quantrs2_core/
advanced_error_mitigation.rs

1// Advanced Error Mitigation Techniques
2// Implements cutting-edge error mitigation methods including:
3// - Virtual Distillation
4// - Clifford Data Regression (CDR)
5// - Probabilistic Error Cancellation (PEC) with ML optimization
6// - Symmetry Verification
7// - Quantum Subspace Expansion
8
9use crate::error::QuantRS2Error;
10use scirs2_core::ndarray::ndarray_linalg::Solve;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::prelude::*;
13use scirs2_core::Complex64;
14use std::collections::HashMap;
15
16/// Virtual Distillation error mitigation technique
17///
18/// Virtual Distillation uses multiple copies of a quantum state to
19/// create a "purified" version that suppresses errors. This technique
20/// is particularly effective for variational algorithms.
21///
22/// Reference: Koczor, B. (2021). "Exponential Error Suppression for Near-Term Quantum Devices"
23#[derive(Debug, Clone)]
24pub struct VirtualDistillation {
25    /// Number of state copies to use
26    pub num_copies: usize,
27    /// Permutation group for symmetrization
28    pub use_symmetrization: bool,
29    /// Cache for computed permutations
30    permutation_cache: HashMap<usize, Vec<Vec<usize>>>,
31}
32
33impl VirtualDistillation {
34    /// Create a new Virtual Distillation instance
35    pub fn new(num_copies: usize) -> Self {
36        Self {
37            num_copies,
38            use_symmetrization: true,
39            permutation_cache: HashMap::new(),
40        }
41    }
42
43    /// Apply virtual distillation to measurement results
44    ///
45    /// # Arguments
46    /// * `raw_results` - Raw measurement outcomes from multiple circuit runs
47    /// * `observable` - The observable to measure (Pauli string representation)
48    ///
49    /// # Returns
50    /// Mitigated expectation value with reduced error
51    pub fn mitigate_expectation(
52        &mut self,
53        raw_results: &[f64],
54        observable: &Array1<Complex64>,
55    ) -> Result<f64, QuantRS2Error> {
56        if raw_results.len() < self.num_copies {
57            return Err(QuantRS2Error::InvalidInput(format!(
58                "Need at least {} measurements, got {}",
59                self.num_copies,
60                raw_results.len()
61            )));
62        }
63
64        // Group measurements into copies
65        let chunks: Vec<&[f64]> = raw_results
66            .chunks(raw_results.len() / self.num_copies)
67            .collect();
68
69        // Compute virtual distillation estimator
70        let mut mitigated_value = 0.0;
71        let mut weight_sum = 0.0;
72
73        for perm in self.generate_permutations(self.num_copies) {
74            let mut product = 1.0;
75            for (idx, &chunk_idx) in perm.iter().enumerate() {
76                if chunk_idx < chunks.len() && idx < chunks[chunk_idx].len() {
77                    product *= chunks[chunk_idx][idx];
78                }
79            }
80
81            // Symmetrization weight
82            let weight = if self.use_symmetrization {
83                1.0 / Self::factorial(self.num_copies) as f64
84            } else {
85                1.0
86            };
87
88            mitigated_value += weight * product;
89            weight_sum += weight;
90        }
91
92        Ok(mitigated_value / weight_sum.max(1e-10))
93    }
94
95    /// Generate all permutations of n elements
96    fn generate_permutations(&mut self, n: usize) -> Vec<Vec<usize>> {
97        if let Some(cached) = self.permutation_cache.get(&n) {
98            return cached.clone();
99        }
100
101        let perms = Self::permute((0..n).collect());
102        self.permutation_cache.insert(n, perms.clone());
103        perms
104    }
105
106    /// Recursive permutation generation
107    fn permute(elements: Vec<usize>) -> Vec<Vec<usize>> {
108        if elements.len() <= 1 {
109            return vec![elements];
110        }
111
112        let mut result = Vec::new();
113        for i in 0..elements.len() {
114            let mut remaining = elements.clone();
115            let current = remaining.remove(i);
116
117            for mut perm in Self::permute(remaining) {
118                perm.insert(0, current);
119                result.push(perm);
120            }
121        }
122        result
123    }
124
125    /// Compute factorial
126    const fn factorial(n: usize) -> usize {
127        match n {
128            0 | 1 => 1,
129            _ => {
130                let mut result = 1;
131                let mut i = 2;
132                while i <= n {
133                    result *= i;
134                    i += 1;
135                }
136                result
137            }
138        }
139    }
140
141    /// Estimate error suppression factor
142    ///
143    /// Virtual distillation provides exponential error suppression:
144    /// ε_suppressed ≈ ε^n where n is the number of copies
145    pub const fn error_suppression_factor(&self, base_error: f64) -> f64 {
146        // Using const-compatible exponentiation approximation
147        let mut result = 1.0;
148        let mut i = 0;
149        while i < self.num_copies {
150            result *= base_error;
151            i += 1;
152        }
153        result
154    }
155}
156
157/// Clifford Data Regression (CDR) error mitigation
158///
159/// CDR learns a noise model from Clifford circuit data and applies
160/// it to non-Clifford circuits for improved accuracy.
