1use crate::error::QuantRS2Error;
10use scirs2_core::ndarray::ndarray_linalg::Solve;
11use scirs2_core::ndarray::{Array1, Array2};
12use scirs2_core::random::prelude::*;
13use scirs2_core::Complex64;
14use std::collections::HashMap;
15
16#[derive(Debug, Clone)]
24pub struct VirtualDistillation {
25 pub num_copies: usize,
27 pub use_symmetrization: bool,
29 permutation_cache: HashMap<usize, Vec<Vec<usize>>>,
31}
32
33impl VirtualDistillation {
34 pub fn new(num_copies: usize) -> Self {
36 Self {
37 num_copies,
38 use_symmetrization: true,
39 permutation_cache: HashMap::new(),
40 }
41 }
42
43 pub fn mitigate_expectation(
52 &mut self,
53 raw_results: &[f64],
54 observable: &Array1<Complex64>,
55 ) -> Result<f64, QuantRS2Error> {
56 if raw_results.len() < self.num_copies {
57 return Err(QuantRS2Error::InvalidInput(format!(
58 "Need at least {} measurements, got {}",
59 self.num_copies,
60 raw_results.len()
61 )));
62 }
63
64 let chunks: Vec<&[f64]> = raw_results
66 .chunks(raw_results.len() / self.num_copies)
67 .collect();
68
69 let mut mitigated_value = 0.0;
71 let mut weight_sum = 0.0;
72
73 for perm in self.generate_permutations(self.num_copies) {
74 let mut product = 1.0;
75 for (idx, &chunk_idx) in perm.iter().enumerate() {
76 if chunk_idx < chunks.len() && idx < chunks[chunk_idx].len() {
77 product *= chunks[chunk_idx][idx];
78 }
79 }
80
81 let weight = if self.use_symmetrization {
83 1.0 / Self::factorial(self.num_copies) as f64
84 } else {
85 1.0
86 };
87
88 mitigated_value += weight * product;
89 weight_sum += weight;
90 }
91
92 Ok(mitigated_value / weight_sum.max(1e-10))
93 }
94
95 fn generate_permutations(&mut self, n: usize) -> Vec<Vec<usize>> {
97 if let Some(cached) = self.permutation_cache.get(&n) {
98 return cached.clone();
99 }
100
101 let perms = Self::permute((0..n).collect());
102 self.permutation_cache.insert(n, perms.clone());
103 perms
104 }
105
106 fn permute(elements: Vec<usize>) -> Vec<Vec<usize>> {
108 if elements.len() <= 1 {
109 return vec![elements];
110 }
111
112 let mut result = Vec::new();
113 for i in 0..elements.len() {
114 let mut remaining = elements.clone();
115 let current = remaining.remove(i);
116
117 for mut perm in Self::permute(remaining) {
118 perm.insert(0, current);
119 result.push(perm);
120 }
121 }
122 result
123 }
124
125 const fn factorial(n: usize) -> usize {
127 match n {
128 0 | 1 => 1,
129 _ => {
130 let mut result = 1;
131 let mut i = 2;
132 while i <= n {
133 result *= i;
134 i += 1;
135 }
136 result
137 }
138 }
139 }
140
141 pub const fn error_suppression_factor(&self, base_error: f64) -> f64 {
146 let mut result = 1.0;
148 let mut i = 0;
149 while i < self.num_copies {
150 result *= base_error;
151 i += 1;
152 }
153 result
154 }
155}
156
157#[derive(Debug, Clone)]
164pub struct CliffordDataRegression {
165 pub num_training_circuits: usize,
167 pub regression_degree: usize,
169 coefficients: Option<Array1<f64>>,
171 training_data: Vec<(Array1<f64>, f64)>,
173}
174
175impl CliffordDataRegression {
176 pub const fn new(num_training_circuits: usize, regression_degree: usize) -> Self {
178 Self {
179 num_training_circuits,
180 regression_degree,
181 coefficients: None,
182 training_data: Vec::new(),
183 }
184 }
185
186 pub fn train(
192 &mut self,
193 clifford_noisy: &[f64],
194 clifford_ideal: &[f64],
195 ) -> Result<(), QuantRS2Error> {
196 if clifford_noisy.len() != clifford_ideal.len() {
197 return Err(QuantRS2Error::InvalidInput(
198 "Clifford data lengths must match".to_string(),
199 ));
200 }
201
