pub struct MatZ { /* private fields */ }Expand description
MatZ is a matrix with entries of type Z.
Attributes:
§Examples
§Matrix usage
use qfall_math::{
integer::{MatZ, Z},
traits::{MatrixGetEntry, MatrixSetEntry},
};
// instantiate new matrix
let id_mat = MatZ::identity(2, 2);
// clone object, set and get entry
let mut clone = id_mat.clone();
clone.set_entry(0, 0, 2);
assert_eq!(clone.get_entry(1, 1).unwrap(), Z::ONE);
// multiplication, transposition and comparison
assert_eq!(id_mat.transpose() * &clone, clone);
// to_string incl. (de-)serialization
assert_eq!("[[1, 0],[0, 1]]", &id_mat.to_string());
assert_eq!(
"{\"matrix\":\"[[1, 0],[0, 1]]\"}",
serde_json::to_string(&id_mat).unwrap()
);§Vector usage
use qfall_math::{
integer::{MatZ, Z},
};
use std::str::FromStr;
let row_vec = MatZ::from_str("[[1, 1, 1]]").unwrap();
let col_vec = MatZ::from_str("[[1],[-1],[0]]").unwrap();
// check if matrix instance is vector
assert!(row_vec.is_row_vector());
assert!(col_vec.is_column_vector());
// dot product
assert_eq!(row_vec.dot_product(&col_vec).unwrap(), Z::ZERO);
// norm calculation
assert_eq!(col_vec.norm_eucl_sqrd().unwrap(), Z::from(2));
assert_eq!(row_vec.norm_infty().unwrap(), Z::ONE);Implementations§
Source§impl MatZ
impl MatZ
Sourcepub fn add_safe(&self, other: &Self) -> Result<MatZ, MathError>
pub fn add_safe(&self, other: &Self) -> Result<MatZ, MathError>
Implements addition for two MatZ matrices.
Parameters:
other: specifies the value to add toself
Returns the sum of both matrices as a MatZ or an
error if the matrix dimensions mismatch.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a: MatZ = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b: MatZ = MatZ::from_str("[[1, 9, 3],[1, 0, 5]]").unwrap();
let c: MatZ = a.add_safe(&b).unwrap();§Errors
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the matrix dimensions mismatch.
Source§impl MatZ
impl MatZ
Sourcepub unsafe fn div_exact(self, divisor: impl Into<Z>) -> MatZ
pub unsafe fn div_exact(self, divisor: impl Into<Z>) -> MatZ
Implements division for a MatZ matrix by a Z integer.
Parameters:
divisor: specifies the divisor by which the matrix is divided
Returns the quotient of self divided by divisor as a MatZ.
§Safety
The divisor MUST exactly divide each element in the matrix. If this is not the case, the result can contain arbitrary values which can depend on the location in memory.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let mut mat = MatZ::from_str("[[3, 6],[9, 27]]").unwrap();
let mat_z = unsafe { mat.div_exact(3) };
assert_eq!("[[1, 2],[3, 9]]", mat_z.to_string());§Panics …
- if the divisor is
0.
Sourcepub unsafe fn div_exact_ref(&self, divisor: impl Into<Z>) -> MatZ
pub unsafe fn div_exact_ref(&self, divisor: impl Into<Z>) -> MatZ
Implements division for a MatZ matrix by a Z integer.
Parameters:
divisor: specifies the divisor by which the matrix is divided
Returns the quotient of self divided by divisor as a MatZ.
§Safety
The divisor MUST exactly divide each element in the matrix. If this is not the case, the result can contain arbitrary values which can depend on the location in memory.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let mat = MatZ::from_str("[[3, 6],[9, 27]]").unwrap();
let mat_z = unsafe { mat.div_exact_ref(3) };
assert_eq!("[[1, 2],[3, 9]]", mat_z.to_string());§Panics …
- if the divisor is
0.