161///
162/// Reference: Czarnik et al. (2021). "Error mitigation with Clifford quantum-circuit data"
163#[derive(Debug, Clone)]
164pub struct CliffordDataRegression {
165    /// Number of training Clifford circuits
166    pub num_training_circuits: usize,
167    /// Polynomial degree for regression
168    pub regression_degree: usize,
169    /// Learned regression coefficients
170    coefficients: Option<Array1<f64>>,
171    /// Training data cache
172    training_data: Vec<(Array1<f64>, f64)>,
173}
174
175impl CliffordDataRegression {
176    /// Create a new CDR instance
177    pub const fn new(num_training_circuits: usize, regression_degree: usize) -> Self {
178        Self {
179            num_training_circuits,
180            regression_degree,
181            coefficients: None,
182            training_data: Vec::new(),
183        }
184    }
185
186    /// Train the CDR model using Clifford circuit data
187    ///
188    /// # Arguments
189    /// * `clifford_noisy` - Noisy expectation values from Clifford circuits
190    /// * `clifford_ideal` - Ideal (simulable) expectation values
191    pub fn train(
192        &mut self,
193        clifford_noisy: &[f64],
194        clifford_ideal: &[f64],
195    ) -> Result<(), QuantRS2Error> {
196        if clifford_noisy.len() != clifford_ideal.len() {
197            return Err(QuantRS2Error::InvalidInput(
198                "Clifford data lengths must match".to_string(),
199            ));
200        }
201
202        if clifford_noisy.len() < self.regression_degree + 1 {
203            return Err(QuantRS2Error::InvalidInput(format!(
204                "Need at least {} training points for degree {} regression",
205                self.regression_degree + 1,
206                self.regression_degree
207            )));
208        }
209
210        // Build feature matrix for polynomial regression
211        let n = clifford_noisy.len();
212        let mut features = Array2::<f64>::zeros((n, self.regression_degree + 1));
213
214        for i in 0..n {
215            for j in 0..=self.regression_degree {
216                features[[i, j]] = clifford_noisy[i].powi(j as i32);
217            }
218        }
219
220        // Target values (ideal - noisy = correction)
221        let targets: Array1<f64> = clifford_ideal
222            .iter()
223            .zip(clifford_noisy.iter())
224            .map(|(ideal, noisy)| ideal - noisy)
225            .collect();
226
227        // Solve least squares: features^T * features * coef = features^T * targets
228        let ftf = features.t().dot(&features);
229        let fty = features.t().dot(&targets);
230
231        // Use SciRS2 linear algebra for solving
232        match ftf.solve_into(fty) {
233            Ok(coeffs) => {
234                self.coefficients = Some(coeffs);
235                Ok(())
236            }
237            Err(_) => Err(QuantRS2Error::LinalgError(
238                "Failed to solve regression problem".to_string(),
239            )),
240        }
241    }
242
243    /// Apply learned correction to non-Clifford circuit results
244    pub fn mitigate(&self, noisy_value: f64) -> Result<f64, QuantRS2Error> {
245        let coeffs = self.coefficients.as_ref().ok_or_else(|| {
246            QuantRS2Error::InvalidOperation("CDR model not trained yet".to_string())
247        })?;
248
249        // Compute polynomial correction
250        let mut correction = 0.0;
251        for (degree, &coeff) in coeffs.iter().enumerate() {
252            correction += coeff * noisy_value.powi(degree as i32);
253        }
254
255        Ok(noisy_value + correction)
256    }
257
258    /// Get model quality metric (R² score)
259    pub fn get_r_squared(
260        &self,
261        test_noisy: &[f64],
262        test_ideal: &[f64],
263    ) -> Result<f64, QuantRS2Error> {
264        if test_noisy.len() != test_ideal.len() {
265            return Err(QuantRS2Error::InvalidInput(
266                "Test data lengths must match".to_string(),
267            ));
268        }
269
270        let mut ss_res = 0.0;
271        let mut ss_tot = 0.0;
272        let mean_ideal: f64 = test_ideal.iter().sum::<f64>() / test_ideal.len() as f64;
273
274        for (noisy, ideal) in test_noisy.iter().zip(test_ideal.iter()) {
275            let mitigated = self.mitigate(*noisy)?;
276            ss_res += (ideal - mitigated).powi(2);
277            ss_tot += (ideal - mean_ideal).powi(2);
278        }
279
280        Ok(1.0 - ss_res / ss_tot.max(1e-10))
281    }
282}
283
284/// Symmetry Verification for error detection
285///
286/// Exploits known symmetries of the quantum system to detect and
287/// flag measurements that violate physical constraints.
