GateProperties

Struct GateProperties 

Source
pub struct GateProperties {
    pub name: String,
    pub num_qubits: usize,
    pub is_native: bool,
    pub cost: GateCost,
    pub error: GateError,
    pub decompositions: Vec<DecompositionRule>,
    pub commutes_with: Vec<String>,
    pub is_self_inverse: bool,
    pub is_diagonal: bool,
    pub is_parameterized: bool,
}
Expand description

Properties of a quantum gate

Fields§

§name: String

Gate name

§num_qubits: usize

Number of qubits

§is_native: bool

Is this a native gate on hardware?

§cost: GateCost

Cost information

§error: GateError

Error information

§decompositions: Vec<DecompositionRule>

Available decomposition rules

§commutes_with: Vec<String>

Gates that this gate commutes with

§is_self_inverse: bool

Is self-inverse (G·G = I)?

§is_diagonal: bool

Is diagonal in computational basis?

§is_parameterized: bool

Is parameterized?

Implementations§

Source§

impl GateProperties

Source

pub fn single_qubit(name: &str) -> Self

Create properties for a single-qubit gate

Examples found in repository?
examples/optimization_demo.rs (line 177)
168fn demo_gate_properties() {
169    println!("\nDemo 4: Gate Properties");
170    println!("-----------------------");
171
172    // Show properties of various gates
173    let gates = vec!["H", "X", "CNOT", "Toffoli"];
174
175    for gate_name in gates {
176        let props = match gate_name {
177            "H" | "X" => GateProperties::single_qubit(gate_name),
178            "CNOT" => GateProperties::two_qubit(gate_name),
179            "Toffoli" => GateProperties::multi_qubit(gate_name, 3),
180            _ => continue,
181        };
182
183        println!("\n{} Gate Properties:", gate_name);
184        println!("  Native: {}", props.is_native);
185        println!("  Duration: {:.1} ns", props.cost.duration_ns);
186        println!("  Error rate: {:.6}", props.error.error_rate);
187        println!("  Self-inverse: {}", props.is_self_inverse);
188        println!("  Diagonal: {}", props.is_diagonal);
189        println!("  Decompositions: {}", props.decompositions.len());
190    }
191
192    // Show commutation relations
193    println!("\nCommutation Relations:");
194    let comm_table = CommutationTable::new();
195
196    let gate_pairs = vec![
197        ("X", "Y"),
198        ("X", "Z"),
199        ("Z", "Z"),
200        ("Z", "RZ"),
201        ("CNOT", "CNOT"),
202    ];
203
204    for (g1, g2) in gate_pairs {
205        println!(
206            "  {} ↔ {}: {}",
207            g1,
208            g2,
209            if comm_table.commutes(g1, g2) {
210                "✓"
211            } else {
212                "✗"
213            }
214        );
215    }
216    println!();
217}
Source

pub fn two_qubit(name: &str) -> Self

Create properties for a two-qubit gate

Examples found in repository?
examples/optimization_demo.rs (line 178)
168fn demo_gate_properties() {
169    println!("\nDemo 4: Gate Properties");
170    println!("-----------------------");
171
172    // Show properties of various gates
173    let gates = vec!["H", "X", "CNOT", "Toffoli"];
174
175    for gate_name in gates {
176        let props = match gate_name {
177            "H" | "X" => GateProperties::single_qubit(gate_name),
178            "CNOT" => GateProperties::two_qubit(gate_name),
179            "Toffoli" => GateProperties::multi_qubit(gate_name, 3),
180            _ => continue,
181        };
182
183        println!("\n{} Gate Properties:", gate_name);
184        println!("  Native: {}", props.is_native);
185        println!("  Duration: {:.1} ns", props.cost.duration_ns);
186        println!("  Error rate: {:.6}", props.error.error_rate);
187        println!("  Self-inverse: {}", props.is_self_inverse);
188        println!("  Diagonal: {}", props.is_diagonal);
189        println!("  Decompositions: {}", props.decompositions.len());
190    }
191
192    // Show commutation relations
193    println!("\nCommutation Relations:");
194    let comm_table = CommutationTable::new();
195
196    let gate_pairs = vec![
197        ("X", "Y"),
198        ("X", "Z"),
199        ("Z", "Z"),
200        ("Z", "RZ"),
201        ("CNOT", "CNOT"),
202    ];
203
204    for (g1, g2) in gate_pairs {
205        println!(
206            "  {} ↔ {}: {}",
207            g1,
208            g2,
209            if comm_table.commutes(g1, g2) {
210                "✓"
211            } else {
212                "✗"
213            }
214        );
215    }
216    println!();
217}
Source

pub fn multi_qubit(name: &str, num_qubits: usize) -> Self

Create properties for a multi-qubit gate

Examples found in repository?
examples/optimization_demo.rs (line 179)
168fn demo_gate_properties() {
169    println!("\nDemo 4: Gate Properties");
170    println!("-----------------------");
171
172    // Show properties of various gates
173    let gates = vec!["H", "X", "CNOT", "Toffoli"];
174
175    for gate_name in gates {
176        let props = match gate_name {
177            "H" | "X" => GateProperties::single_qubit(gate_name),
178            "CNOT" => GateProperties::two_qubit(gate_name),
179            "Toffoli" => GateProperties::multi_qubit(gate_name, 3),
180            _ => continue,
181        };
182
183        println!("\n{} Gate Properties:", gate_name);
184        println!("  Native: {}", props.is_native);
185        println!("  Duration: {:.1} ns", props.cost.duration_ns);
186        println!("  Error rate: {:.6}", props.error.error_rate);
187        println!("  Self-inverse: {}", props.is_self_inverse);
188        println!("  Diagonal: {}", props.is_diagonal);
189        println!("  Decompositions: {}", props.decompositions.len());
190    }
191
192    // Show commutation relations
193    println!("\nCommutation Relations:");
194    let comm_table = CommutationTable::new();
195
196    let gate_pairs = vec![
197        ("X", "Y"),
198        ("X", "Z"),
199        ("Z", "Z"),
200        ("Z", "RZ"),
201        ("CNOT", "CNOT"),
202    ];
203
204    for (g1, g2) in gate_pairs {
205        println!(
206            "  {} ↔ {}: {}",
207            g1,
208            g2,
209            if comm_table.commutes(g1, g2) {
210                "✓"
211            } else {
212                "✗"
213            }
214        );
215    }
216    println!();
217}

Trait Implementations§

Source§

impl Clone for GateProperties

Source§

fn clone(&self) -> GateProperties

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for GateProperties

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,