Source§impl MatZ
impl MatZ
Sourcepub fn mul_safe(&self, other: &Self) -> Result<Self, MathError>
pub fn mul_safe(&self, other: &Self) -> Result<Self, MathError>
Implements multiplication for two MatZ values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatZ or
an error, if the dimensions of self and other do not match for multiplication.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a = MatZ::from_str("[[2, 1],[1, 2]]").unwrap();
let b = MatZ::identity(2, 2);
let c: MatZ = a.mul_safe(&b).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the dimensions ofselfandotherdo not match for multiplication.
Source§impl MatZ
impl MatZ
Sourcepub fn sub_safe(&self, other: &Self) -> Result<MatZ, MathError>
pub fn sub_safe(&self, other: &Self) -> Result<MatZ, MathError>
Implements subtraction for two MatZ matrices.
Parameters:
other: specifies the value to subtract fromself
Returns the result of the subtraction as a MatZ or an
error if the matrix dimensions mismatch.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a: MatZ = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b: MatZ = MatZ::from_str("[[1, 9, 3],[1, 0, 5]]").unwrap();
let c: MatZ = a.sub_safe(&b).unwrap();§Errors
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the matrix dimensions mismatch.
Source§impl MatZ
impl MatZ
Sourcepub fn lll(&self, delta: impl Into<Q>, eta: impl Into<Q>) -> MatZ
pub fn lll(&self, delta: impl Into<Q>, eta: impl Into<Q>) -> MatZ
Performs the (modified Storjohann) LLL algorithm on the matrix self.
This algorithm expects self to be a basis.
The reduced matrix is a (δ, η)-reduced basis.
Let the matrix be [b_1, b_2, …, b_n]. Then, it is (δ, η)-LLL-reduced if
- for any i > j, we have |μ_{i,j}| <= η,
- for any i < n, we have δ|b_i*|^2 <= |b_{i+1}* + μ_{i+1,i}b_i*|^2,
where μ_{i,j} =〈b_i, b_j*〉/〈b_j*, b_j*〉and b_i* is the i-th vector of the Gram-Schmidt orthogonalization of our matrix.
Parameters:
delta: mainly defines the quality of the reduced basis with higher quality the closer it’s chosen to 1. Needs to be chosen between 0.25 < δ <= 1.eta: defines the maximum deviation per vector from the Gram-Schmidt orthogonalisation. Needs to be chosen between 0.5 <= η < √δ.
Choosing δ=0.99 and η=0.501 optimizes the quality of the basis and is a good choice to start from. Decreasing δ or increasing η will increase efficiency but decrease the quality of the reduced basis.
§Examples
use qfall_math::integer::MatZ;
let mut matrix = MatZ::sample_uniform(2, 2, 0, 65537).unwrap();
let reduced_matrix = matrix.lll(0.75, 0.501);§Panics …
- if δ is not in (0.25, 1].
- if η is not in [0.5, √δ).
- if
selfcan’t be a basis, i.e. #rows < #columns.
Sourcepub fn is_reduced(&self, delta: impl Into<Q>, eta: impl Into<Q>) -> bool
pub fn is_reduced(&self, delta: impl Into<Q>, eta: impl Into<Q>) -> bool
Checks if the basis self is (δ, η)-reduced.
Definition of (δ, η)-reduced: Let the matrix be [b_1, b_2, …, b_n]. Then, it is (δ, η)-LLL-reduced if
- for any i > j, we have |μ_{i,j}| <= η,
- for any i < n, we have δ|b_i*|^2 <= |b_{i+1}* + μ_{i+1,i}b_i*|^2,
where μ_{i,j} =〈b_i, b_j*〉/〈b_j*, b_j*〉and b_i* is the i-th vector of the Gram-Schmidt orthogonalization of our matrix.
Parameters:
delta: mainly defines the quality of the reduced basis with higher quality the closer it’s chosen to 1. If δ > 1, the output will always befalse.eta: defines the maximum deviation per vector from the Gram-Schmidt orthogonalisation. If η < 0, the output will always befalse.