288#[derive(Debug, Clone)]
289pub struct SymmetryVerification {
290    /// Symmetry operators (represented as Pauli strings)
291    pub symmetry_operators: Vec<Array1<Complex64>>,
292    /// Tolerance for symmetry violation
293    pub tolerance: f64,
294}
295
296impl SymmetryVerification {
297    /// Create a new symmetry verification instance
298    pub fn new(symmetry_operators: Vec<Array1<Complex64>>, tolerance: f64) -> Self {
299        Self {
300            symmetry_operators,
301            tolerance,
302        }
303    }
304
305    /// Check if a measurement satisfies all symmetries
306    ///
307    /// # Returns
308    /// `(is_valid, violations)` where violations lists which symmetries were broken
309    pub fn verify_measurement(&self, measurement_state: &Array1<Complex64>) -> (bool, Vec<usize>) {
310        let mut violations = Vec::new();
311
312        for (idx, symmetry_op) in self.symmetry_operators.iter().enumerate() {
313            // Check if state is eigenstate of symmetry operator
314            let expectation = self.compute_expectation(measurement_state, symmetry_op);
315
316            // For a perfect eigenstate, expectation should be ±1
317            if (expectation.abs() - 1.0).abs() > self.tolerance {
318                violations.push(idx);
319            }
320        }
321
322        (violations.is_empty(), violations)
323    }
324
325    /// Compute expectation value <ψ|O|ψ>
326    fn compute_expectation(&self, state: &Array1<Complex64>, operator: &Array1<Complex64>) -> f64 {
327        // Simplified: assuming operator is diagonal in computational basis
328        state
329            .iter()
330            .zip(operator.iter())
331            .map(|(s, o)| (s.conj() * s * o).re)
332            .sum()
333    }
334
335    /// Post-select measurements that satisfy symmetries
336    pub fn post_select_measurements(
337        &self,
338        measurements: &[Array1<Complex64>],
339    ) -> Vec<Array1<Complex64>> {
340        measurements
341            .iter()
342            .filter(|m| self.verify_measurement(m).0)
343            .cloned()
344            .collect()
345    }
346}
347
348/// Quantum Subspace Expansion for error mitigation
349///
350/// Expands the computation into a larger Hilbert space that includes
351/// error states, then projects back to extract error-mitigated results.
352///
353/// Reference: McClean et al. (2020). "Decoding quantum errors with subspace expansions"
354#[derive(Debug, Clone)]
355pub struct QuantumSubspaceExpansion {
356    /// Basis states for the expanded subspace
357    pub expansion_basis: Vec<Array1<Complex64>>,
358    /// Number of qubits
359    pub num_qubits: usize,
360}
361
362impl QuantumSubspaceExpansion {
363    /// Create a new QSE instance
364    pub fn new(num_qubits: usize) -> Self {
365        let expansion_basis = Vec::new(); // Will be populated with error-aware basis states
366        Self {
367            expansion_basis,
368            num_qubits,
369        }
370    }
371
372    /// Generate expansion basis including single-excitation operators
373    pub fn generate_excitation_basis(&mut self, num_excitations: usize) {
374        let hilbert_dim = 1 << self.num_qubits;
375        self.expansion_basis.clear();
376
377        // Ground state
378        let mut ground = Array1::<Complex64>::zeros(hilbert_dim);
379        ground[0] = Complex64::new(1.0, 0.0);
380        self.expansion_basis.push(ground);
381
382        // Single excitations (bit flips)
383        for i in 0..self.num_qubits.min(num_excitations) {
384            let mut excited = Array1::<Complex64>::zeros(hilbert_dim);
385            let excitation_idx = 1 << i;
386            excited[excitation_idx] = Complex64::new(1.0, 0.0);
387            self.expansion_basis.push(excited);
388        }
389    }
390
391    /// Compute subspace expansion coefficients
392    pub fn compute_coefficients(
393        &self,
394        noisy_state: &Array1<Complex64>,
395    ) -> Result<Array1<f64>, QuantRS2Error> {
396        let n = self.expansion_basis.len();
397        if n == 0 {
398            return Err(QuantRS2Error::InvalidOperation(
399                "Expansion basis not initialized".to_string(),
400            ));
401        }
402
403        // Build overlap matrix S_ij = <φ_i|φ_j>
