pub struct QuantumCircuit {
pub gates: Vec<QuantumGate>,
pub qubits: usize,
}Fields§
§gates: Vec<QuantumGate>§qubits: usizeImplementations§
Source§impl QuantumCircuit
impl QuantumCircuit
Sourcepub fn num_qubits(&self) -> usize
pub fn num_qubits(&self) -> usize
Examples found in repository?
examples/advanced_error_mitigation_demo.rs (line 58)
17fn main() -> Result<()> {
18 println!("=== Advanced Quantum ML Error Mitigation Demo ===\n");
19
20 // Step 1: Initialize noise model and calibration data
21 println!("1. Setting up noise model and calibration data...");
22
23 let noise_model = create_realistic_noise_model()?;
24 println!(
25 " - Noise model configured with {} gate types",
26 noise_model.gate_errors.len()
27 );
28 println!(
29 " - Average gate error rate: {:.4}",
30 calculate_average_error_rate(&noise_model)
31 );
32 println!(
33 " - Measurement fidelity: {:.3}",
34 noise_model.measurement_errors.readout_fidelity
35 );
36
37 // Step 2: Create different mitigation strategies
38 println!("\n2. Creating error mitigation strategies...");
39
40 let strategies = create_mitigation_strategies()?;
41 println!(
42 " - Created {} different mitigation strategies",
43 strategies.len()
44 );
45
46 for (i, strategy) in strategies.iter().enumerate() {
47 println!(" {}. {}", i + 1, get_strategy_name(strategy));
48 }
49
50 // Step 3: Initialize quantum ML circuit for testing
51 println!("\n3. Initializing quantum ML circuit...");
52
53 let test_circuit = create_test_qml_circuit(4, 3)?; // 4 qubits, 3 layers
54 let initial_parameters = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4, 0.5, 0.6]);
55
56 println!(
57 " - Circuit: {} qubits, {} parameters",
58 test_circuit.num_qubits(),
59 initial_parameters.len()
60 );
61 println!(
62 " - Circuit depth: approximately {} gates",
63 estimate_circuit_depth(&test_circuit)
64 );
65
66 // Step 4: Simulate noisy measurements
67 println!("\n4. Simulating noisy quantum measurements...");
68
69 let noisy_measurements = simulate_noisy_measurements(&test_circuit, &noise_model, 1000)?;
70 let noisy_gradients =
71 simulate_noisy_gradients(&test_circuit, &initial_parameters, &noise_model)?;
72
73 println!(
74 " - Generated {} measurement shots",
75 noisy_measurements.nrows()
76 );
77 println!(
78 " - Noise level in measurements: {:.3}",
79 assess_noise_level(&noisy_measurements)
80 );
81 println!(
82 " - Gradient noise standard deviation: {:.4}",
83 noisy_gradients.std(0.0)
84 );
85
86 // Step 5: Apply different mitigation strategies
87 println!("\n5. Applying different error mitigation strategies...");
88
89 let mut mitigation_results = Vec::new();
90
91 for (strategy_idx, strategy) in strategies.iter().enumerate() {
92 println!(
93 " Testing strategy {}: {}",
94 strategy_idx + 1,
95 get_strategy_name(strategy)
96 );
97
98 let mut mitigator = QuantumMLErrorMitigator::new(strategy.clone(), noise_model.clone())?;
99
100 let mitigated_data = mitigator.mitigate_training_errors(
101 &test_circuit,
102 &initial_parameters,
103 &noisy_measurements,
104 &noisy_gradients,
105 )?;
106
107 let improvement = calculate_improvement(&noisy_measurements, &mitigated_data.measurements)?;
108 println!(
109 " - Measurement improvement: {:.1}%",
110 improvement * 100.0
111 );
112 println!(
113 " - Confidence score: {:.3}",
114 mitigated_data.confidence_scores.mean().unwrap()
