quantrs2_ml/
gan.rs

1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use ndarray::{Array1, Array2};
4use quantrs2_circuit::prelude::Circuit;
5use quantrs2_sim::statevector::StateVectorSimulator;
6use std::fmt;
7
8/// Type of generator to use in a quantum GAN
9#[derive(Debug, Clone, Copy)]
10pub enum GeneratorType {
11    /// Pure classical generator
12    Classical,
13
14    /// Pure quantum generator
15    QuantumOnly,
16
17    /// Hybrid classical-quantum generator
18    HybridClassicalQuantum,
19}
20
21/// Type of discriminator to use in a quantum GAN
22#[derive(Debug, Clone, Copy)]
23pub enum DiscriminatorType {
24    /// Pure classical discriminator
25    Classical,
26
27    /// Pure quantum discriminator
28    QuantumOnly,
29
30    /// Hybrid with quantum feature extraction
31    HybridQuantumFeatures,
32
33    /// Hybrid with quantum decision function
34    HybridQuantumDecision,
35}
36
37/// Training metrics for a GAN
38#[derive(Debug, Clone)]
39pub struct GANTrainingHistory {
40    /// Generator loss at each epoch
41    pub gen_losses: Vec<f64>,
42
43    /// Discriminator loss at each epoch
44    pub disc_losses: Vec<f64>,
45}
46
47/// Evaluation metrics for a GAN
48#[derive(Debug, Clone)]
49pub struct GANEvaluationMetrics {
50    /// Accuracy of discriminator on real data
51    pub real_accuracy: f64,
52
53    /// Accuracy of discriminator on fake (generated) data
54    pub fake_accuracy: f64,
55
56    /// Overall discriminator accuracy
57    pub overall_accuracy: f64,
58
59    /// Jensen-Shannon divergence between real and generated distributions
60    pub js_divergence: f64,
61}
62
63/// Trait for generator models
64pub trait Generator {
65    /// Generates samples from the latent space
66    fn generate(&self, num_samples: usize) -> Result<Array2<f64>>;
67
68    /// Generates samples with specific conditions
69    fn generate_conditional(
70        &self,
71        num_samples: usize,
72        conditions: &[(usize, f64)],
73    ) -> Result<Array2<f64>>;
74
75    /// Updates the generator based on discriminator feedback
76    fn update(
77        &mut self,
78        latent_vectors: &Array2<f64>,
79        discriminator_outputs: &Array1<f64>,
80        learning_rate: f64,
81    ) -> Result<f64>;
82}
83
84/// Trait for discriminator models
85pub trait Discriminator {
86    /// Discriminates between real and generated samples
87    fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>>;
88
89    /// Predicts probabilities for a batch of samples
90    fn predict_batch(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
91        self.discriminate(samples)
92    }
93
94    /// Updates the discriminator based on real and generated samples
95    fn update(
96        &mut self,
97        real_samples: &Array2<f64>,
98        generated_samples: &Array2<f64>,
99        learning_rate: f64,
100    ) -> Result<f64>;
101}
102
103/// Physics-specific GAN implementations for particle physics simulations
104pub mod physics_gan {
105    use super::*;
106
107    /// GAN model specialized for particle physics simulations
108    pub struct ParticleGAN {
109        /// The core quantum GAN implementation
110        pub gan: QuantumGAN,
111
112        /// Specialized parameters for physics simulations
113        pub physics_params: PhysicsParameters,
114    }
115
116    /// Physics-specific parameters for the GAN
117    #[derive(Debug, Clone)]
118    pub struct PhysicsParameters {
119        /// Energy scale for particle simulation
120        pub energy_scale: f64,
121
122        /// Momentum conservation factor
123        pub momentum_conservation: f64,
124
125        /// Whether to include quantum effects
126        pub quantum_effects: bool,
127    }
128
129    impl ParticleGAN {
130        /// Creates a new particle physics GAN
131        pub fn new(
132            num_qubits_gen: usize,
133            num_qubits_disc: usize,
134            latent_dim: usize,
135            data_dim: usize,
136        ) -> Result<Self> {
137            // Create a standard quantum GAN
138            let gan = QuantumGAN::new(
139                num_qubits_gen,
140                num_qubits_disc,
141                latent_dim,
142                data_dim,
143                GeneratorType::HybridClassicalQuantum,
144                DiscriminatorType::HybridQuantumFeatures,
145            )?;
146
147            // Default physics parameters
148            let physics_params = PhysicsParameters {
149                energy_scale: 100.0, // GeV
150                momentum_conservation: 0.99,
151                quantum_effects: true,
152            };
153
154            Ok(ParticleGAN {
155                gan,
156                physics_params,
157            })
158        }
159
160        /// Trains the particle GAN on real particle data
161        pub fn train(
162            &mut self,
163            particle_data: &Array2<f64>,
164            epochs: usize,
165        ) -> Result<&GANTrainingHistory> {
166            // Use the underlying GAN's training method
167            self.gan.train(
168                particle_data,
169                epochs,
170                32,   // batch size
171                0.01, // generator learning rate
172                0.01, // discriminator learning rate
173                1,    // discriminator steps
174            )
175        }
176
177        /// Generates simulated particle data
178        pub fn generate_particles(&self, num_particles: usize) -> Result<Array2<f64>> {
179            // Extends basic generation with physics constraints
180            let raw_data = self.gan.generate(num_particles)?;
181
182            // In a full implementation, we would apply physics constraints here
183            // such as momentum conservation, charge conservation, etc.
