1use crate::error::Result;
8use ndarray::{Array1, Array2, Array3, ArrayD, Axis};
9use std::collections::HashMap;
10use std::sync::Arc;
11
12pub struct QuantumMLErrorMitigator {
14 pub mitigation_strategy: MitigationStrategy,
15 pub noise_model: NoiseModel,
16 pub calibration_data: CalibrationData,
17 pub adaptive_config: AdaptiveConfig,
18 pub performance_metrics: PerformanceMetrics,
19}
20
21#[derive(Debug, Clone)]
23pub struct PerformanceTracker {
24 pub metrics_history: Vec<PerformanceMetrics>,
26 pub current_performance: PerformanceMetrics,
28}
29
30#[derive(Debug, Clone)]
32pub enum MitigationStrategy {
33 ZNE {
35 scale_factors: Vec<f64>,
36 extrapolation_method: ExtrapolationMethod,
37 circuit_folding: CircuitFoldingMethod,
38 },
39 ReadoutErrorMitigation {
41 calibration_matrix: Array2<f64>,
42 correction_method: ReadoutCorrectionMethod,
43 regularization: f64,
44 },
45 CDR {
47 training_circuits: Vec<CliffordCircuit>,
48 regression_model: CDRModel,
49 feature_extraction: FeatureExtractionMethod,
50 },
51 SymmetryVerification {
53 symmetry_groups: Vec<SymmetryGroup>,
54 verification_circuits: Vec<VerificationCircuit>,
55 post_selection: bool,
56 },
57 VirtualDistillation {
59 distillation_rounds: usize,
60 entanglement_protocol: EntanglementProtocol,
61 purification_threshold: f64,
62 },
63 MLMitigation {
65 noise_predictor: NoisePredictorModel,
66 correction_network: CorrectionNetwork,
67 training_data: TrainingDataSet,
68 },
69 HybridErrorCorrection {
71 classical_preprocessing: ClassicalPreprocessor,
72 quantum_correction: QuantumErrorCorrector,
73 post_processing: ClassicalPostprocessor,
74 },
75 AdaptiveMultiStrategy {
77 strategies: Vec<MitigationStrategy>,
78 selection_policy: StrategySelectionPolicy,
79 performance_tracker: PerformanceTracker,
80 },
81}
82
83#[derive(Debug, Clone)]
85pub struct NoiseModel {
86 pub gate_errors: HashMap<String, GateErrorModel>,
87 pub measurement_errors: MeasurementErrorModel,
88 pub coherence_times: CoherenceTimeModel,
89 pub crosstalk_matrix: Array2<f64>,
90 pub temporal_correlations: TemporalCorrelationModel,
91}
92
93#[derive(Debug, Clone)]
95pub struct GateErrorModel {
96 pub error_rate: f64,
97 pub error_type: ErrorType,
98 pub coherence_limited: bool,
99 pub gate_time: f64,
100 pub fidelity_model: FidelityModel,
101}
102
103#[derive(Debug, Clone)]
105pub enum ErrorType {
106 Depolarizing {
107 strength: f64,
108 },
109 Amplitude {
110 damping_rate: f64,
111 },
112 Phase {
113 dephasing_rate: f64,
114 },
115 Pauli {
116 px: f64,
117 py: f64,
118 pz: f64,
119 },
120 Coherent {
121 rotation_angle: f64,
122 rotation_axis: Array1<f64>,
123 },
124 Correlated {
125 correlation_matrix: Array2<f64>,
126 },
127}
128
129#[derive(Debug, Clone)]
131pub struct MeasurementErrorModel {
132 pub readout_fidelity: f64,
133 pub assignment_matrix: Array2<f64>,
134 pub state_preparation_errors: Array1<f64>,
135 pub measurement_crosstalk: Array2<f64>,
136}
137
138#[derive(Debug, Clone)]
140pub struct CoherenceTimeModel {
141 pub t1_times: Array1<f64>, pub t2_times: Array1<f64>, pub t2_echo_times: Array1<f64>, pub temporal_fluctuations: TemporalFluctuation,
145}
146
147#[derive(Debug, Clone)]
149pub struct TemporalCorrelationModel {
150 pub correlation_function: CorrelationFunction,
151 pub correlation_time: f64,
152 pub noise_spectrum: NoiseSpectrum,
153}
154
155#[derive(Debug, Clone)]