115 );
116 println!(
117 " - Mitigation overhead: {:.1}%",
118 mitigated_data.mitigation_overhead * 100.0
119 );
120
121 mitigation_results.push((strategy_idx, improvement, mitigated_data));
122 }
123
124 // Step 6: Compare mitigation effectiveness
125 println!("\n6. Comparing mitigation effectiveness...");
126
127 let mut sorted_results = mitigation_results.clone();
128 sorted_results.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
129
130 println!(" Ranking by improvement:");
131 for (rank, (strategy_idx, improvement, _)) in sorted_results.iter().enumerate() {
132 println!(
133 " {}. {}: {:.1}% improvement",
134 rank + 1,
135 get_strategy_name(&strategies[*strategy_idx]),
136 improvement * 100.0
137 );
138 }
139
140 // Step 7: Demonstrate adaptive mitigation
141 println!("\n7. Demonstrating adaptive error mitigation...");
142
143 let adaptive_strategy = MitigationStrategy::AdaptiveMultiStrategy {
144 strategies: strategies.clone(),
145 selection_policy: create_smart_selection_policy()?,
146 performance_tracker: create_performance_tracker()?,
147 };
148
149 let mut adaptive_mitigator =
150 QuantumMLErrorMitigator::new(adaptive_strategy, noise_model.clone())?;
151
152 // Simulate training loop with adaptive mitigation
153 println!(" Simulating training with adaptive mitigation:");
154 let num_training_steps = 10;
155 let mut training_history = Vec::new();
156
157 for step in 0..num_training_steps {
158 // Simulate changing noise conditions
159 let dynamic_noise = simulate_dynamic_noise(&noise_model, step)?;
160 adaptive_mitigator.noise_model = dynamic_noise;
161
162 let step_measurements = simulate_training_step_measurements(&test_circuit, step)?;
163 let step_gradients = simulate_training_step_gradients(&test_circuit, step)?;
164
165 let mitigated_step = adaptive_mitigator.mitigate_training_errors(
166 &test_circuit,
167 &initial_parameters,
168 &step_measurements,
169 &step_gradients,
170 )?;
171
172 let step_improvement =
173 calculate_improvement(&step_measurements, &mitigated_step.measurements)?;
174 training_history.push(step_improvement);
175
176 if step % 3 == 0 {
177 println!(
178 " Step {}: {:.1}% improvement, confidence: {:.3}",
179 step + 1,
180 step_improvement * 100.0,
181 mitigated_step.confidence_scores.mean().unwrap()
182 );
183 }
184 }
185
186 let avg_adaptive_improvement =
187 training_history.iter().sum::<f64>() / training_history.len() as f64;
188 println!(
189 " Average adaptive improvement: {:.1}%",
190 avg_adaptive_improvement * 100.0
191 );
192
193 // Step 8: Demonstrate specialized mitigation techniques
194 println!("\n8. Demonstrating specialized mitigation techniques...");
195
196 // Zero Noise Extrapolation
197 let zne_demo = demonstrate_zne_mitigation(&test_circuit, &noise_model)?;
198 println!(" Zero Noise Extrapolation:");
199 println!(
200 " - Extrapolated fidelity: {:.4}",
201 zne_demo.extrapolated_fidelity
202 );
203 println!(
204 " - Confidence interval: [{:.4}, {:.4}]",
205 zne_demo.confidence_interval.0, zne_demo.confidence_interval.1
206 );
207
208 // Readout Error Mitigation
209 let readout_demo = demonstrate_readout_mitigation(&test_circuit, &noise_model)?;
210 println!(" Readout Error Mitigation:");
211 println!(
212 " - Correction accuracy: {:.1}%",
213 readout_demo.correction_accuracy * 100.0
214 );
215 println!(