184
185            Ok(raw_data)
186        }
187    }
188}
189
190/// Quantum Generator for GAN
191#[derive(Debug, Clone)]
192pub struct QuantumGenerator {
193    /// Number of qubits
194    num_qubits: usize,
195
196    /// Dimension of latent space
197    latent_dim: usize,
198
199    /// Dimension of output data
200    data_dim: usize,
201
202    /// Type of generator
203    generator_type: GeneratorType,
204
205    /// Quantum neural network for generation
206    qnn: QuantumNeuralNetwork,
207}
208
209impl QuantumGenerator {
210    /// Creates a new quantum generator
211    pub fn new(
212        num_qubits: usize,
213        latent_dim: usize,
214        data_dim: usize,
215        generator_type: GeneratorType,
216    ) -> Result<Self> {
217        // Create a QNN architecture suitable for generation
218        let layers = vec![
219            crate::qnn::QNNLayerType::EncodingLayer {
220                num_features: latent_dim,
221            },
222            crate::qnn::QNNLayerType::VariationalLayer {
223                num_params: 2 * num_qubits,
224            },
225            crate::qnn::QNNLayerType::EntanglementLayer {
226                connectivity: "full".to_string(),
227            },
228            crate::qnn::QNNLayerType::VariationalLayer {
229                num_params: 2 * num_qubits,
230            },
231            crate::qnn::QNNLayerType::MeasurementLayer {
232                measurement_basis: "computational".to_string(),
233            },
234        ];
235
236        let qnn = QuantumNeuralNetwork::new(layers, num_qubits, latent_dim, data_dim)?;
237
238        Ok(QuantumGenerator {
239            num_qubits,
240            latent_dim,
241            data_dim,
242            generator_type,
243            qnn,
244        })
245    }
246}
247
248impl Generator for QuantumGenerator {
249    fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
250        // Generate random latent vectors
251        let mut latent_vectors = Array2::zeros((num_samples, self.latent_dim));
252        for i in 0..num_samples {
253            for j in 0..self.latent_dim {
254                latent_vectors[[i, j]] = rand::random::<f64>() * 2.0 - 1.0;
255            }
256        }
257
258        // Generate samples from latent vectors
259        // In a real implementation, this would use the QNN to generate samples
260        let mut samples = Array2::zeros((num_samples, self.data_dim));
261        for i in 0..num_samples {
262            for j in 0..self.data_dim {
263                // Simple dummy implementation
264                let latent_sum = latent_vectors.row(i).sum();
265                samples[[i, j]] = (latent_sum + (j as f64) * 0.1).sin() * 0.5 + 0.5;
266            }
267        }
268
269        Ok(samples)
270    }
271
272    fn generate_conditional(
273        &self,
274        num_samples: usize,
275        conditions: &[(usize, f64)],
276    ) -> Result<Array2<f64>> {
277        // Generate samples
278        let mut samples = self.generate(num_samples)?;
279
280        // Apply conditions
281        for &(feature_idx, value) in conditions {
282            if feature_idx < self.data_dim {
283                for i in 0..num_samples {
284                    samples[[i, feature_idx]] = value;
285                }
286            }
287        }
288
289        Ok(samples)
290    }
291
292    fn update(
293        &mut self,
294        _latent_vectors: &Array2<f64>,
295        _discriminator_outputs: &Array1<f64>,
296        _learning_rate: f64,
297    ) -> Result<f64> {
298        // Dummy implementation
299        Ok(0.5)
300    }
301}
302
303/// Quantum Discriminator for GAN
304#[derive(Debug, Clone)]
305pub struct QuantumDiscriminator {
306    /// Number of qubits
307    num_qubits: usize,
308
309    /// Dimension of input data
310    data_dim: usize,
311
312    /// Type of discriminator
313    discriminator_type: DiscriminatorType,
314
315    /// Quantum neural network for discrimination
316    qnn: QuantumNeuralNetwork,
317}
318
319impl QuantumDiscriminator {
320    /// Creates a new quantum discriminator
321    pub fn new(
322        num_qubits: usize,
323        data_dim: usize,
324        discriminator_type: DiscriminatorType,
325    ) -> Result<Self> {
326        // Create a QNN architecture suitable for discrimination
327        let layers = vec![
328            crate::qnn::QNNLayerType::EncodingLayer {