If self has |rows| > |columns|, it can’t be a basis and therefore,
the output of this algorithm will always be false.
Returns true if the matrix is a basis that is (δ, η)-reduced.
Otherwise, it returns false.
§Examples
use qfall_math::integer::MatZ;
let mut matrix = MatZ::sample_uniform(2, 2, 0, 65537).unwrap();
let reduced_matrix = matrix.lll(0.75, 0.501);
let check = reduced_matrix.is_reduced(0.75, 0.501);
assert!(check);Source§impl MatZ
impl MatZ
Sourcepub fn new(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
) -> Self
pub fn new( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, ) -> Self
Creates a new matrix with num_rows rows, num_cols columns and
zeros as entries.
Parameters:
num_rows: number of rows the new matrix should havenum_cols: number of columns the new matrix should have
Returns a new MatZ instance of the provided dimensions.
§Examples
use qfall_math::integer::MatZ;
let matrix = MatZ::new(5, 10);§Panics …
- if the number of rows or columns is negative,
0, or does not fit into ani64.
Sourcepub fn identity(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
) -> Self
pub fn identity( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, ) -> Self
Generate a num_rows times num_columns matrix with 1 on the
diagonal and 0 anywhere else.
Parameters:
rum_rows: the number of rows of the identity matrixnum_columns: the number of columns of the identity matrix
Returns a matrix with 1 across the diagonal and 0 anywhere else.
§Examples
use qfall_math::integer::MatZ;
let matrix = MatZ::identity(2, 3);
let identity = MatZ::identity(10, 10);§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Source§impl MatZ
impl MatZ
Sourcepub fn det(&self) -> Result<Z, MathError>
pub fn det(&self) -> Result<Z, MathError>
Returns the determinant of the matrix or an error if the number of rows and columns is not equal.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2],[3, 4]]").unwrap();
let determinant = matrix.det().unwrap();§Errors and Failures
- Returns a
MathErrorof typeMismatchingMatrixDimensionif the number of rows and columns is not equal.
Source§impl MatZ
impl MatZ
Sourcepub fn hermite_nf(&self) -> (MatZ, MatZ)
pub fn hermite_nf(&self) -> (MatZ, MatZ)
Computes the Hermite normal form of self along with
the transformation matrix U s.t. U * A = H.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2, 12],[2, 4, 5]]").unwrap();
let h_cmp = MatZ::from_str("[[1, 2, 12],[0, 0, 19]]").unwrap();
let u_cmp = MatZ::from_str("[[1, 0],[2, -1]]").unwrap();
let (h, u) = matrix.hermite_nf();
assert_eq!(h_cmp, h);
assert_eq!(u_cmp, u);Sourcepub fn is_in_hermite_nf(&self) -> bool
pub fn is_in_hermite_nf(&self) -> bool
Checks if self is a matrix in Hermite normal form.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let non_hnf = MatZ::from_str("[[1, 2, 12],[2, 4, 5]]").unwrap();
let hnf = MatZ::from_str("[[1, 2, 12],[0, 0, 19]]").unwrap();
assert!(!non_hnf.is_in_hermite_nf());
assert!(hnf.is_in_hermite_nf());Sourcepub fn smith_nf(&self) -> Self
pub fn smith_nf(&self) -> Self
Computes the unique Smith normal form of the matrix self.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2, 12],[2, 4, 5]]").unwrap();
let snf_cmp = MatZ::from_str("[[1, 0, 0],[0, 19, 0]]").unwrap();
let snf = matrix.smith_nf();
assert_eq!(snf_cmp, snf);Sourcepub fn is_in_smith_nf(&self) -> bool
pub fn is_in_smith_nf(&self) -> bool
Checks if self is a matrix in Smith normal form.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let non_snf = MatZ::from_str("[[1, 2, 12],[2, 4, 5]]").unwrap();
let snf = MatZ::from_str("[[1, 0, 0],[0, 19, 0]]").unwrap();
assert!(!non_snf.is_in_smith_nf());
assert!(snf.is_in_smith_nf());Source§impl MatZ
impl MatZ
Sourcepub fn from_utf8(
message: &str,
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
) -> Self
pub fn from_utf8( message: &str, num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, ) -> Self
Create a MatZ from a String, i.e. its UTF8-Encoding.