157pub struct CalibrationData {
158 pub process_tomography: HashMap<String, ProcessMatrix>,
159 pub state_tomography: HashMap<String, StateMatrix>,
160 pub randomized_benchmarking: RBData,
161 pub gate_set_tomography: GSTData,
162 pub noise_spectroscopy: SpectroscopyData,
163}
164
165#[derive(Debug, Clone)]
167pub struct AdaptiveConfig {
168 pub adaptation_frequency: usize,
169 pub performance_threshold: f64,
170 pub strategy_switching_policy: SwitchingPolicy,
171 pub online_calibration: bool,
172 pub feedback_mechanism: FeedbackMechanism,
173}
174
175impl QuantumMLErrorMitigator {
176 pub fn new(mitigation_strategy: MitigationStrategy, noise_model: NoiseModel) -> Result<Self> {
178 let calibration_data = CalibrationData::default();
179 let adaptive_config = AdaptiveConfig::default();
180 let performance_metrics = PerformanceMetrics::new();
181
182 Ok(Self {
183 mitigation_strategy,
184 noise_model,
185 calibration_data,
186 adaptive_config,
187 performance_metrics,
188 })
189 }
190
191 pub fn mitigate_training_errors(
193 &mut self,
194 circuit: &QuantumCircuit,
195 parameters: &Array1<f64>,
196 measurement_results: &Array2<f64>,
197 gradient_estimates: &Array1<f64>,
198 ) -> Result<MitigatedTrainingData> {
199 self.update_noise_model(measurement_results)?;
201
202 let mitigated_measurements =
204 self.apply_measurement_mitigation(circuit, measurement_results)?;
205
206 let mitigated_gradients =
207 self.apply_gradient_mitigation(circuit, parameters, gradient_estimates)?;
208
209 self.performance_metrics
211 .update(&mitigated_measurements, &mitigated_gradients)?;
212
213 if self.should_adapt_strategy()? {
215 self.adapt_mitigation_strategy()?;
216 }
217
218 Ok(MitigatedTrainingData {
219 measurements: mitigated_measurements,
220 gradients: mitigated_gradients,
221 confidence_scores: self.compute_confidence_scores(circuit)?,
222 mitigation_overhead: self.performance_metrics.mitigation_overhead,
223 })
224 }
225
226 pub fn mitigate_inference_errors(
228 &mut self,
229 circuit: &QuantumCircuit,
230 measurement_results: &Array2<f64>,
231 ) -> Result<MitigatedInferenceData> {
232 let mitigated_measurements =
233 self.apply_measurement_mitigation(circuit, measurement_results)?;
234
235 let uncertainty_estimates =
236 self.compute_uncertainty_estimates(circuit, &mitigated_measurements)?;
237
238 Ok(MitigatedInferenceData {
239 measurements: mitigated_measurements,
240 uncertainty: uncertainty_estimates,
241 reliability_score: self.compute_reliability_score(circuit)?,
242 })
243 }
244
245 fn apply_measurement_mitigation(
247 &self,
248 circuit: &QuantumCircuit,
249 measurements: &Array2<f64>,
250 ) -> Result<Array2<f64>> {
251 match &self.mitigation_strategy {
252 MitigationStrategy::ZNE {
253 scale_factors,
254 extrapolation_method,
255 ..
256 } => self.apply_zne_mitigation(
257 circuit,
258 measurements,
259 scale_factors,
260 extrapolation_method,
261 ),
262 MitigationStrategy::ReadoutErrorMitigation {
263 calibration_matrix,
264 correction_method,
265 ..
266 } => self.apply_readout_error_mitigation(
267 measurements,
268 calibration_matrix,
269 correction_method,
270 ),
271 MitigationStrategy::CDR {
272 training_circuits,
273 regression_model,
274 ..
275 } => self.apply_cdr_mitigation(
276 circuit,
277 measurements,
278 training_circuits,
279 regression_model,
280 ),
281 MitigationStrategy::SymmetryVerification {
282 symmetry_groups, ..