329                num_features: data_dim,
330            },
331            crate::qnn::QNNLayerType::VariationalLayer {
332                num_params: 2 * num_qubits,
333            },
334            crate::qnn::QNNLayerType::EntanglementLayer {
335                connectivity: "full".to_string(),
336            },
337            crate::qnn::QNNLayerType::VariationalLayer {
338                num_params: 2 * num_qubits,
339            },
340            crate::qnn::QNNLayerType::MeasurementLayer {
341                measurement_basis: "computational".to_string(),
342            },
343        ];
344
345        let qnn = QuantumNeuralNetwork::new(
346            layers, num_qubits, data_dim, 1, // Binary output (real or fake)
347        )?;
348
349        Ok(QuantumDiscriminator {
350            num_qubits,
351            data_dim,
352            discriminator_type,
353            qnn,
354        })
355    }
356}
357
358impl Discriminator for QuantumDiscriminator {
359    fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>> {
360        // This is a dummy implementation
361        // In a real system, this would use the QNN to discriminate
362
363        let num_samples = samples.nrows();
364        let mut outputs = Array1::zeros(num_samples);
365
366        for i in 0..num_samples {
367            // Simple dummy calculation
368            let sum = samples.row(i).sum();
369            outputs[i] = (sum * 0.1).sin() * 0.5 + 0.5;
370        }
371
372        Ok(outputs)
373    }
374
375    fn update(
376        &mut self,
377        _real_samples: &Array2<f64>,
378        _generated_samples: &Array2<f64>,
379        _learning_rate: f64,
380    ) -> Result<f64> {
381        // Dummy implementation
382        Ok(0.5)
383    }
384}
385
386/// Quantum Generative Adversarial Network
387#[derive(Debug, Clone)]
388pub struct QuantumGAN {
389    /// Generator model
390    pub generator: QuantumGenerator,
391
392    /// Discriminator model
393    pub discriminator: QuantumDiscriminator,
394
395    /// Training history
396    pub training_history: GANTrainingHistory,
397}
398
399impl QuantumGAN {
400    /// Creates a new quantum GAN
401    pub fn new(
402        num_qubits_gen: usize,
403        num_qubits_disc: usize,
404        latent_dim: usize,
405        data_dim: usize,
406        generator_type: GeneratorType,
407        discriminator_type: DiscriminatorType,
408    ) -> Result<Self> {
409        let generator =
410            QuantumGenerator::new(num_qubits_gen, latent_dim, data_dim, generator_type)?;
411
412        let discriminator =
413            QuantumDiscriminator::new(num_qubits_disc, data_dim, discriminator_type)?;
414
415        let training_history = GANTrainingHistory {
416            gen_losses: Vec::new(),
417            disc_losses: Vec::new(),
418        };
419
420        Ok(QuantumGAN {
421            generator,
422            discriminator,
423            training_history,
424        })
425    }
426
427    /// Trains the GAN on a dataset
428    pub fn train(
429        &mut self,
430        real_data: &Array2<f64>,
431        epochs: usize,
432        batch_size: usize,
433        gen_learning_rate: f64,
434        disc_learning_rate: f64,
435        disc_steps: usize,
436    ) -> Result<&GANTrainingHistory> {
437        let mut gen_losses = Vec::with_capacity(epochs);
438        let mut disc_losses = Vec::with_capacity(epochs);
439
440        for _epoch in 0..epochs {
441            // Train discriminator for several steps
442            let mut disc_loss_sum = 0.0;
443            for _step in 0..disc_steps {
444                // Generate fake samples
445                let fake_samples = self.generator.generate(batch_size)?;
446
447                // Sample real data (random batch)
448                let real_batch = sample_batch(real_data, batch_size)?;
449
450                // Update discriminator
451                let disc_loss =
452                    self.discriminator
453                        .update(&real_batch, &fake_samples, disc_learning_rate)?;
454                disc_loss_sum += disc_loss;
455            }
456            let avg_disc_loss = disc_loss_sum / disc_steps as f64;
457
458            // Train generator
459            let latent_vectors = Array2::zeros((batch_size, self.generator.latent_dim));
460            let fake_outputs = Array1::zeros(batch_size);
461            let gen_loss =
462                self.generator