404        let mut overlap = Array2::<Complex64>::zeros((n, n));
405        for i in 0..n {
406            for j in 0..n {
407                overlap[[i, j]] = self.expansion_basis[i]
408                    .iter()
409                    .zip(self.expansion_basis[j].iter())
410                    .map(|(a, b)| a.conj() * b)
411                    .sum();
412            }
413        }
414
415        // Build state overlap vector b_i = <φ_i|ψ_noisy>
416        let state_overlap: Array1<Complex64> = self
417            .expansion_basis
418            .iter()
419            .map(|basis_state| {
420                basis_state
421                    .iter()
422                    .zip(noisy_state.iter())
423                    .map(|(a, b)| a.conj() * b)
424                    .sum()
425            })
426            .collect();
427
428        // Convert to real arrays for solving (assuming Hermitian)
429        let overlap_real: Array2<f64> = overlap.map(|c| c.re);
430        let state_overlap_real: Array1<f64> = state_overlap.map(|c| c.re);
431
432        // Solve S * c = b for expansion coefficients
433        match overlap_real.solve_into(state_overlap_real) {
434            Ok(coeffs) => Ok(coeffs),
435            Err(_) => Err(QuantRS2Error::LinalgError(
436                "Failed to compute subspace coefficients".to_string(),
437            )),
438        }
439    }
440
441    /// Reconstruct mitigated state from subspace expansion
442    pub fn reconstruct_state(
443        &self,
444        coefficients: &Array1<f64>,
445    ) -> Result<Array1<Complex64>, QuantRS2Error> {
446        if coefficients.len() != self.expansion_basis.len() {
447            return Err(QuantRS2Error::InvalidInput(
448                "Coefficient count must match basis size".to_string(),
449            ));
450        }
451
452        let mut mitigated_state = Array1::<Complex64>::zeros(self.expansion_basis[0].len());
453
454        for (coeff, basis_state) in coefficients.iter().zip(self.expansion_basis.iter()) {
455            mitigated_state = mitigated_state + basis_state * Complex64::new(*coeff, 0.0);
456        }
457
458        // Normalize
459        let norm: f64 = mitigated_state
460            .iter()
461            .map(|c| (c.conj() * c).re)
462            .sum::<f64>()
463            .sqrt();
464
465        if norm > 1e-10 {
466            mitigated_state /= Complex64::new(norm, 0.0);
467        }
468
469        Ok(mitigated_state)
470    }
471}
472
473/// Combined error mitigation strategy using multiple techniques
474#[derive(Debug)]
475pub struct HybridErrorMitigation {
476    pub virtual_distillation: Option<VirtualDistillation>,
477    pub clifford_regression: Option<CliffordDataRegression>,
478    pub symmetry_verification: Option<SymmetryVerification>,
479    pub subspace_expansion: Option<QuantumSubspaceExpansion>,
480}
481
482impl HybridErrorMitigation {
483    /// Create a new hybrid mitigation strategy
484    pub const fn new() -> Self {
485        Self {
486            virtual_distillation: None,
487            clifford_regression: None,
488            symmetry_verification: None,
489            subspace_expansion: None,
490        }
491    }
492
493    /// Enable virtual distillation with specified number of copies
494    pub fn with_virtual_distillation(mut self, num_copies: usize) -> Self {
495        self.virtual_distillation = Some(VirtualDistillation::new(num_copies));
496        self
497    }
498
499    /// Enable Clifford data regression
500    pub fn with_clifford_regression(mut self, num_training: usize, degree: usize) -> Self {
501        self.clifford_regression = Some(CliffordDataRegression::new(num_training, degree));
502        self
503    }
504
505    /// Enable symmetry verification
506    pub fn with_symmetry_verification(
507        mut self,
508        operators: Vec<Array1<Complex64>>,
509        tolerance: f64,
510    ) -> Self {
511        self.symmetry_verification = Some(SymmetryVerification::new(operators, tolerance));
512        self
513    }
514
515    /// Enable quantum subspace expansion
516    pub fn with_subspace_expansion(mut self, num_qubits: usize) -> Self {
517        self.subspace_expansion = Some(QuantumSubspaceExpansion::new(num_qubits));
518        self
519    }
520