This function can only construct positive or zero integers, but not negative ones.
If the number of bytes and number of entries does not line up, we pad the message
with '0's.
The inverse of this function is MatZ::to_utf8.
Parameters:
message: specifies the message that is transformed via its UTF8-Encoding to a newMatZinstance.num_rows: number of rows the new matrix should havenum_cols: number of columns the new matrix should have
Returns a MatZ with corresponding entries to the message’s UTF8-Encoding.
§Examples
use qfall_math::integer::MatZ;
let message = "hello!";
let matrix = MatZ::from_utf8(&message, 2, 1);§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Source§impl MatZ
impl MatZ
Sourcepub fn inverse(&self) -> Option<MatQ>
pub fn inverse(&self) -> Option<MatQ>
Returns the inverse of the matrix if it exists (is square and
has a determinant unequal to 0) and None otherwise.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::traits::*;
use std::str::FromStr;
let mut matrix = MatZ::from_str("[[1, 2],[3, 4]]").unwrap();
let matrix_invert = matrix.inverse().unwrap();Source§impl MatZ
impl MatZ
Sourcepub fn norm_l_2_infty_sqrd(&self) -> Z
pub fn norm_l_2_infty_sqrd(&self) -> Z
Outputs the squared l_{2, ∞}-norm, i.e. it computes the squared Euclidean norm of each column of the matrix and returns the largest one.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let mat = MatZ::from_str("[[2, 3],[2, 0]]").unwrap();
let eucl_norm = mat.norm_l_2_infty_sqrd();
// 3^2 + 0^2 = 9
assert_eq!(Z::from(9), eucl_norm);Sourcepub fn norm_l_2_infty(&self) -> Q
pub fn norm_l_2_infty(&self) -> Q
Outputs the l_{2, ∞}-norm, i.e. it computes the Euclidean norm of each column of the matrix and returns the largest one.
§Examples
use qfall_math::{integer::MatZ, rational::Q};
use std::str::FromStr;
let mat = MatZ::from_str("[[2, 3],[2, 0]]").unwrap();
let eucl_norm = mat.norm_l_2_infty();
// sqrt(3^2 + 0^2) = 3
assert_eq!(Q::from(3), eucl_norm);Sourcepub fn norm_l_infty_infty(&self) -> Z
pub fn norm_l_infty_infty(&self) -> Z
Outputs the l_{∞, ∞}-norm, i.e. it computes the ∞-norm of each column of the matrix and returns the largest one.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let mat = MatZ::from_str("[[2, 3],[2, 0]]").unwrap();
let eucl_norm = mat.norm_l_infty_infty();
// max{2, 3} = 3
assert_eq!(Z::from(3), eucl_norm);Source§impl MatZ
impl MatZ
Source§impl MatZ
impl MatZ
Sourcepub fn sample_binomial(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
n: impl Into<Z>,
p: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_binomial( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>
Outputs a MatZ instance with entries chosen according to the binomial
distribution parameterized by n and p.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should haven: specifies the number of trialsp: specifies the probability of success
Returns a new MatZ instance with entries chosen
according to the binomial distribution or a MathError
if n < 0, p ∉ (0,1), n does not fit into an i64,
or the dimensions of the matrix were chosen too small.