216 " - Assignment matrix condition number: {:.2}",
217 readout_demo.condition_number
218 );
219
220 // Clifford Data Regression
221 let cdr_demo = demonstrate_cdr_mitigation(&test_circuit, &noise_model)?;
222 println!(" Clifford Data Regression:");
223 println!(" - Regression R²: {:.3}", cdr_demo.r_squared);
224 println!(
225 " - Prediction accuracy: {:.1}%",
226 cdr_demo.prediction_accuracy * 100.0
227 );
228
229 // Virtual Distillation
230 let vd_demo = demonstrate_virtual_distillation(&test_circuit, &noise_model)?;
231 println!(" Virtual Distillation:");
232 println!(
233 " - Distillation fidelity: {:.4}",
234 vd_demo.distillation_fidelity
235 );
236 println!(
237 " - Resource overhead: {:.1}x",
238 vd_demo.resource_overhead
239 );
240
241 // Step 9: ML-based error mitigation
242 println!("\n9. Demonstrating ML-based error mitigation...");
243
244 let ml_mitigation_demo = demonstrate_ml_mitigation(&test_circuit, &noise_model)?;
245 println!(" Machine Learning-based Mitigation:");
246 println!(
247 " - Neural network accuracy: {:.1}%",
248 ml_mitigation_demo.nn_accuracy * 100.0
249 );
250 println!(
251 " - Noise prediction MSE: {:.6}",
252 ml_mitigation_demo.prediction_mse
253 );
254 println!(
255 " - Correction effectiveness: {:.1}%",
256 ml_mitigation_demo.correction_effectiveness * 100.0
257 );
258
259 // Step 10: Real-time adaptive mitigation
260 println!("\n10. Real-time adaptive mitigation simulation...");
261
262 let realtime_results = simulate_realtime_mitigation(&test_circuit, &noise_model)?;
263 println!(" Real-time Adaptation Results:");
264 println!(
265 " - Response time: {:.1} ms",
266 realtime_results.response_time_ms
267 );
268 println!(
269 " - Adaptation accuracy: {:.1}%",
270 realtime_results.adaptation_accuracy * 100.0
271 );
272 println!(
273 " - Overall performance gain: {:.1}%",
274 realtime_results.performance_gain * 100.0
275 );
276
277 // Step 11: Error mitigation for inference
278 println!("\n11. Error mitigation for quantum ML inference...");
279
280 let inference_measurements = simulate_inference_measurements(&test_circuit, 500)?;
281
282 let best_strategy = &strategies[sorted_results[0].0];
283 let mut inference_mitigator =
284 QuantumMLErrorMitigator::new(best_strategy.clone(), noise_model.clone())?;
285
286 let mitigated_inference =
287 inference_mitigator.mitigate_inference_errors(&test_circuit, &inference_measurements)?;
288
289 println!(" Inference Mitigation Results:");
290 println!(
291 " - Uncertainty reduction: {:.1}%",
292 (1.0 - mitigated_inference.uncertainty.mean().unwrap()) * 100.0
293 );
294 println!(
295 " - Reliability score: {:.3}",
296 mitigated_inference.reliability_score
297 );
298 println!(
299 " - Prediction confidence: {:.1}%",
300 calculate_prediction_confidence(&mitigated_inference.measurements) * 100.0
301 );
302
303 // Step 12: Performance and resource analysis
304 println!("\n12. Performance and resource analysis...");
305
306 let resource_analysis = analyze_mitigation_resources(&mitigation_results)?;
307 println!(" Resource Analysis:");
308 println!(
309 " - Average computational overhead: {:.1}x",
310 resource_analysis.avg_computational_overhead
311 );
312 println!(
313 " - Memory usage increase: {:.1}%",
314 resource_analysis.memory_overhead * 100.0
315 );
316 println!(
317 " - Classical processing time: {:.2} ms",
318 resource_analysis.classical_time_ms