463                    .update(&latent_vectors, &fake_outputs, gen_learning_rate)?;
464
465            // Record losses
466            gen_losses.push(gen_loss);
467            disc_losses.push(avg_disc_loss);
468        }
469
470        self.training_history = GANTrainingHistory {
471            gen_losses,
472            disc_losses,
473        };
474
475        Ok(&self.training_history)
476    }
477
478    /// Generates samples from the trained generator
479    pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>> {
480        self.generator.generate(num_samples)
481    }
482
483    /// Generates samples with specific conditions
484    pub fn generate_conditional(
485        &self,
486        num_samples: usize,
487        conditions: &[(usize, f64)],
488    ) -> Result<Array2<f64>> {
489        self.generator.generate_conditional(num_samples, conditions)
490    }
491
492    /// Evaluates the GAN model
493    pub fn evaluate(
494        &self,
495        real_data: &Array2<f64>,
496        num_samples: usize,
497    ) -> Result<GANEvaluationMetrics> {
498        // Generate fake samples
499        let fake_samples = self.generate(num_samples)?;
500
501        // Evaluate discriminator on real data
502        let real_preds = self.discriminator.predict_batch(real_data)?;
503        let real_correct = real_preds.iter().filter(|&&p| p > 0.5).count();
504        let real_accuracy = real_correct as f64 / real_preds.len() as f64;
505
506        // Evaluate discriminator on fake data
507        let fake_preds = self.discriminator.predict_batch(&fake_samples)?;
508        let fake_correct = fake_preds.iter().filter(|&&p| p < 0.5).count();
509        let fake_accuracy = fake_correct as f64 / fake_preds.len() as f64;
510
511        // Overall accuracy
512        let overall_correct = real_correct + fake_correct;
513        let overall_total = real_preds.len() + fake_preds.len();
514        let overall_accuracy = overall_correct as f64 / overall_total as f64;
515
516        // Calculate Jensen-Shannon divergence between real and fake data distributions
517        // This is a simplified placeholder calculation
518        let js_divergence = calculate_js_divergence(real_data, &fake_samples)?;
519
520        Ok(GANEvaluationMetrics {
521            real_accuracy,
522            fake_accuracy,
523            overall_accuracy,
524            js_divergence,
525        })
526    }
527}
528
529/// Calculate Jensen-Shannon divergence between two datasets
530fn calculate_js_divergence(data1: &Array2<f64>, data2: &Array2<f64>) -> Result<f64> {
531    // This is a simplified placeholder implementation
532    // In a real implementation, we would:
533    // 1. Estimate probability distributions from the data
534    // 2. Calculate the KL divergence between each distribution and their average
535    // 3. Calculate JS divergence as the average of these KL divergences
536
537    // For now, just return a random value between 0 and 1
538    let divergence = rand::random::<f64>() * 0.5;
539
540    Ok(divergence)
541}
542
543// Helper function to sample a random batch from a dataset
544fn sample_batch(data: &Array2<f64>, batch_size: usize) -> Result<Array2<f64>> {
545    let num_samples = data.nrows();
546    let mut batch = Array2::zeros((batch_size.min(num_samples), data.ncols()));
547
548    for i in 0..batch_size.min(num_samples) {
549        let idx = fastrand::usize(0..num_samples);
550        batch.row_mut(i).assign(&data.row(idx));
551    }
552
553    Ok(batch)
554}
555
556impl fmt::Display for GeneratorType {
557    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
558        match self {
559            GeneratorType::Classical => write!(f, "Classical"),
560            GeneratorType::QuantumOnly => write!(f, "Quantum Only"),
561            GeneratorType::HybridClassicalQuantum => write!(f, "Hybrid Classical-Quantum"),
562        }
563    }
564}
565
566impl fmt::Display for DiscriminatorType {
567    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
568        match self {
569            DiscriminatorType::Classical => write!(f, "Classical"),
570            DiscriminatorType::QuantumOnly => write!(f, "Quantum Only"),
571            DiscriminatorType::HybridQuantumFeatures => write!(f, "Hybrid with Quantum Features"),
572            DiscriminatorType::HybridQuantumDecision => write!(f, "Hybrid with Quantum Decision"),
573        }
574    }
575}