optimization_demo/
optimization_demo.rs

1//! Demonstration of the circuit optimization system
2//!
3//! This example shows how to use the various optimization passes and features.
4
5use quantrs2_circuit::optimization::passes::OptimizationPassExt;
6use quantrs2_circuit::prelude::*;
7use quantrs2_core::gate::{multi, single, GateOp};
8use quantrs2_core::qubit::QubitId;
9use std::time::Instant;
10
11fn main() {
12    println!("=== QuantRS2 Circuit Optimization Demo ===\n");
13
14    // Create a sample circuit
15    let circuit = create_sample_circuit();
16
17    // Demo 1: Basic optimization with different levels
18    demo_optimization_levels(&circuit);
19
20    // Demo 2: Hardware-specific optimization
21    demo_hardware_optimization(&circuit);
22
23    // Demo 3: Custom optimization pipeline
24    demo_custom_optimization(&circuit);
25
26    // Demo 4: Gate property analysis
27    demo_gate_properties();
28
29    // Demo 5: Benchmarking optimization passes
30    benchmark_optimization_passes(&circuit);
31}
32
33fn create_sample_circuit() -> Circuit<4> {
34    // Create a circuit that has optimization opportunities
35    let mut circuit = Circuit::<4>::new();
36
37    // Add some gates with optimization opportunities
38    // Pattern 1: Redundant gates (H-H = I, X-X = I)
39    let _ = circuit.h(0);
40    let _ = circuit.h(0);
41
42    // Pattern 2: Commutable gates
43    let _ = circuit.x(1);
44    let _ = circuit.z(0);
45    let _ = circuit.cnot(0, 1);
46
47    // Pattern 3: Mergeable rotations
48    let _ = circuit.rz(2, std::f64::consts::PI / 4.0);
49    let _ = circuit.rz(2, std::f64::consts::PI / 4.0);
50
51    // Pattern 4: Known patterns (H-X-H = Z)
52    let _ = circuit.h(3);
53    let _ = circuit.x(3);
54    let _ = circuit.h(3);
55
56    // Pattern 5: Decomposable gates
57    let _ = circuit.toffoli(0, 1, 2);
58
59    circuit
60}
61
62fn demo_optimization_levels(circuit: &Circuit<4>) {
63    println!("Demo 1: Optimization Levels");
64    println!("----------------------------");
65
66    let levels = [
67        OptimizationLevel::None,
68        OptimizationLevel::Light,
69        OptimizationLevel::Medium,
70        OptimizationLevel::Heavy,
71    ];
72
73    for level in levels {
74        println!("\nOptimization Level: {:?}", level);
75
76        let start = Instant::now();
77        let mut optimizer = CircuitOptimizer2::<4>::with_level(level);
78
79        match optimizer.optimize(circuit) {
80            Ok(report) => {
81                let duration = start.elapsed();
82                println!("  Optimization time: {:?}", duration);
83                println!("  Initial gates: {}", report.initial_metrics.gate_count);
84                println!("  Final gates: {}", report.final_metrics.gate_count);
85                println!("  Gate reduction: {:.1}%", report.improvement().gate_count);
86                println!("  Applied passes: {:?}", report.applied_passes);
87            }
88            Err(e) => {
89                println!("  Optimization failed: {:?}", e);
90            }
91        }
92    }
93    println!();
94}
95
96fn demo_hardware_optimization(circuit: &Circuit<4>) {
97    println!("\nDemo 2: Hardware-Specific Optimization");
98    println!("--------------------------------------");
99
100    let backends = ["ibm", "google", "aws"];
101
102    for backend in backends {
103        println!("\nBackend: {}", backend);
104
105        let mut optimizer = CircuitOptimizer2::<4>::for_hardware(backend);
106
107        match optimizer.optimize(circuit) {
108            Ok(report) => {
109                println!(
110                    "  Initial cost: {:.2}",
111                    report.initial_metrics.execution_time
112                );
113                println!("  Final cost: {:.2}", report.final_metrics.execution_time);
114                println!(
115                    "  Time reduction: {:.1}%",
116                    report.improvement().execution_time
117                );
118                println!(
119                    "  Error reduction: {:.1}%",
120                    report.improvement().total_error
121                );
122            }
123            Err(e) => {
124                println!("  Optimization failed: {:?}", e);
125            }
126        }
127    }
128    println!();
129}
130
131fn demo_custom_optimization(circuit: &Circuit<4>) {
132    println!("\nDemo 3: Custom Optimization Pipeline");
133    println!("------------------------------------");
134
135    // Create a custom pass manager
136    let mut pass_manager = PassManager::new();
137
138    // Configure with specific passes
139    let config = PassConfig {
140        max_iterations: 5,
141        aggressive: true,
142        level: OptimizationLevel::Custom,
143        ..Default::default()
144    };
145    pass_manager.configure(config.clone());
146
147    // Add specific passes in a custom order