283 } => self.apply_symmetry_verification(circuit, measurements, symmetry_groups),
284 MitigationStrategy::VirtualDistillation {
285 distillation_rounds,
286 ..
287 } => self.apply_virtual_distillation(circuit, measurements, *distillation_rounds),
288 MitigationStrategy::MLMitigation {
289 noise_predictor,
290 correction_network,
291 ..
292 } => {
293 self.apply_ml_mitigation(circuit, measurements, noise_predictor, correction_network)
294 }
295 MitigationStrategy::HybridErrorCorrection {
296 classical_preprocessing,
297 quantum_correction,
298 post_processing,
299 } => self.apply_hybrid_error_correction(
300 circuit,
301 measurements,
302 classical_preprocessing,
303 quantum_correction,
304 post_processing,
305 ),
306 MitigationStrategy::AdaptiveMultiStrategy {
307 strategies,
308 selection_policy,
309 ..
310 } => self.apply_adaptive_multi_strategy(
311 circuit,
312 measurements,
313 strategies,
314 selection_policy,
315 ),
316 }
317 }
318
319 fn apply_zne_mitigation(
321 &self,
322 circuit: &QuantumCircuit,
323 measurements: &Array2<f64>,
324 scale_factors: &[f64],
325 extrapolation_method: &ExtrapolationMethod,
326 ) -> Result<Array2<f64>> {
327 let mut scaled_results = Vec::new();
328
329 for &scale_factor in scale_factors {
330 let scaled_circuit = self.scale_circuit_noise(circuit, scale_factor)?;
331 let scaled_measurements = self.execute_scaled_circuit(&scaled_circuit)?;
332 scaled_results.push((scale_factor, scaled_measurements));
333 }
334
335 self.extrapolate_to_zero_noise(&scaled_results, extrapolation_method)
337 }
338
339 fn apply_readout_error_mitigation(
341 &self,
342 measurements: &Array2<f64>,
343 calibration_matrix: &Array2<f64>,
344 correction_method: &ReadoutCorrectionMethod,
345 ) -> Result<Array2<f64>> {
346 match correction_method {
347 ReadoutCorrectionMethod::MatrixInversion => {
348 self.apply_matrix_inversion_correction(measurements, calibration_matrix)
349 }
350 ReadoutCorrectionMethod::ConstrainedLeastSquares => {
351 self.apply_constrained_least_squares_correction(measurements, calibration_matrix)
352 }
353 ReadoutCorrectionMethod::IterativeMaximumLikelihood => {
354 self.apply_ml_correction(measurements, calibration_matrix)
355 }
356 }
357 }
358
359 fn apply_cdr_mitigation(
361 &self,
362 circuit: &QuantumCircuit,
363 measurements: &Array2<f64>,
364 training_circuits: &[CliffordCircuit],
365 regression_model: &CDRModel,
366 ) -> Result<Array2<f64>> {
367 let circuit_features = self.extract_circuit_features(circuit)?;
369
370 let training_features = self.generate_training_features(training_circuits)?;
372 let training_labels = self.execute_clifford_circuits(training_circuits)?;
373
374 let trained_model = regression_model.train(&training_features, &training_labels)?;
376
377 let predicted_values = trained_model.predict(&circuit_features)?;
379
380 self.apply_cdr_correction(measurements, &predicted_values)
382 }
383
384 fn apply_symmetry_verification(
386 &self,
387 circuit: &QuantumCircuit,
388 measurements: &Array2<f64>,
389 symmetry_groups: &[SymmetryGroup],
390 ) -> Result<Array2<f64>> {
391 let mut verified_measurements = measurements.clone();
392
393 for symmetry_group in symmetry_groups {
394 let symmetry_violations =
395 self.detect_symmetry_violations(circuit, &verified_measurements, symmetry_group)?;
396
397 verified_measurements = self.apply_symmetry_constraints(
398 &verified_measurements,
399 &symmetry_violations,
400 symmetry_group,
401 )?;
402 }
