1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use quantrs2_circuit::prelude::Circuit;
4use quantrs2_sim::statevector::StateVectorSimulator;
5use scirs2_core::ndarray::{Array1, Array2};
6use scirs2_core::random::prelude::*;
7use std::fmt;
8
9#[derive(Debug, Clone, Copy)]
11pub enum GeneratorType {
12 Classical,
14
15 QuantumOnly,
17
18 HybridClassicalQuantum,
20}
21
22#[derive(Debug, Clone, Copy)]
24pub enum DiscriminatorType {
25 Classical,
27
28 QuantumOnly,
30
31 HybridQuantumFeatures,
33
34 HybridQuantumDecision,
36}
37
38#[derive(Debug, Clone)]
40pub struct GANTrainingHistory {
41 pub gen_losses: Vec<f64>,
43
44 pub disc_losses: Vec<f64>,
46}
47
48#[derive(Debug, Clone)]
50pub struct GANEvaluationMetrics {
51 pub real_accuracy: f64,
53
54 pub fake_accuracy: f64,
56
57 pub overall_accuracy: f64,
59
60 pub js_divergence: f64,
62}
63
64pub trait Generator {
66 fn generate(&self, num_samples: usize) -> Result<Array2<f64>>;
68
69 fn generate_conditional(
71 &self,
72 num_samples: usize,
73 conditions: &[(usize, f64)],
74 ) -> Result<Array2<f64>>;
75
76 fn update(
78 &mut self,
79 latent_vectors: &Array2<f64>,
80 discriminator_outputs: &Array1<f64>,
81 learning_rate: f64,
82 ) -> Result<f64>;
83}
84
85pub trait Discriminator {
87 fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>>;
89
90 fn predict_batch(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
92 self.discriminate(samples)
93 }
94
95 fn update(
97 &mut self,
98 real_samples: &Array2<f64>,
99 generated_samples: &Array2<f64>,
100 learning_rate: f64,
101 ) -> Result<f64>;
102}
103
104pub mod physics_gan {
106 use super::*;
107
108 pub struct ParticleGAN {
110 pub gan: QuantumGAN,
112
113 pub physics_params: PhysicsParameters,
115 }
116
117 #[derive(Debug, Clone)]
119 pub struct PhysicsParameters {
120 pub energy_scale: f64,
122
123 pub momentum_conservation: f64,
125
126 pub quantum_effects: bool,
128 }
129
130 impl ParticleGAN {
131 pub fn new(
133 num_qubits_gen: usize,
134 num_qubits_disc: usize,
135 latent_dim: usize,
136 data_dim: usize,
137 ) -> Result<Self> {
138 let gan = QuantumGAN::new(
140 num_qubits_gen,
141 num_qubits_disc,
142 latent_dim,
143 data_dim,
144 GeneratorType::HybridClassicalQuantum,
145 DiscriminatorType::HybridQuantumFeatures,
146 )?;
147
148 let physics_params = PhysicsParameters {
150 energy_scale: 100.0, momentum_conservation: 0.99,
152 quantum_effects: true,
153 };
154
155 Ok(ParticleGAN {
156 gan,
157 physics_params,
158 })
159 }
160
161 pub fn train(
163 &mut self,
164 particle_data: &Array2<f64>,
165 epochs: usize,
166 ) -> Result<&GANTrainingHistory> {
167 self.gan.train(
169 particle_data,
170 epochs,
171 32, 0.01, 0.01, 1, )
176 }
177
178 pub fn generate_particles(&self, num_particles: usize) -> Result<Array2<f64>> {
180 let raw_data = self.gan.generate(num_particles)?;
182
183 Ok(raw_data)
187 }
188 }
189}
190
191#[derive(Debug, Clone)]
193pub struct QuantumGenerator {
194 num_qubits: usize,
196
197 latent_dim: usize,
199
200 data_dim: usize,
202
203 generator_type: GeneratorType,
205
206 qnn: QuantumNeuralNetwork,
208}
209
210impl QuantumGenerator {
211 pub fn new(
213 num_qubits: usize,
214 latent_dim: usize,
215 data_dim: usize,
216 generator_type: GeneratorType,
217 ) -> Result<Self> {
218 let layers = vec![
220 crate::qnn::QNNLayerType::EncodingLayer {
221 num_features: latent_dim,
222 },
223 crate::qnn::QNNLayerType::VariationalLayer {
224 num_params: 2 * num_qubits,
225 },
226 crate::qnn::QNNLayerType::EntanglementLayer {
227 connectivity: "full".to_string(),
228 },
229 crate::qnn::QNNLayerType::VariationalLayer {
230 num_params: 2 * num_qubits,
231 },
232 crate::qnn::QNNLayerType::MeasurementLayer {
233 measurement_basis: "computational".to_string(),
234 },
235 ];
236
237 let qnn = QuantumNeuralNetwork::new(layers, num_qubits, latent_dim, data_dim)?;