148    pass_manager.add_pass(Box::new(GateCancellation::new(true)));
149    pass_manager.add_pass(Box::new(RotationMerging::new(1e-10)));
150    pass_manager.add_pass(Box::new(GateCommutation::new(10)));
151    pass_manager.add_pass(Box::new(TemplateMatching::new()));
152
153    // Create optimizer with custom configuration
154    let mut optimizer = CircuitOptimizer2::<4>::new();
155    optimizer.configure(config);
156
157    match optimizer.optimize(circuit) {
158        Ok(report) => {
159            println!("Custom optimization results:");
160            report.print_summary();
161        }
162        Err(e) => {
163            println!("Custom optimization failed: {:?}", e);
164        }
165    }
166}
167
168fn demo_gate_properties() {
169    println!("\nDemo 4: Gate Properties");
170    println!("-----------------------");
171
172    // Show properties of various gates
173    let gates = vec!["H", "X", "CNOT", "Toffoli"];
174
175    for gate_name in gates {
176        let props = match gate_name {
177            "H" | "X" => GateProperties::single_qubit(gate_name),
178            "CNOT" => GateProperties::two_qubit(gate_name),
179            "Toffoli" => GateProperties::multi_qubit(gate_name, 3),
180            _ => continue,
181        };
182
183        println!("\n{} Gate Properties:", gate_name);
184        println!("  Native: {}", props.is_native);
185        println!("  Duration: {:.1} ns", props.cost.duration_ns);
186        println!("  Error rate: {:.6}", props.error.error_rate);
187        println!("  Self-inverse: {}", props.is_self_inverse);
188        println!("  Diagonal: {}", props.is_diagonal);
189        println!("  Decompositions: {}", props.decompositions.len());
190    }
191
192    // Show commutation relations
193    println!("\nCommutation Relations:");
194    let comm_table = CommutationTable::new();
195
196    let gate_pairs = vec![
197        ("X", "Y"),
198        ("X", "Z"),
199        ("Z", "Z"),
200        ("Z", "RZ"),
201        ("CNOT", "CNOT"),
202    ];
203
204    for (g1, g2) in gate_pairs {
205        println!(
206            "  {} ↔ {}: {}",
207            g1,
208            g2,
209            if comm_table.commutes(g1, g2) {
210                "✓"
211            } else {
212                "✗"
213            }
214        );
215    }
216    println!();
217}
218
219fn benchmark_optimization_passes(circuit: &Circuit<4>) {
220    println!("\nDemo 5: Pass Benchmarking");
221    println!("-------------------------");
222
223    // Benchmark individual passes
224    let passes: Vec<(&str, Box<dyn OptimizationPass>)> = vec![
225        ("Gate Cancellation", Box::new(GateCancellation::new(false))),
226        ("Rotation Merging", Box::new(RotationMerging::new(1e-10))),
227        ("Gate Commutation", Box::new(GateCommutation::new(5))),
228        ("Template Matching", Box::new(TemplateMatching::new())),
229        (
230            "Two-Qubit Opt",
231            Box::new(TwoQubitOptimization::new(false, true)),
232        ),
233    ];
234
235    let cost_model = AbstractCostModel::default();
236
237    for (name, pass) in passes {
238        let start = Instant::now();
239
240        match pass.apply(circuit, &cost_model) {
241            Ok(_) => {
242                let duration = start.elapsed();
243                println!("  {}: {:?}", name, duration);
244            }
245            Err(e) => {
246                println!("  {} failed: {:?}", name, e);
247            }
248        }
249    }
250
251    // Benchmark full optimization
252    println!("\nFull Optimization Benchmark:");
253    let start = Instant::now();
254    let mut optimizer = CircuitOptimizer2::<4>::with_level(OptimizationLevel::Heavy);
255
256    match optimizer.optimize(circuit) {
257        Ok(report) => {
258            let duration = start.elapsed();
259            println!("  Total time: {:?}", duration);
260            println!(
261                "  Gates reduced: {} → {}",
262                report.initial_metrics.gate_count, report.final_metrics.gate_count
263            );
264
265            // Show detailed report
266            println!("\nDetailed Report:");
267            println!("{}", report.detailed_report());
268        }
269        Err(e) => {
270            println!("  Benchmark failed: {:?}", e);
271        }
272    }
273}
274
275// Example of creating a custom optimization pass
276struct MyCustomPass;
277
278impl OptimizationPass for MyCustomPass {
279    fn name(&self) -> &str {
280        "My Custom Pass"
281    }
282
283    fn apply_to_gates(
284        &self,
285        gates: Vec<Box<dyn GateOp>>,
286        _cost_model: &dyn CostModel,
287    ) -> quantrs2_core::error::QuantRS2Result<Vec<Box<dyn GateOp>>> {
288        // Custom optimization logic here
289        Ok(gates)
290    }
291
292    fn should_apply(&self) -> bool {
293        // Custom conditions for when to apply this pass
294        true
295    }
296}