pub struct CliffordDataRegression {
pub num_training_circuits: usize,
pub regression_degree: usize,
/* private fields */
}Expand description
Clifford Data Regression (CDR) error mitigation
CDR learns a noise model from Clifford circuit data and applies it to non-Clifford circuits for improved accuracy.
Reference: Czarnik et al. (2021). “Error mitigation with Clifford quantum-circuit data”
Fields§
§num_training_circuits: usizeNumber of training Clifford circuits
regression_degree: usizePolynomial degree for regression
Implementations§
Source§impl CliffordDataRegression
impl CliffordDataRegression
Sourcepub const fn new(num_training_circuits: usize, regression_degree: usize) -> Self
pub const fn new(num_training_circuits: usize, regression_degree: usize) -> Self
Create a new CDR instance
Sourcepub fn train(
&mut self,
clifford_noisy: &[f64],
clifford_ideal: &[f64],
) -> Result<(), QuantRS2Error>
pub fn train( &mut self, clifford_noisy: &[f64], clifford_ideal: &[f64], ) -> Result<(), QuantRS2Error>
Train the CDR model using Clifford circuit data
§Arguments
clifford_noisy- Noisy expectation values from Clifford circuitsclifford_ideal- Ideal (simulable) expectation values
Sourcepub fn mitigate(&self, noisy_value: f64) -> Result<f64, QuantRS2Error>
pub fn mitigate(&self, noisy_value: f64) -> Result<f64, QuantRS2Error>
Apply learned correction to non-Clifford circuit results
Sourcepub fn get_r_squared(
&self,
test_noisy: &[f64],
test_ideal: &[f64],
) -> Result<f64, QuantRS2Error>
pub fn get_r_squared( &self, test_noisy: &[f64], test_ideal: &[f64], ) -> Result<f64, QuantRS2Error>
Get model quality metric (R² score)
Trait Implementations§
Source§impl Clone for CliffordDataRegression
impl Clone for CliffordDataRegression
Source§fn clone(&self) -> CliffordDataRegression
fn clone(&self) -> CliffordDataRegression
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for CliffordDataRegression
impl RefUnwindSafe for CliffordDataRegression
impl Send for CliffordDataRegression
impl Sync for CliffordDataRegression
impl Unpin for CliffordDataRegression
impl UnwindSafe for CliffordDataRegression
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.