238
239 Ok(QuantumGenerator {
240 num_qubits,
241 latent_dim,
242 data_dim,
243 generator_type,
244 qnn,
245 })
246 }
247}
248
249impl Generator for QuantumGenerator {
250 fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
251 let mut latent_vectors = Array2::zeros((num_samples, self.latent_dim));
253 for i in 0..num_samples {
254 for j in 0..self.latent_dim {
255 latent_vectors[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0;
256 }
257 }
258
259 let mut samples = Array2::zeros((num_samples, self.data_dim));
262 for i in 0..num_samples {
263 for j in 0..self.data_dim {
264 let latent_sum = latent_vectors.row(i).sum();
266 samples[[i, j]] = (latent_sum + (j as f64) * 0.1).sin() * 0.5 + 0.5;
267 }
268 }
269
270 Ok(samples)
271 }
272
273 fn generate_conditional(
274 &self,
275 num_samples: usize,
276 conditions: &[(usize, f64)],
277 ) -> Result<Array2<f64>> {
278 let mut samples = self.generate(num_samples)?;
280
281 for &(feature_idx, value) in conditions {
283 if feature_idx < self.data_dim {
284 for i in 0..num_samples {
285 samples[[i, feature_idx]] = value;
286 }
287 }
288 }
289
290 Ok(samples)
291 }
292
293 fn update(
294 &mut self,
295 _latent_vectors: &Array2<f64>,
296 _discriminator_outputs: &Array1<f64>,
297 _learning_rate: f64,
298 ) -> Result<f64> {
299 Ok(0.5)
301 }
302}
303
304#[derive(Debug, Clone)]
306pub struct QuantumDiscriminator {
307 num_qubits: usize,
309
310 data_dim: usize,
312
313 discriminator_type: DiscriminatorType,
315
316 qnn: QuantumNeuralNetwork,
318}
319
320impl QuantumDiscriminator {
321 pub fn new(
323 num_qubits: usize,
324 data_dim: usize,
325 discriminator_type: DiscriminatorType,
326 ) -> Result<Self> {
327 let layers = vec![
329 crate::qnn::QNNLayerType::EncodingLayer {
330 num_features: data_dim,
331 },
332 crate::qnn::QNNLayerType::VariationalLayer {
333 num_params: 2 * num_qubits,
334 },
335 crate::qnn::QNNLayerType::EntanglementLayer {
336 connectivity: "full".to_string(),
337 },
338 crate::qnn::QNNLayerType::VariationalLayer {
339 num_params: 2 * num_qubits,
340 },
341 crate::qnn::QNNLayerType::MeasurementLayer {
342 measurement_basis: "computational".to_string(),
343 },
344 ];
345
346 let qnn = QuantumNeuralNetwork::new(
347 layers, num_qubits, data_dim, 1, )?;
349
350 Ok(QuantumDiscriminator {
351 num_qubits,
352 data_dim,
353 discriminator_type,
354 qnn,
355 })
356 }
357}
358
359impl Discriminator for QuantumDiscriminator {
360 fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
361 let num_samples = samples.nrows();
365 let mut outputs = Array1::zeros(num_samples);
366
367 for i in 0..num_samples {
368 let sum = samples.row(i).sum();
370 outputs[i] = (sum * 0.1).sin() * 0.5 + 0.5;
371 }
372
373 Ok(outputs)
374 }
375
376 fn update(
377 &mut self,
378 _real_samples: &Array2<f64>,
379 _generated_samples: &Array2<f64>,
380 _learning_rate: f64,
381 ) -> Result<f64> {
382 Ok(0.5)
384 }
385}
386
387#[derive(Debug, Clone)]
389pub struct QuantumGAN {
390 pub generator: QuantumGenerator,
392
393 pub discriminator: QuantumDiscriminator,
395
396 pub training_history: GANTrainingHistory,
398}
399
400impl QuantumGAN {
401 pub fn new(
403 num_qubits_gen: usize,
404 num_qubits_disc: usize,
405 latent_dim: usize,
406 data_dim: usize,
407 generator_type: GeneratorType,
408 discriminator_type: DiscriminatorType,
409 ) -> Result<Self> {
410 let generator =
411 QuantumGenerator::new(num_qubits_gen, latent_dim, data_dim, generator_type)?;
412
413 let discriminator =
414 QuantumDiscriminator::new(num_qubits_disc, data_dim, discriminator_type)?;
415
416 let training_history = GANTrainingHistory {
417 gen_losses: Vec::new(),
418 disc_losses: Vec::new(),
419 };
420
421 Ok(QuantumGAN {
422 generator,
423 discriminator,
424 training_history,
425 })
426 }
427
428 pub fn train(
430 &mut self,
431 real_data: &Array2<f64>,