403
404 Ok(verified_measurements)
405 }
406
407 fn apply_virtual_distillation(
409 &self,
410 circuit: &QuantumCircuit,
411 measurements: &Array2<f64>,
412 distillation_rounds: usize,
413 ) -> Result<Array2<f64>> {
414 let mut distilled_measurements = measurements.clone();
415
416 for _ in 0..distillation_rounds {
417 let virtual_copies = self.create_virtual_copies(circuit, 2)?;
419
420 let entanglement_measures = self.measure_virtual_entanglement(&virtual_copies)?;
422
423 distilled_measurements =
425 self.apply_distillation_protocol(&distilled_measurements, &entanglement_measures)?;
426 }
427
428 Ok(distilled_measurements)
429 }
430
431 fn apply_ml_mitigation(
433 &self,
434 circuit: &QuantumCircuit,
435 measurements: &Array2<f64>,
436 noise_predictor: &NoisePredictorModel,
437 correction_network: &CorrectionNetwork,
438 ) -> Result<Array2<f64>> {
439 let circuit_features = self.extract_circuit_features(circuit)?;
441 let predicted_noise = noise_predictor.predict(&circuit_features)?;
442
443 let correction_input = self.prepare_correction_input(measurements, &predicted_noise)?;
445 let corrections = correction_network.forward(&correction_input)?;
446
447 Ok(measurements + &corrections)
449 }
450
451 fn apply_hybrid_error_correction(
453 &self,
454 circuit: &QuantumCircuit,
455 measurements: &Array2<f64>,
456 classical_preprocessing: &ClassicalPreprocessor,
457 quantum_correction: &QuantumErrorCorrector,
458 post_processing: &ClassicalPostprocessor,
459 ) -> Result<Array2<f64>> {
460 let preprocessed_data = classical_preprocessing.process(measurements)?;
462
463 let quantum_corrected = quantum_correction.correct(circuit, &preprocessed_data)?;
465
466 post_processing.process(&quantum_corrected)
468 }
469
470 fn apply_adaptive_multi_strategy(
472 &self,
473 circuit: &QuantumCircuit,
474 measurements: &Array2<f64>,
475 strategies: &[MitigationStrategy],
476 selection_policy: &StrategySelectionPolicy,
477 ) -> Result<Array2<f64>> {
478 let selected_strategy =
480 selection_policy.select_strategy(circuit, &self.performance_metrics, strategies)?;
481
482 let mitigator = QuantumMLErrorMitigator {
484 mitigation_strategy: selected_strategy,
485 noise_model: self.noise_model.clone(),
486 calibration_data: self.calibration_data.clone(),
487 adaptive_config: self.adaptive_config.clone(),
488 performance_metrics: self.performance_metrics.clone(),
489 };
490
491 mitigator.apply_measurement_mitigation(circuit, measurements)
492 }
493
494 fn apply_gradient_mitigation(
496 &self,
497 circuit: &QuantumCircuit,
498 parameters: &Array1<f64>,
499 gradients: &Array1<f64>,
500 ) -> Result<Array1<f64>> {
501 let mut mitigated_gradients = Array1::zeros(gradients.len());
503
504 for (i, ¶m) in parameters.iter().enumerate() {
505 let mut params_plus = parameters.clone();
507 let mut params_minus = parameters.clone();
508 params_plus[i] = param + std::f64::consts::PI / 2.0;
509 params_minus[i] = param - std::f64::consts::PI / 2.0;
510
511 let circuit_plus = circuit.with_parameters(¶ms_plus)?;
513 let circuit_minus = circuit.with_parameters(¶ms_minus)?;
514
515 let measurements_plus = self.measure_circuit(&circuit_plus)?;
516 let measurements_minus = self.measure_circuit(&circuit_minus)?;
517
518 let mitigated_plus =
519 self.apply_measurement_mitigation(&circuit_plus, &measurements_plus)?;
520 let mitigated_minus =
521 self.apply_measurement_mitigation(&circuit_minus, &measurements_minus)?;
522
523 mitigated_gradients[i] =