202 if clifford_noisy.len() < self.regression_degree + 1 {
203 return Err(QuantRS2Error::InvalidInput(format!(
204 "Need at least {} training points for degree {} regression",
205 self.regression_degree + 1,
206 self.regression_degree
207 )));
208 }
209
210 let n = clifford_noisy.len();
212 let mut features = Array2::<f64>::zeros((n, self.regression_degree + 1));
213
214 for i in 0..n {
215 for j in 0..=self.regression_degree {
216 features[[i, j]] = clifford_noisy[i].powi(j as i32);
217 }
218 }
219
220 let targets: Array1<f64> = clifford_ideal
222 .iter()
223 .zip(clifford_noisy.iter())
224 .map(|(ideal, noisy)| ideal - noisy)
225 .collect();
226
227 let ftf = features.t().dot(&features);
229 let fty = features.t().dot(&targets);
230
231 match ftf.solve_into(fty) {
233 Ok(coeffs) => {
234 self.coefficients = Some(coeffs);
235 Ok(())
236 }
237 Err(_) => Err(QuantRS2Error::LinalgError(
238 "Failed to solve regression problem".to_string(),
239 )),
240 }
241 }
242
243 pub fn mitigate(&self, noisy_value: f64) -> Result<f64, QuantRS2Error> {
245 let coeffs = self.coefficients.as_ref().ok_or_else(|| {
246 QuantRS2Error::InvalidOperation("CDR model not trained yet".to_string())
247 })?;
248
249 let mut correction = 0.0;
251 for (degree, &coeff) in coeffs.iter().enumerate() {
252 correction += coeff * noisy_value.powi(degree as i32);
253 }
254
255 Ok(noisy_value + correction)
256 }
257
258 pub fn get_r_squared(
260 &self,
261 test_noisy: &[f64],
262 test_ideal: &[f64],
263 ) -> Result<f64, QuantRS2Error> {
264 if test_noisy.len() != test_ideal.len() {
265 return Err(QuantRS2Error::InvalidInput(
266 "Test data lengths must match".to_string(),
267 ));
268 }
269
270 let mut ss_res = 0.0;
271 let mut ss_tot = 0.0;
272 let mean_ideal: f64 = test_ideal.iter().sum::<f64>() / test_ideal.len() as f64;
273
274 for (noisy, ideal) in test_noisy.iter().zip(test_ideal.iter()) {
275 let mitigated = self.mitigate(*noisy)?;
276 ss_res += (ideal - mitigated).powi(2);
277 ss_tot += (ideal - mean_ideal).powi(2);
278 }
279
280 Ok(1.0 - ss_res / ss_tot.max(1e-10))
281 }
282}
283
284#[derive(Debug, Clone)]
289pub struct SymmetryVerification {
290 pub symmetry_operators: Vec<Array1<Complex64>>,
292 pub tolerance: f64,
294}
295
296impl SymmetryVerification {
297 pub fn new(symmetry_operators: Vec<Array1<Complex64>>, tolerance: f64) -> Self {
299 Self {
300 symmetry_operators,
301 tolerance,
302 }
303 }
304
305 pub fn verify_measurement(&self, measurement_state: &Array1<Complex64>) -> (bool, Vec<usize>) {
310 let mut violations = Vec::new();
311
312 for (idx, symmetry_op) in self.symmetry_operators.iter().enumerate() {
313 let expectation = self.compute_expectation(measurement_state, symmetry_op);
315
316 if (expectation.abs() - 1.0).abs() > self.tolerance {
318 violations.push(idx);
319 }
320 }
321
322 (violations.is_empty(), violations)
323 }
324
325 fn compute_expectation(&self, state: &Array1<Complex64>, operator: &Array1<Complex64>) -> f64 {
327 state
329 .iter()
330 .zip(operator.iter())
331 .map(|(s, o)| (s.conj() * s * o).re)
332 .sum()
333 }
334
335 pub fn post_select_measurements(
337 &self,
338 measurements: &[Array1<Complex64>],
339 ) -> Vec<Array1<Complex64>> {
340 measurements
341 .iter()
342 .filter(|m| self.verify_measurement(m).0)
343 .cloned()
344 .collect()
345 }
346}
347
348#[derive(Debug, Clone)]
355pub struct QuantumSubspaceExpansion {
356 pub expansion_basis: Vec<Array1<Complex64>>,
358 pub num_qubits: usize,
360}
361
362impl QuantumSubspaceExpansion {
363 pub fn new(num_qubits: usize) -> Self {