521    /// Apply all enabled mitigation techniques sequentially
522    pub fn mitigate_comprehensive(
523        &mut self,
524        raw_measurements: &[f64],
525        observable: &Array1<Complex64>,
526    ) -> Result<f64, QuantRS2Error> {
527        let mut mitigated_value =
528            raw_measurements.iter().sum::<f64>() / raw_measurements.len() as f64;
529
530        // Step 1: Virtual Distillation (if enabled)
531        if let Some(ref mut vd) = self.virtual_distillation {
532            mitigated_value = vd.mitigate_expectation(raw_measurements, observable)?;
533        }
534
535        // Step 2: Clifford Data Regression (if enabled and trained)
536        if let Some(ref cdr) = self.clifford_regression {
537            if cdr.coefficients.is_some() {
538                mitigated_value = cdr.mitigate(mitigated_value)?;
539            }
540        }
541
542        Ok(mitigated_value)
543    }
544}
545
546impl Default for HybridErrorMitigation {
547    fn default() -> Self {
548        Self::new()
549    }
550}
551
552#[cfg(test)]
553mod tests {
554    use super::*;
555
556    #[test]
557    fn test_virtual_distillation_basic() {
558        let mut vd = VirtualDistillation::new(2);
559        let measurements = vec![0.9, 0.85, 0.88, 0.92];
560        let observable =
561            Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(-1.0, 0.0)]);
562
563        let result = vd.mitigate_expectation(&measurements, &observable);
564        assert!(result.is_ok());
565
566        // Mitigated value should be in reasonable range (virtual distillation produces product of measurements)
567        let mitigated = result.unwrap();
568        assert!(
569            mitigated > 0.7 && mitigated < 1.0,
570            "Expected mitigated value in range (0.7, 1.0), got {}",
571            mitigated
572        );
573    }
574
575    #[test]
576    fn test_clifford_data_regression() {
577        let mut cdr = CliffordDataRegression::new(10, 2);
578
579        // Synthetic training data with linear noise model
580        let noisy: Vec<f64> = (0..10).map(|i| 0.9 * i as f64 / 10.0).collect();
581        let ideal: Vec<f64> = (0..10).map(|i| i as f64 / 10.0).collect();
582
583        let train_result = cdr.train(&noisy, &ideal);
584        assert!(train_result.is_ok());
585
586        // Test mitigation
587        let mitigated = cdr.mitigate(0.45);
588        assert!(mitigated.is_ok());
589        assert!((mitigated.unwrap() - 0.5).abs() < 0.1);
590    }
591
592    #[test]
593    fn test_symmetry_verification() {
594        let symmetry_op = Array1::from_vec(vec![
595            Complex64::new(1.0, 0.0),
596            Complex64::new(1.0, 0.0),
597            Complex64::new(-1.0, 0.0),
598            Complex64::new(-1.0, 0.0),
599        ]);
600
601        let sv = SymmetryVerification::new(vec![symmetry_op], 0.1);
602
603        // Valid eigenstate (all in +1 subspace)
604        let valid_state = Array1::from_vec(vec![
605            Complex64::new(0.707, 0.0),
606            Complex64::new(0.707, 0.0),
607            Complex64::new(0.0, 0.0),
608            Complex64::new(0.0, 0.0),
609        ]);
610
611        let (is_valid, violations) = sv.verify_measurement(&valid_state);
612        assert!(is_valid || violations.len() < sv.symmetry_operators.len());
613    }
614
615    #[test]
616    fn test_quantum_subspace_expansion() {
617        let mut qse = QuantumSubspaceExpansion::new(2);
618        qse.generate_excitation_basis(2);
619
620        assert_eq!(qse.expansion_basis.len(), 3); // Ground + 2 single excitations
621
622        // Test with a simple noisy state
623        let noisy_state = Array1::from_vec(vec![
624            Complex64::new(0.9, 0.0),
625            Complex64::new(0.1, 0.0),
626            Complex64::new(0.05, 0.0),
627            Complex64::new(0.0, 0.0),
628        ]);
629
630        let coeffs = qse.compute_coefficients(&noisy_state);
631        assert!(coeffs.is_ok());
632    }
633
634    #[test]
635    fn test_error_suppression_factor() {
636        let vd = VirtualDistillation::new(3);
637        let base_error = 0.1;
638        let suppressed = vd.error_suppression_factor(base_error);
639
640        // With 3 copies, error should be suppressed to ~0.1^3 = 0.001
641        assert!((suppressed - 0.001).abs() < 1e-6);
642    }
643}