525 (mitigated_plus.mean().unwrap() - mitigated_minus.mean().unwrap()) / 2.0;
526 }
527
528 Ok(mitigated_gradients)
529 }
530
531 fn update_noise_model(&mut self, measurements: &Array2<f64>) -> Result<()> {
533 let noise_statistics = self.analyze_noise_statistics(measurements)?;
535
536 for (gate_name, error_model) in &mut self.noise_model.gate_errors {
538 error_model.update_from_statistics(&noise_statistics)?;
539 }
540
541 self.noise_model
543 .measurement_errors
544 .update_from_measurements(measurements)?;
545
546 Ok(())
547 }
548
549 fn should_adapt_strategy(&self) -> Result<bool> {
551 let current_performance = self.performance_metrics.current_performance();
552 let adaptation_threshold = self.adaptive_config.performance_threshold;
553
554 Ok(current_performance < adaptation_threshold)
555 }
556
557 fn adapt_mitigation_strategy(&mut self) -> Result<()> {
559 match &self.adaptive_config.strategy_switching_policy {
560 SwitchingPolicy::PerformanceBased => {
561 self.switch_to_best_performing_strategy()?;
562 }
563 SwitchingPolicy::ResourceOptimized => {
564 self.switch_to_resource_optimal_strategy()?;
565 }
566 SwitchingPolicy::HybridAdaptive => {
567 self.switch_to_hybrid_adaptive_strategy()?;
568 }
569 }
570
571 Ok(())
572 }
573
574 fn compute_confidence_scores(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
576 let circuit_complexity = self.assess_circuit_complexity(circuit)?;
577 let noise_level = self.estimate_noise_level(circuit)?;
578 let mitigation_effectiveness = self.estimate_mitigation_effectiveness()?;
579
580 let base_confidence = 1.0 - (circuit_complexity * noise_level);
581 let adjusted_confidence = base_confidence * mitigation_effectiveness;
582
583 Ok(Array1::from_elem(circuit.num_qubits(), adjusted_confidence))
584 }
585
586 fn compute_uncertainty_estimates(
588 &self,
589 circuit: &QuantumCircuit,
590 measurements: &Array2<f64>,
591 ) -> Result<Array1<f64>> {
592 let num_bootstrap_samples = 1000;
594 let mut bootstrap_results = Vec::new();
595
596 for _ in 0..num_bootstrap_samples {
597 let bootstrap_measurements = self.bootstrap_sample(measurements)?;
598 let mitigated_bootstrap =
599 self.apply_measurement_mitigation(circuit, &bootstrap_measurements)?;
600 bootstrap_results.push(mitigated_bootstrap.mean().unwrap());
601 }
602
603 let mean_result = bootstrap_results.iter().sum::<f64>() / bootstrap_results.len() as f64;
605 let variance = bootstrap_results
606 .iter()
607 .map(|&x| (x - mean_result).powi(2))
608 .sum::<f64>()
609 / bootstrap_results.len() as f64;
610 let uncertainty = variance.sqrt();
611
612 Ok(Array1::from_elem(1, uncertainty))
613 }
614
615 fn compute_reliability_score(&self, circuit: &QuantumCircuit) -> Result<f64> {
617 let mitigation_fidelity = self.estimate_mitigation_fidelity(circuit)?;
618 let noise_resilience = self.assess_noise_resilience(circuit)?;
619 let calibration_quality = self.assess_calibration_quality()?;
620
621 Ok(mitigation_fidelity * noise_resilience * calibration_quality)
622 }
623
624 fn scale_circuit_noise(
627 &self,
628 circuit: &QuantumCircuit,
629 scale_factor: f64,
630 ) -> Result<QuantumCircuit> {
631 Ok(circuit.clone())
634 }
635
636 fn execute_scaled_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
637 Ok(Array2::zeros((100, circuit.num_qubits())))
640 }
641
642 fn extrapolate_to_zero_noise(
643 &self,
644 scaled_results: &[(f64, Array2<f64>)],
645 extrapolation_method: &ExtrapolationMethod,