365 let expansion_basis = Vec::new(); Self {
367 expansion_basis,
368 num_qubits,
369 }
370 }
371
372 pub fn generate_excitation_basis(&mut self, num_excitations: usize) {
374 let hilbert_dim = 1 << self.num_qubits;
375 self.expansion_basis.clear();
376
377 let mut ground = Array1::<Complex64>::zeros(hilbert_dim);
379 ground[0] = Complex64::new(1.0, 0.0);
380 self.expansion_basis.push(ground);
381
382 for i in 0..self.num_qubits.min(num_excitations) {
384 let mut excited = Array1::<Complex64>::zeros(hilbert_dim);
385 let excitation_idx = 1 << i;
386 excited[excitation_idx] = Complex64::new(1.0, 0.0);
387 self.expansion_basis.push(excited);
388 }
389 }
390
391 pub fn compute_coefficients(
393 &self,
394 noisy_state: &Array1<Complex64>,
395 ) -> Result<Array1<f64>, QuantRS2Error> {
396 let n = self.expansion_basis.len();
397 if n == 0 {
398 return Err(QuantRS2Error::InvalidOperation(
399 "Expansion basis not initialized".to_string(),
400 ));
401 }
402
403 let mut overlap = Array2::<Complex64>::zeros((n, n));
405 for i in 0..n {
406 for j in 0..n {
407 overlap[[i, j]] = self.expansion_basis[i]
408 .iter()
409 .zip(self.expansion_basis[j].iter())
410 .map(|(a, b)| a.conj() * b)
411 .sum();
412 }
413 }
414
415 let state_overlap: Array1<Complex64> = self
417 .expansion_basis
418 .iter()
419 .map(|basis_state| {
420 basis_state
421 .iter()
422 .zip(noisy_state.iter())
423 .map(|(a, b)| a.conj() * b)
424 .sum()
425 })
426 .collect();
427
428 let overlap_real: Array2<f64> = overlap.map(|c| c.re);
430 let state_overlap_real: Array1<f64> = state_overlap.map(|c| c.re);
431
432 match overlap_real.solve_into(state_overlap_real) {
434 Ok(coeffs) => Ok(coeffs),
435 Err(_) => Err(QuantRS2Error::LinalgError(
436 "Failed to compute subspace coefficients".to_string(),
437 )),
438 }
439 }
440
441 pub fn reconstruct_state(
443 &self,
444 coefficients: &Array1<f64>,
445 ) -> Result<Array1<Complex64>, QuantRS2Error> {
446 if coefficients.len() != self.expansion_basis.len() {
447 return Err(QuantRS2Error::InvalidInput(
448 "Coefficient count must match basis size".to_string(),
449 ));
450 }
451
452 let mut mitigated_state = Array1::<Complex64>::zeros(self.expansion_basis[0].len());
453
454 for (coeff, basis_state) in coefficients.iter().zip(self.expansion_basis.iter()) {
455 mitigated_state = mitigated_state + basis_state * Complex64::new(*coeff, 0.0);
456 }
457
458 let norm: f64 = mitigated_state
460 .iter()
461 .map(|c| (c.conj() * c).re)
462 .sum::<f64>()
463 .sqrt();
464
465 if norm > 1e-10 {
466 mitigated_state /= Complex64::new(norm, 0.0);
467 }
468
469 Ok(mitigated_state)
470 }
471}
472
473#[derive(Debug)]
475pub struct HybridErrorMitigation {
476 pub virtual_distillation: Option<VirtualDistillation>,
477 pub clifford_regression: Option<CliffordDataRegression>,
478 pub symmetry_verification: Option<SymmetryVerification>,
479 pub subspace_expansion: Option<QuantumSubspaceExpansion>,
480}
481
482impl HybridErrorMitigation {
483 pub const fn new() -> Self {
485 Self {
486 virtual_distillation: None,
487 clifford_regression: None,
488 symmetry_verification: None,
489 subspace_expansion: None,
490 }
491 }
492
493 pub fn with_virtual_distillation(mut self, num_copies: usize) -> Self {
495 self.virtual_distillation = Some(VirtualDistillation::new(num_copies));
496 self
497 }
498
499 pub fn with_clifford_regression(mut self, num_training: usize, degree: usize) -> Self {
501 self.clifford_regression = Some(CliffordDataRegression::new(num_training, degree));
502 self
503 }
504