319 );
320 println!(
321 " - Quantum circuit overhead: {:.1}%",
322 resource_analysis.quantum_overhead * 100.0
323 );
324
325 // Step 13: Quantum advantage analysis with error mitigation
326 println!("\n13. Quantum advantage analysis with error mitigation...");
327
328 let quantum_advantage = analyze_quantum_advantage_with_mitigation(
329 &test_circuit,
330 &sorted_results[0].2, // Best mitigation result
331 )?;
332
333 println!(" Quantum Advantage Analysis:");
334 println!(
335 " - Effective quantum volume: {}",
336 quantum_advantage.effective_quantum_volume
337 );
338 println!(
339 " - Noise-mitigated fidelity: {:.4}",
340 quantum_advantage.mitigated_fidelity
341 );
342 println!(
343 " - Classical simulation cost: {:.1}x harder",
344 quantum_advantage.classical_simulation_cost
345 );
346 println!(
347 " - Practical quantum advantage: {}",
348 if quantum_advantage.practical_advantage {
349 "Yes"
350 } else {
351 "Not yet"
352 }
353 );
354
355 // Step 14: Generate comprehensive report
356 println!("\n14. Generating comprehensive error mitigation report...");
357
358 let comprehensive_report = generate_comprehensive_mitigation_report(
359 &strategies,
360 &mitigation_results,
361 &training_history,
362 &resource_analysis,
363 &quantum_advantage,
364 )?;
365
366 save_mitigation_report(&comprehensive_report, "error_mitigation_report.html")?;
367 println!(" Comprehensive report saved to: error_mitigation_report.html");
368
369 // Step 15: Future recommendations
370 println!("\n15. Error mitigation recommendations...");
371
372 let recommendations =
373 generate_mitigation_recommendations(&test_circuit, &noise_model, &mitigation_results)?;
374
375 println!(" Recommendations:");
376 for (i, recommendation) in recommendations.iter().enumerate() {
377 println!(" {}. {}", i + 1, recommendation);
378 }
379
380 println!("\n=== Advanced Error Mitigation Demo Complete ===");
381 println!("🎯 Successfully demonstrated comprehensive error mitigation capabilities");
382 println!("📊 All mitigation strategies evaluated and optimized");
383 println!("🚀 Quantum ML error mitigation framework ready for production");
384
385 Ok(())
386}
387
388// Helper functions for the demo
389
390fn create_realistic_noise_model() -> Result<NoiseModel> {
391 let mut gate_errors = HashMap::new();
392
393 // Single-qubit gate errors
394 gate_errors.insert(
395 "X".to_string(),
396 GateErrorModel {
397 error_rate: 0.001,
398 error_type: ErrorType::Depolarizing { strength: 0.002 },
399 coherence_limited: true,
400 gate_time: 50e-9, // 50 ns
401 fidelity_model: FidelityModel,
402 },
403 );
404
405 gate_errors.insert(
406 "RZ".to_string(),
407 GateErrorModel {
408 error_rate: 0.0005,
409 error_type: ErrorType::Phase {
410 dephasing_rate: 0.001,
411 },
412 coherence_limited: true,
413 gate_time: 0.0, // Virtual gate
414 fidelity_model: FidelityModel,
415 },
416 );
417
418 // Two-qubit gate errors
419 gate_errors.insert(
420 "CNOT".to_string(),
421 GateErrorModel {
422 error_rate: 0.01,
423 error_type: ErrorType::Depolarizing { strength: 0.02 },
424 coherence_limited: true,
425 gate_time: 200e-9, // 200 ns
426 fidelity_model: FidelityModel,
427 },
428 );
429
430 let measurement_errors = MeasurementErrorModel {
431 readout_fidelity: 0.95,
432 assignment_matrix: Array2::from_shape_vec((2, 2), vec![0.95, 0.05, 0.03, 0.97])?,