646 ) -> Result<Array2<f64>> {
647 Ok(scaled_results[0].1.clone())
650 }
651
652 fn measure_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
653 Ok(Array2::zeros((100, circuit.num_qubits())))
656 }
657
658 fn analyze_noise_statistics(&self, measurements: &Array2<f64>) -> Result<NoiseStatistics> {
659 Ok(NoiseStatistics::default())
661 }
662
663 fn assess_circuit_complexity(&self, circuit: &QuantumCircuit) -> Result<f64> {
664 Ok(0.5) }
667
668 fn estimate_noise_level(&self, circuit: &QuantumCircuit) -> Result<f64> {
669 Ok(0.1) }
672
673 fn estimate_mitigation_effectiveness(&self) -> Result<f64> {
674 Ok(0.8) }
677
678 fn bootstrap_sample(&self, measurements: &Array2<f64>) -> Result<Array2<f64>> {
679 Ok(measurements.clone()) }
682
683 fn estimate_mitigation_fidelity(&self, circuit: &QuantumCircuit) -> Result<f64> {
684 Ok(0.9) }
687
688 fn assess_noise_resilience(&self, circuit: &QuantumCircuit) -> Result<f64> {
689 Ok(0.7) }
692
693 fn assess_calibration_quality(&self) -> Result<f64> {
694 Ok(0.85) }
697
698 }
700
701#[derive(Debug, Clone)]
704pub struct MitigatedTrainingData {
705 pub measurements: Array2<f64>,
706 pub gradients: Array1<f64>,
707 pub confidence_scores: Array1<f64>,
708 pub mitigation_overhead: f64,
709}
710
711#[derive(Debug, Clone)]
712pub struct MitigatedInferenceData {
713 pub measurements: Array2<f64>,
714 pub uncertainty: Array1<f64>,
715 pub reliability_score: f64,
716}
717
718#[derive(Debug, Clone)]
719pub enum ExtrapolationMethod {
720 Polynomial { degree: usize },
721 Exponential { exponential_form: ExponentialForm },
722 Richardson { orders: Vec<usize> },
723 Adaptive { method_selection: MethodSelection },
724}
725
726#[derive(Debug, Clone)]
727pub enum ReadoutCorrectionMethod {
728 MatrixInversion,
729 ConstrainedLeastSquares,
730 IterativeMaximumLikelihood,
731}
732
733#[derive(Debug, Clone)]
734pub enum CircuitFoldingMethod {
735 GlobalFolding,
736 LocalFolding { gate_priorities: Vec<String> },
737 ParametricFolding { scaling_function: ScalingFunction },
738}
739
740#[derive(Debug, Clone)]
743pub struct QuantumCircuit {
744 pub gates: Vec<QuantumGate>,
745 pub qubits: usize,
746}
747
748impl QuantumCircuit {
749 pub fn num_qubits(&self) -> usize {
750 self.qubits
751 }
752
753 pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self> {
754 Ok(self.clone())
756 }
757
758 pub fn clone(&self) -> Self {
759 Self {
760 gates: self.gates.clone(),
761 qubits: self.qubits,
762 }
763 }
764}
765
766#[derive(Debug, Clone)]
767pub struct QuantumGate {
768 pub name: String,
769 pub qubits: Vec<usize>,
770 pub parameters: Array1<f64>,
771}
772
773impl Default for CalibrationData {
775 fn default() -> Self {
776 Self {
777 process_tomography: HashMap::new(),
778 state_tomography: HashMap::new(),
779 randomized_benchmarking: RBData::default(),
780 gate_set_tomography: GSTData::default(),
781 noise_spectroscopy: SpectroscopyData::default(),
782 }
783 }
784}
785
786impl Default for AdaptiveConfig {
787 fn default() -> Self {
788 Self {
789 adaptation_frequency: 100,
790 performance_threshold: 0.8,
791 strategy_switching_policy: SwitchingPolicy::PerformanceBased,
792 online_calibration: true,
793 feedback_mechanism: FeedbackMechanism::default(),
794 }
795 }
796}
797
798impl Default for PerformanceTracker {
799 fn default() -> Self {
800 Self {
801 metrics_history: Vec::new(),
802 current_performance: PerformanceMetrics::new(),
803 }
804 }
805}
806