505 pub fn with_symmetry_verification(
507 mut self,
508 operators: Vec<Array1<Complex64>>,
509 tolerance: f64,
510 ) -> Self {
511 self.symmetry_verification = Some(SymmetryVerification::new(operators, tolerance));
512 self
513 }
514
515 pub fn with_subspace_expansion(mut self, num_qubits: usize) -> Self {
517 self.subspace_expansion = Some(QuantumSubspaceExpansion::new(num_qubits));
518 self
519 }
520
521 pub fn mitigate_comprehensive(
523 &mut self,
524 raw_measurements: &[f64],
525 observable: &Array1<Complex64>,
526 ) -> Result<f64, QuantRS2Error> {
527 let mut mitigated_value =
528 raw_measurements.iter().sum::<f64>() / raw_measurements.len() as f64;
529
530 if let Some(ref mut vd) = self.virtual_distillation {
532 mitigated_value = vd.mitigate_expectation(raw_measurements, observable)?;
533 }
534
535 if let Some(ref cdr) = self.clifford_regression {
537 if cdr.coefficients.is_some() {
538 mitigated_value = cdr.mitigate(mitigated_value)?;
539 }
540 }
541
542 Ok(mitigated_value)
543 }
544}
545
546impl Default for HybridErrorMitigation {
547 fn default() -> Self {
548 Self::new()
549 }
550}
551
552#[cfg(test)]
553mod tests {
554 use super::*;
555
556 #[test]
557 fn test_virtual_distillation_basic() {
558 let mut vd = VirtualDistillation::new(2);
559 let measurements = vec![0.9, 0.85, 0.88, 0.92];
560 let observable =
561 Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(-1.0, 0.0)]);
562
563 let result = vd.mitigate_expectation(&measurements, &observable);
564 assert!(result.is_ok());
565
566 let mitigated = result.unwrap();
568 assert!(
569 mitigated > 0.7 && mitigated < 1.0,
570 "Expected mitigated value in range (0.7, 1.0), got {}",
571 mitigated
572 );
573 }
574
575 #[test]
576 fn test_clifford_data_regression() {
577 let mut cdr = CliffordDataRegression::new(10, 2);
578
579 let noisy: Vec<f64> = (0..10).map(|i| 0.9 * i as f64 / 10.0).collect();
581 let ideal: Vec<f64> = (0..10).map(|i| i as f64 / 10.0).collect();
582
583 let train_result = cdr.train(&noisy, &ideal);
584 assert!(train_result.is_ok());
585
586 let mitigated = cdr.mitigate(0.45);
588 assert!(mitigated.is_ok());
589 assert!((mitigated.unwrap() - 0.5).abs() < 0.1);
590 }
591
592 #[test]
593 fn test_symmetry_verification() {
594 let symmetry_op = Array1::from_vec(vec![
595 Complex64::new(1.0, 0.0),
596 Complex64::new(1.0, 0.0),
597 Complex64::new(-1.0, 0.0),
598 Complex64::new(-1.0, 0.0),
599 ]);
600
601 let sv = SymmetryVerification::new(vec![symmetry_op], 0.1);
602
603 let valid_state = Array1::from_vec(vec![
605 Complex64::new(0.707, 0.0),
606 Complex64::new(0.707, 0.0),
607 Complex64::new(0.0, 0.0),
608 Complex64::new(0.0, 0.0),
609 ]);
610
611 let (is_valid, violations) = sv.verify_measurement(&valid_state);
612 assert!(is_valid || violations.len() < sv.symmetry_operators.len());
613 }
614
615 #[test]
616 fn test_quantum_subspace_expansion() {
617 let mut qse = QuantumSubspaceExpansion::new(2);
618 qse.generate_excitation_basis(2);
619
620 assert_eq!(qse.expansion_basis.len(), 3); let noisy_state = Array1::from_vec(vec![
624 Complex64::new(0.9, 0.0),
625 Complex64::new(0.1, 0.0),
626 Complex64::new(0.05, 0.0),
627 Complex64::new(0.0, 0.0),
628 ]);
629
630 let coeffs = qse.compute_coefficients(&noisy_state);
631 assert!(coeffs.is_ok());
632 }
633
634 #[test]
635 fn test_error_suppression_factor() {
636 let vd = VirtualDistillation::new(3);
637 let base_error = 0.1;
638 let suppressed = vd.error_suppression_factor(base_error);
639
640 assert!((suppressed - 0.001).abs() < 1e-6);
642 }
643}