        })
356    }
357}
358
359impl Discriminator for QuantumDiscriminator {
360    fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
361        // This is a dummy implementation
362        // In a real system, this would use the QNN to discriminate
363
364        let num_samples = samples.nrows();
365        let mut outputs = Array1::zeros(num_samples);
366
367        for i in 0..num_samples {
368            // Simple dummy calculation
369            let sum = samples.row(i).sum();
370            outputs[i] = (sum * 0.1).sin() * 0.5 + 0.5;
371        }
372
373        Ok(outputs)
374    }
375
376    fn update(
377        &mut self,
378        _real_samples: &Array2<f64>,
379        _generated_samples: &Array2<f64>,
380        _learning_rate: f64,
381    ) -> Result<f64> {
382        // Dummy implementation
383        Ok(0.5)
384    }
385}
386
387/// Quantum Generative Adversarial Network
388#[derive(Debug, Clone)]
389pub struct QuantumGAN {
390    /// Generator model
391    pub generator: QuantumGenerator,
392
393    /// Discriminator model
394    pub discriminator: QuantumDiscriminator,
395
396    /// Training history
397    pub training_history: GANTrainingHistory,
398}
399
400impl QuantumGAN {
401    /// Creates a new quantum GAN
402    pub fn new(
403        num_qubits_gen: usize,
404        num_qubits_disc: usize,
405        latent_dim: usize,
406        data_dim: usize,
407        generator_type: GeneratorType,
408        discriminator_type: DiscriminatorType,
409    ) -> Result<Self> {
410        let generator =
411            QuantumGenerator::new(num_qubits_gen, latent_dim, data_dim, generator_type)?;
412
413        let discriminator =
414            QuantumDiscriminator::new(num_qubits_disc, data_dim, discriminator_type)?;
415
416        let training_history = GANTrainingHistory {
417            gen_losses: Vec::new(),
418            disc_losses: Vec::new(),
419        };
420
421        Ok(QuantumGAN {
422            generator,
423            discriminator,
424            training_history,
425        })
426    }
427
428    /// Trains the GAN on a dataset
429    pub fn train(
430        &mut self,
431        real_data: &Array2<f64>,
432        epochs: usize,
433        batch_size: usize,
434        gen_learning_rate: f64,
435        disc_learning_rate: f64,
436        disc_steps: usize,
437    ) -> Result<&GANTrainingHistory> {
438        let mut gen_losses = Vec::with_capacity(epochs);
439        let mut disc_losses = Vec::with_capacity(epochs);
440
441        for _epoch in 0..epochs {
442            // Train discriminator for several steps
443            let mut disc_loss_sum = 0.0;
444            for _step in 0..disc_steps {
445                // Generate fake samples
446                let fake_samples = self.generator.generate(batch_size)?;
447
448                // Sample real data (random batch)
449                let real_batch = sample_batch(real_data, batch_size)?;
450
451                // Update discriminator
452                let disc_loss =
453                    self.discriminator
454                        .update(&real_batch, &fake_samples, disc_learning_rate)?;
455                disc_loss_sum += disc_loss;
456            }
457            let avg_disc_loss = disc_loss_sum / disc_steps as f64;
458
459            // Train generator
460            let latent_vectors = Array2::zeros((batch_size, self.generator.latent_dim));
461            let fake_outputs = Array1::zeros(batch_size);
462            let gen_loss =
463                self.generator
464                    .update(&latent_vectors, &fake_outputs, gen_learning_rate)?;
465
466            // Record losses
467            gen_losses.push(gen_loss);
468            disc_losses.push(avg_disc_loss);
469        }
470
471        self.training_history = GANTrainingHistory {
472            gen_losses,
473            disc_losses,
474        };
475
476        Ok(&self.training_history)
477    }
478
479    /// Generates samples from the trained generator
480    pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
481        self.generator.generate(num_samples)
482    }
483
484    /// Generates samples with specific conditions
485    pub fn generate_conditional(
486        &self,
487        num_samples: usize,
488        conditions: &[(usize, f64)],
489    ) -> Result<Array2<f64>> {
490        self.generator.generate_conditional(num_samples, conditions)
491    }
492
493    /// Evaluates the GAN model
494    pub fn evaluate(
495        &self,
496        real_data: &Array2<f64>,
497        num_samples: usize,
498    ) -> Result<GANEvaluationMetrics> {
499        // Generate fake samples
500        let fake_samples = self.generate(num_samples)?;
501
502        // Evaluate discriminator on real data
503        let real_preds = self.discriminator.predict_batch(real_data)?;
504        let real_correct = real_preds.iter().filter(|&&p| p > 0.5).count();
505        let real_accuracy = real_correct as f64 / real_preds.len() as f64;
506
507        // Evaluate discriminator on fake data
508        let fake_preds = self.discriminator.predict_batch(&fake_samples)?;
509        let fake_correct = fake_preds.iter().filter(|&&p| p < 0.5).count();
510        let fake_accuracy = fake_correct as f64 / fake_preds.len() as f64;
511
512        // Overall accuracy
513        let overall_correct = real_correct + fake_correct;
514        let overall_total = real_preds.len() + fake_preds.len();
515        let overall_accuracy = overall_correct as f64 / overall_total as f64;
516
517        // Calculate Jensen-Shannon divergence between real and fake data distributions
518        // This is a simplified placeholder calculation
519        let js_divergence = calculate_js_divergence(real_data, &fake_samples)?;
520
521        Ok(GANEvaluationMetrics {
522            real_accuracy,
523            fake_accuracy,
524            overall_accuracy,
525            js_divergence,
526        })
527    }
528}
529
530/// Calculate Jensen-Shannon divergence between two datasets
531fn calculate_js_divergence(data1: &Array2<f64>, data2: &Array2<f64>) -> Result<f64> {
532    // This is a simplified placeholder implementation
533    // In a real implementation, we would:
534    // 1. Estimate probability distributions from the data
535    // 2. Calculate the KL divergence between each distribution and their average
536    // 3. Calculate JS divergence as the average of these KL divergences
537
538    // For now, just return a random value between 0 and 1
539    let divergence = thread_rng().gen::<f64>() * 0.5;
540
541    Ok(divergence)
542}
543
544// Helper function to sample a random batch from a dataset
545fn sample_batch(data: &Array2<f64>, batch_size: usize) -> Result<Array2<f64>> {
546    let num_samples = data.nrows();
547    let mut batch = Array2::zeros((batch_size.min(num_samples), data.ncols()));
548
549    for i in 0..batch_size.min(num_samples) {
550        let idx = fastrand::usize(0..num_samples);
551        batch.row_mut(i).assign(&data.row(idx));
552    }
553
554    Ok(batch)
555}
556
557impl fmt::Display for GeneratorType {
558    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
559        match self {
560            GeneratorType::Classical => write!(f, "Classical"),
561            GeneratorType::QuantumOnly => write!(f, "Quantum Only"),
562            GeneratorType::HybridClassicalQuantum => write!(f, "Hybrid Classical-Quantum"),
563        }
564    }
565}
566
567impl fmt::Display for DiscriminatorType {
568    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
569        match self {
570            DiscriminatorType::Classical => write!(f, "Classical"),
571            DiscriminatorType::QuantumOnly => write!(f, "Quantum Only"),
572            DiscriminatorType::HybridQuantumFeatures => write!(f, "Hybrid with Quantum Features"),
573            DiscriminatorType::HybridQuantumDecision => write!(f, "Hybrid with Quantum Decision"),
574        }
575    }
576}