432 epochs: usize,
433 batch_size: usize,
434 gen_learning_rate: f64,
435 disc_learning_rate: f64,
436 disc_steps: usize,
437 ) -> Result<&GANTrainingHistory> {
438 let mut gen_losses = Vec::with_capacity(epochs);
439 let mut disc_losses = Vec::with_capacity(epochs);
440
441 for _epoch in 0..epochs {
442 let mut disc_loss_sum = 0.0;
444 for _step in 0..disc_steps {
445 let fake_samples = self.generator.generate(batch_size)?;
447
448 let real_batch = sample_batch(real_data, batch_size)?;
450
451 let disc_loss =
453 self.discriminator
454 .update(&real_batch, &fake_samples, disc_learning_rate)?;
455 disc_loss_sum += disc_loss;
456 }
457 let avg_disc_loss = disc_loss_sum / disc_steps as f64;
458
459 let latent_vectors = Array2::zeros((batch_size, self.generator.latent_dim));
461 let fake_outputs = Array1::zeros(batch_size);
462 let gen_loss =
463 self.generator
464 .update(&latent_vectors, &fake_outputs, gen_learning_rate)?;
465
466 gen_losses.push(gen_loss);
468 disc_losses.push(avg_disc_loss);
469 }
470
471 self.training_history = GANTrainingHistory {
472 gen_losses,
473 disc_losses,
474 };
475
476 Ok(&self.training_history)
477 }
478
479 pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
481 self.generator.generate(num_samples)
482 }
483
484 pub fn generate_conditional(
486 &self,
487 num_samples: usize,
488 conditions: &[(usize, f64)],
489 ) -> Result<Array2<f64>> {
490 self.generator.generate_conditional(num_samples, conditions)
491 }
492
493 pub fn evaluate(
495 &self,
496 real_data: &Array2<f64>,
497 num_samples: usize,
498 ) -> Result<GANEvaluationMetrics> {
499 let fake_samples = self.generate(num_samples)?;
501
502 let real_preds = self.discriminator.predict_batch(real_data)?;
504 let real_correct = real_preds.iter().filter(|&&p| p > 0.5).count();
505 let real_accuracy = real_correct as f64 / real_preds.len() as f64;
506
507 let fake_preds = self.discriminator.predict_batch(&fake_samples)?;
509 let fake_correct = fake_preds.iter().filter(|&&p| p < 0.5).count();
510 let fake_accuracy = fake_correct as f64 / fake_preds.len() as f64;
511
512 let overall_correct = real_correct + fake_correct;
514 let overall_total = real_preds.len() + fake_preds.len();
515 let overall_accuracy = overall_correct as f64 / overall_total as f64;
516
517 let js_divergence = calculate_js_divergence(real_data, &fake_samples)?;
520
521 Ok(GANEvaluationMetrics {
522 real_accuracy,
523 fake_accuracy,
524 overall_accuracy,
525 js_divergence,
526 })
527 }
528}
529
530fn calculate_js_divergence(data1: &Array2<f64>, data2: &Array2<f64>) -> Result<f64> {
532 let divergence = thread_rng().gen::<f64>() * 0.5;
540
541 Ok(divergence)
542}
543
544fn sample_batch(data: &Array2<f64>, batch_size: usize) -> Result<Array2<f64>> {
546 let num_samples = data.nrows();
547 let mut batch = Array2::zeros((batch_size.min(num_samples), data.ncols()));
548
549 for i in 0..batch_size.min(num_samples) {
550 let idx = fastrand::usize(0..num_samples);
551 batch.row_mut(i).assign(&data.row(idx));
552 }
553
554 Ok(batch)
555}
556
557impl fmt::Display for GeneratorType {
558 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
559 match self {
560 GeneratorType::Classical => write!(f, "Classical"),
561 GeneratorType::QuantumOnly => write!(f, "Quantum Only"),
562 GeneratorType::HybridClassicalQuantum => write!(f, "Hybrid Classical-Quantum"),
563 }
564 }
565}
566
567impl fmt::Display for DiscriminatorType {
568 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
569 match self {
570 DiscriminatorType::Classical => write!(f, "Classical"),
571 DiscriminatorType::QuantumOnly => write!(f, "Quantum Only"),
572 DiscriminatorType::HybridQuantumFeatures => write!(f, "Hybrid with Quantum Features"),
573 DiscriminatorType::HybridQuantumDecision => write!(f, "Hybrid with Quantum Decision"),
574 }
575 }
576}