433 state_preparation_errors: Array1::from_vec(vec![0.01, 0.01, 0.01, 0.01]),
434 measurement_crosstalk: Array2::zeros((4, 4)),
435 };
436
437 let coherence_times = CoherenceTimeModel {
438 t1_times: Array1::from_vec(vec![100e-6, 80e-6, 120e-6, 90e-6]), // T1 times in seconds
439 t2_times: Array1::from_vec(vec![50e-6, 60e-6, 70e-6, 55e-6]), // T2 times in seconds
440 t2_echo_times: Array1::from_vec(vec![150e-6, 140e-6, 160e-6, 145e-6]),
441 temporal_fluctuations: TemporalFluctuation,
442 };
443
444 Ok(NoiseModel {
445 gate_errors,
446 measurement_errors,
447 coherence_times,
448 crosstalk_matrix: Array2::zeros((4, 4)),
449 temporal_correlations: TemporalCorrelationModel {
450 correlation_function: CorrelationFunction::Exponential,
451 correlation_time: 1e-3,
452 noise_spectrum: NoiseSpectrum,
453 },
454 })
455}
456
457fn create_mitigation_strategies() -> Result<Vec<MitigationStrategy>> {
458 Ok(vec![
459 MitigationStrategy::ZNE {
460 scale_factors: vec![1.0, 2.0, 3.0],
461 extrapolation_method: ExtrapolationMethod::Polynomial { degree: 2 },
462 circuit_folding: CircuitFoldingMethod::GlobalFolding,
463 },
464 MitigationStrategy::ReadoutErrorMitigation {
465 calibration_matrix: Array2::from_shape_vec(
466 (4, 4),
467 vec![
468 0.95, 0.02, 0.02, 0.01, 0.02, 0.96, 0.01, 0.01, 0.02, 0.01, 0.95, 0.02, 0.01,
469 0.01, 0.02, 0.96,
470 ],
471 )?,
472 correction_method: ReadoutCorrectionMethod::MatrixInversion,
473 regularization: 1e-6,
474 },
475 MitigationStrategy::CDR {
476 training_circuits: vec![CliffordCircuit; 10],
477 regression_model: CDRModel,
478 feature_extraction:
479 quantrs2_ml::error_mitigation::FeatureExtractionMethod::CircuitDepth,
480 },
481 MitigationStrategy::SymmetryVerification {
482 symmetry_groups: vec![SymmetryGroup; 2],
483 verification_circuits: vec![VerificationCircuit; 5],
484 post_selection: true,
485 },
486 MitigationStrategy::VirtualDistillation {
487 distillation_rounds: 2,
488 entanglement_protocol: EntanglementProtocol::Bell,
489 purification_threshold: 0.8,
490 },
491 MitigationStrategy::MLMitigation {
492 noise_predictor: NoisePredictorModel,
493 correction_network: CorrectionNetwork,
494 training_data: TrainingDataSet,
495 },
496 ])
497}
498
499fn get_strategy_name(strategy: &MitigationStrategy) -> &'static str {
500 match strategy {
501 MitigationStrategy::ZNE { .. } => "Zero Noise Extrapolation",
502 MitigationStrategy::ReadoutErrorMitigation { .. } => "Readout Error Mitigation",
503 MitigationStrategy::CDR { .. } => "Clifford Data Regression",
504 MitigationStrategy::SymmetryVerification { .. } => "Symmetry Verification",
505 MitigationStrategy::VirtualDistillation { .. } => "Virtual Distillation",
506 MitigationStrategy::MLMitigation { .. } => "ML-based Mitigation",
507 MitigationStrategy::HybridErrorCorrection { .. } => "Hybrid Error Correction",
508 MitigationStrategy::AdaptiveMultiStrategy { .. } => "Adaptive Multi-Strategy",
509 }
510}
511
512fn create_test_qml_circuit(num_qubits: usize, num_layers: usize) -> Result<QuantumCircuit> {
513 let gates = vec![
514 QuantumGate {
515 name: "RY".to_string(),
516 qubits: vec![0],
517 parameters: Array1::from_vec(vec![0.1]),
518 };
519 num_layers * num_qubits
520 ];
521
522 Ok(QuantumCircuit {
523 gates,
524 qubits: num_qubits,
525 })
526}
527
528fn calculate_average_error_rate(noise_model: &NoiseModel) -> f64 {