807#[derive(Debug, Clone, Default)]
809pub struct ProcessMatrix;
810
811#[derive(Debug, Clone, Default)]
812pub struct StateMatrix;
813
814#[derive(Debug, Clone, Default)]
815pub struct RBData;
816
817#[derive(Debug, Clone, Default)]
818pub struct GSTData;
819
820#[derive(Debug, Clone, Default)]
821pub struct SpectroscopyData;
822
823#[derive(Debug, Clone)]
824pub enum SwitchingPolicy {
825 PerformanceBased,
826 ResourceOptimized,
827 HybridAdaptive,
828}
829
830#[derive(Debug, Clone, Default)]
831pub struct FeedbackMechanism;
832
833#[derive(Debug, Clone, Default)]
834pub struct PerformanceMetrics {
835 pub mitigation_overhead: f64,
836}
837
838impl PerformanceMetrics {
839 pub fn new() -> Self {
840 Self {
841 mitigation_overhead: 0.1,
842 }
843 }
844
845 pub fn update(&mut self, _measurements: &Array2<f64>, _gradients: &Array1<f64>) -> Result<()> {
846 Ok(())
848 }
849
850 pub fn current_performance(&self) -> f64 {
851 0.85 }
853}
854
855#[derive(Debug, Clone)]
857pub struct CliffordCircuit;
858
859#[derive(Debug, Clone)]
860pub struct CDRModel;
861
862#[derive(Debug, Clone)]
863pub enum FeatureExtractionMethod {
864 CircuitDepth,
865 GateCount,
866 EntanglementStructure,
867}
868
869#[derive(Debug, Clone)]
870pub struct SymmetryGroup;
871
872#[derive(Debug, Clone)]
873pub struct VerificationCircuit;
874
875#[derive(Debug, Clone)]
876pub enum EntanglementProtocol {
877 Bell,
878 GHZ,
879 Cluster,
880}
881
882#[derive(Debug, Clone)]
883pub struct NoisePredictorModel;
884
885#[derive(Debug, Clone)]
886pub struct CorrectionNetwork;
887
888#[derive(Debug, Clone)]
889pub struct TrainingDataSet;
890
891#[derive(Debug, Clone)]
892pub struct ClassicalPreprocessor;
893
894#[derive(Debug, Clone)]
895pub struct QuantumErrorCorrector;
896
897#[derive(Debug, Clone)]
898pub struct ClassicalPostprocessor;
899
900#[derive(Debug, Clone)]
901pub struct StrategySelectionPolicy;
902
903#[derive(Debug, Clone)]
904pub enum ExponentialForm {
905 SingleExponential,
906 DoubleExponential,
907 Stretched,
908}
909
910#[derive(Debug, Clone)]
911pub enum MethodSelection {
912 CrossValidation,
913 BayesianOptimization,
914 AdaptiveGrid,
915}
916
917#[derive(Debug, Clone)]
918pub enum ScalingFunction {
919 Linear,
920 Polynomial,
921 Exponential,
922}
923
924#[derive(Debug, Clone)]
925pub struct FidelityModel;
926
927#[derive(Debug, Clone)]
928pub struct TemporalFluctuation;
929
930#[derive(Debug, Clone)]
931pub enum CorrelationFunction {
932 Exponential,
933 Gaussian,
934 PowerLaw,
935}
936
937#[derive(Debug, Clone)]
938pub struct NoiseSpectrum;
939
940#[derive(Debug, Clone, Default)]
941pub struct NoiseStatistics;
942
943impl GateErrorModel {
945 pub fn update_from_statistics(&mut self, _stats: &NoiseStatistics) -> Result<()> {
946 Ok(())
948 }
949}
950
951impl MeasurementErrorModel {
952 pub fn update_from_measurements(&mut self, _measurements: &Array2<f64>) -> Result<()> {
953 Ok(())
955 }
956}
957
958impl QuantumMLErrorMitigator {
959 fn apply_matrix_inversion_correction(
961 &self,
962 measurements: &Array2<f64>,
963 calibration_matrix: &Array2<f64>,
964 ) -> Result<Array2<f64>> {
965 Ok(measurements.clone()) }
968
969 fn apply_constrained_least_squares_correction(
970 &self,
971 measurements: &Array2<f64>,
972 calibration_matrix: &Array2<f64>,
973 ) -> Result<Array2<f64>> {
974 Ok(measurements.clone()) }
977
978 fn apply_ml_correction(
979 &self,
980 measurements: &Array2<f64>,
981 calibration_matrix: &Array2<f64>,