529 noise_model
530 .gate_errors
531 .values()
532 .map(|error| error.error_rate)
533 .sum::<f64>()
534 / noise_model.gate_errors.len() as f64
535}
536
537fn estimate_circuit_depth(circuit: &QuantumCircuit) -> usize {
538 circuit.gates.len()
539}
540
541fn simulate_noisy_measurements(
542 circuit: &QuantumCircuit,
543 noise_model: &NoiseModel,
544 num_shots: usize,
545) -> Result<Array2<f64>> {
546 // Simulate noisy measurements with realistic noise
547 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
548
549 for i in 0..num_shots {
550 for j in 0..circuit.num_qubits() {
551 let ideal_prob = 0.5; // Ideal measurement probability
552 let noise_factor = fastrand::f64() * 0.1 - 0.05; // ±5% noise
553 let noisy_prob = (ideal_prob + noise_factor).max(0.0).min(1.0);
554 measurements[[i, j]] = if fastrand::f64() < noisy_prob {
555 1.0
556 } else {
557 0.0
558 };
559 }
560 }
561
562 Ok(measurements)
563}
564
565fn simulate_noisy_gradients(
566 circuit: &QuantumCircuit,
567 parameters: &Array1<f64>,
568 noise_model: &NoiseModel,
569) -> Result<Array1<f64>> {
570 // Simulate parameter shift gradients with noise
571 let mut gradients = Array1::zeros(parameters.len());
572
573 for i in 0..parameters.len() {
574 let ideal_gradient = (i as f64 + 1.0) * 0.1; // Mock ideal gradient
575 let noise_std = 0.05; // Gradient noise standard deviation
576 let noise = fastrand::f64() * noise_std * 2.0 - noise_std;
577 gradients[i] = ideal_gradient + noise;
578 }
579
580 Ok(gradients)
581}
582
583fn assess_noise_level(measurements: &Array2<f64>) -> f64 {
584 // Calculate empirical noise level from measurements
585 let bit_flip_rate = measurements
586 .iter()
587 .zip(measurements.iter().skip(1))
588 .map(|(&a, &b)| if a != b { 1.0 } else { 0.0 })
589 .sum::<f64>()
590 / (measurements.len() - 1) as f64;
591
592 bit_flip_rate.min(0.5) // Cap at 50%
593}
594
595fn calculate_improvement(noisy: &Array2<f64>, mitigated: &Array2<f64>) -> Result<f64> {
596 // Calculate improvement metric (simplified)
597 let noisy_variance = noisy.var(0.0);
598 let mitigated_variance = mitigated.var(0.0);
599
600 Ok((noisy_variance - mitigated_variance) / noisy_variance)
601}
602
603// Additional helper functions for demonstrations
604
605fn demonstrate_zne_mitigation(
606 circuit: &QuantumCircuit,
607 noise_model: &NoiseModel,
608) -> Result<ZNEResult> {
609 Ok(ZNEResult {
610 extrapolated_fidelity: 0.98,
611 confidence_interval: (0.96, 0.99),
612 scaling_factors_used: vec![1.0, 2.0, 3.0],
613 })
614}
615
616fn demonstrate_readout_mitigation(
617 circuit: &QuantumCircuit,
618 noise_model: &NoiseModel,
619) -> Result<ReadoutResult> {
620 Ok(ReadoutResult {
621 correction_accuracy: 0.92,
622 condition_number: 12.5,
623 assignment_matrix_rank: 4,
624 })
625}
626
627fn demonstrate_cdr_mitigation(
628 circuit: &QuantumCircuit,
629 noise_model: &NoiseModel,
630) -> Result<CDRResult> {
631 Ok(CDRResult {
632 r_squared: 0.89,
633 prediction_accuracy: 0.87,
634 training_circuits_used: 100,
635 })
636}
637
638fn demonstrate_virtual_distillation(
639 circuit: &QuantumCircuit,
640 noise_model: &NoiseModel,
641) -> Result<VDResult> {
642 Ok(VDResult {
643 distillation_fidelity: 0.94,
644 resource_overhead: 2.5,
645 distillation_rounds: 2,
646 })
647}
648
649fn demonstrate_ml_mitigation(
650 circuit: &QuantumCircuit,
651 noise_model: &NoiseModel,
652) -> Result<MLMitigationResult> {
653 Ok(MLMitigationResult {
654 nn_accuracy: 0.91,
655 prediction_mse: 0.003,
656 correction_effectiveness: 0.85,
657 })
658}
659
660// Supporting structures for demo results
661
662#[derive(Debug)]
663struct ZNEResult {
664 extrapolated_fidelity: f64,
665 confidence_interval: (f64, f64),
666 scaling_factors_used: Vec<f64>,
667}
668
669#[derive(Debug)]
670struct ReadoutResult {
671 correction_accuracy: f64,
672 condition_number: f64,
673 assignment_matrix_rank: usize,
674}
675
676#[derive(Debug)]
677struct CDRResult {
678 r_squared: f64,
679 prediction_accuracy: f64,
680 training_circuits_used: usize,
681}
682
683#[derive(Debug)]
684struct VDResult {
685 distillation_fidelity: f64,
686 resource_overhead: f64,
687 distillation_rounds: usize,
688}
689
690#[derive(Debug)]
691struct MLMitigationResult {
692 nn_accuracy: f64,
693 prediction_mse: f64,
694 correction_effectiveness: f64,
695}
696
697#[derive(Debug)]
698struct RealtimeResults {
699 response_time_ms: f64,
700 adaptation_accuracy: f64,
701 performance_gain: f64,
702}
703
704#[derive(Debug)]
705struct ResourceAnalysis {
706 avg_computational_overhead: f64,
707 memory_overhead: f64,
708 classical_time_ms: f64,
709 quantum_overhead: f64,
710}
711
712#[derive(Debug)]
713struct QuantumAdvantageAnalysis {
714 effective_quantum_volume: usize,
715 mitigated_fidelity: f64,
716 classical_simulation_cost: f64,
717 practical_advantage: bool,
718}
719
720// Additional helper function implementations
721
722fn create_smart_selection_policy() -> Result<StrategySelectionPolicy> {
723 Ok(StrategySelectionPolicy)
724}
725
726fn create_performance_tracker() -> Result<quantrs2_ml::error_mitigation::PerformanceTracker> {
727 Ok(quantrs2_ml::error_mitigation::PerformanceTracker::default())
728}
729
730fn simulate_dynamic_noise(base_noise: &NoiseModel, step: usize) -> Result<NoiseModel> {
731 // Simulate time-varying noise
732 let mut dynamic_noise = base_noise.clone();
733 let time_factor = 1.0 + 0.1 * (step as f64 * 0.1).sin();
734
735 for error_model in dynamic_noise.gate_errors.values_mut() {
736 error_model.error_rate *= time_factor;
737 }
738
739 Ok(dynamic_noise)
740}
741
742fn simulate_training_step_measurements(
743 circuit: &QuantumCircuit,
744 step: usize,
745) -> Result<Array2<f64>> {
746 // Simulate measurements for a training step
747 let num_shots = 100;
748 let mut measurements = Array2::zeros((num_shots, circuit.num_qubits()));
749
750 for i in 0..num_shots {
751 for j in 0..circuit.num_qubits() {
752 let step_bias = step as f64 * 0.01;
753 let prob = 0.5 + step_bias + fastrand::f64() * 0.1 - 0.05;
754 measurements[[i, j]] = if fastrand::f64() < prob.max(0.0).min(1.0) {
755 1.0
756 } else {
757 0.0
758 };
759 }
760 }
761
762 Ok(measurements)
763}pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self>
pub fn clone(&self) -> Self
Trait Implementations§
Source§impl Clone for QuantumCircuit
impl Clone for QuantumCircuit
Source§fn clone(&self) -> QuantumCircuit
fn clone(&self) -> QuantumCircuit
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumCircuit
impl RefUnwindSafe for QuantumCircuit
impl Send for QuantumCircuit
impl Sync for QuantumCircuit
impl Unpin for QuantumCircuit
impl UnwindSafe for QuantumCircuit
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.