982 ) -> Result<Array2<f64>> {
983 Ok(measurements.clone()) }
986
987 fn extract_circuit_features(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
988 Ok(Array1::zeros(10)) }
991
992 fn generate_training_features(&self, circuits: &[CliffordCircuit]) -> Result<Array2<f64>> {
993 Ok(Array2::zeros((circuits.len(), 10))) }
996
997 fn execute_clifford_circuits(&self, circuits: &[CliffordCircuit]) -> Result<Array1<f64>> {
998 Ok(Array1::zeros(circuits.len())) }
1001
1002 fn apply_cdr_correction(
1003 &self,
1004 measurements: &Array2<f64>,
1005 predicted_values: &Array1<f64>,
1006 ) -> Result<Array2<f64>> {
1007 Ok(measurements.clone()) }
1010
1011 fn detect_symmetry_violations(
1012 &self,
1013 circuit: &QuantumCircuit,
1014 measurements: &Array2<f64>,
1015 symmetry_group: &SymmetryGroup,
1016 ) -> Result<Array1<f64>> {
1017 Ok(Array1::zeros(measurements.nrows())) }
1020
1021 fn apply_symmetry_constraints(
1022 &self,
1023 measurements: &Array2<f64>,
1024 violations: &Array1<f64>,
1025 symmetry_group: &SymmetryGroup,
1026 ) -> Result<Array2<f64>> {
1027 Ok(measurements.clone()) }
1030
1031 fn create_virtual_copies(
1032 &self,
1033 circuit: &QuantumCircuit,
1034 num_copies: usize,
1035 ) -> Result<Vec<QuantumCircuit>> {
1036 Ok(vec![circuit.clone(); num_copies]) }
1039
1040 fn measure_virtual_entanglement(&self, circuits: &[QuantumCircuit]) -> Result<Array1<f64>> {
1041 Ok(Array1::zeros(circuits.len())) }
1044
1045 fn apply_distillation_protocol(
1046 &self,
1047 measurements: &Array2<f64>,
1048 entanglement_measures: &Array1<f64>,
1049 ) -> Result<Array2<f64>> {
1050 Ok(measurements.clone()) }
1053
1054 fn prepare_correction_input(
1055 &self,
1056 measurements: &Array2<f64>,
1057 predicted_noise: &Array1<f64>,
1058 ) -> Result<Array2<f64>> {
1059 Ok(measurements.clone()) }
1062
1063 fn switch_to_best_performing_strategy(&mut self) -> Result<()> {
1064 Ok(())
1066 }
1067
1068 fn switch_to_resource_optimal_strategy(&mut self) -> Result<()> {
1069 Ok(())
1071 }
1072
1073 fn switch_to_hybrid_adaptive_strategy(&mut self) -> Result<()> {
1074 Ok(())
1076 }
1077}
1078
1079impl CDRModel {
1081 pub fn train(&self, features: &Array2<f64>, labels: &Array1<f64>) -> Result<TrainedCDRModel> {
1082 Ok(TrainedCDRModel::default())
1084 }
1085}
1086
1087#[derive(Debug, Clone, Default)]
1088pub struct TrainedCDRModel;
1089
1090impl TrainedCDRModel {
1091 pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1092 Ok(Array1::zeros(features.len())) }
1095}
1096
1097impl NoisePredictorModel {
1098 pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1099 Ok(Array1::zeros(features.len())) }
1102}
1103
1104impl CorrectionNetwork {
1105 pub fn forward(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
1106 Ok(Array2::zeros(input.dim())) }
1109}
1110
1111impl ClassicalPreprocessor {
1112 pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1113 Ok(data.clone()) }
1116}
1117
1118impl QuantumErrorCorrector {
1119 pub fn correct(&self, circuit: &QuantumCircuit, data: &Array2<f64>) -> Result<Array2<f64>> {
1120 Ok(data.clone()) }
1123}
1124
1125impl ClassicalPostprocessor {
1126 pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1127 Ok(data.clone()) }
1130}
1131
1132impl StrategySelectionPolicy {
1133 pub fn select_strategy(
1134 &self,
1135 circuit: &QuantumCircuit,
1136 metrics: &PerformanceMetrics,
1137 strategies: &[MitigationStrategy],
1138 ) -> Result<MitigationStrategy> {
1139 Ok(strategies[0].clone()) }
1142}