§Examples
use qfall_math::integer::MatZ;
let sample = MatZ::sample_binomial(2, 2, 5, 0.5).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifn < 0. - Returns a
MathErrorof typeInvalidIntervalifp ∉ (0,1). - Returns a
MathErrorof typeConversionErrorifndoes not fit into ani64.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Sourcepub fn sample_binomial_with_offset(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
offset: impl Into<Z>,
n: impl Into<Z>,
p: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_binomial_with_offset( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, offset: impl Into<Z>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>
Outputs a MatZ instance with entries chosen according to the binomial
distribution parameterized by n and p with given offset.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should haveoffset: specifies an offset applied to each sample collected from the binomial distributionn: specifies the number of trialsp: specifies the probability of success
Returns a new MatZ instance with entries chosen
according to the binomial distribution or a MathError
if n < 0, p ∉ (0,1), n does not fit into an i64,
or the dimensions of the matrix were chosen too small.
§Examples
use qfall_math::integer::MatZ;
let sample = MatZ::sample_binomial_with_offset(2, 2, -1, 2, 0.5).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifn < 0. - Returns a
MathErrorof typeInvalidIntervalifp ∉ (0,1). - Returns a
MathErrorof typeConversionErrorifndoes not fit into ani64.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Source§impl MatZ
impl MatZ
Sourcepub fn sample_discrete_gauss(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
center: impl Into<Q>,
s: impl Into<Q>,
) -> Result<MatZ, MathError>
pub fn sample_discrete_gauss( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, center: impl Into<Q>, s: impl Into<Q>, ) -> Result<MatZ, MathError>
Initializes a new matrix with dimensions num_rows x num_columns and with each entry
sampled independently according to the discrete Gaussian distribution,
using Z::sample_discrete_gauss.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should havecenter: specifies the positions of the center with peak probabilitys: specifies the Gaussian parameter, which is proportional to the standard deviationsigma * sqrt(2 * pi) = s
Returns a matrix with each entry sampled independently from the
specified discrete Gaussian distribution or an error if s < 0.
§Examples
use qfall_math::integer::MatZ;
let sample = MatZ::sample_discrete_gauss(3, 1, 0, 1.25f32).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifs < 0.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Sourcepub fn sample_d(
basis: &MatZ,
center: &MatQ,
s: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_d( basis: &MatZ, center: &MatQ, s: impl Into<Q>, ) -> Result<Self, MathError>
SampleD samples a discrete Gaussian from the lattice with a provided basis.
We do not check whether basis is actually a basis. Hence, the callee is
responsible for making sure that basis provides a suitable basis.
Parameters:
basis: specifies a basis for the lattice from which is sampledn: specifies the range from whichZ::sample_discrete_gausssamplescenter: specifies the positions of the center with peak probabilitys: specifies the Gaussian parameter, which is proportional to the standard deviationsigma * sqrt(2 * pi) = s
Returns a lattice vector sampled according to the discrete Gaussian distribution
or an error if s < 0, the number of rows of the basis and center differ,
or if center is not a column vector.
§Examples
use qfall_math::{integer::{MatZ, Z}, rational::{MatQ, Q}};
let basis = MatZ::identity(5, 5);
let center = MatQ::new(5, 1);
let sample = MatZ::sample_d(&basis, ¢er, 1.25f32).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifs < 0. - Returns a
MathErrorof typeMismatchingMatrixDimensionif the number of rows of thebasisandcenterdiffer. - Returns a
MathErrorof typeStringConversionErrorifcenteris not a column vector.
This function implements SampleD according to:
- [1] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008). Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. https://dl.acm.org/doi/pdf/10.1145/1374376.1374407
Sourcepub fn sample_d_common_non_spherical(
sigma_sqrt: &MatQ,
r: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_d_common_non_spherical( sigma_sqrt: &MatQ, r: impl Into<Q>, ) -> Result<Self, MathError>
Samples a non-spherical discrete Gaussian depending on your choice of
sigma_sqrt using the standard basis and center 0.
Parameters:
sigma_sqrt: specifies the positive definite Gaussian covariance matrix with which the intermediate continuous Gaussian is sampled before the randomized rounding is applied. Heresigma_sqrt = sqrt(sigma^2 - r^2*I)where sigma is the target covariance matrix. The root can be computed using theMatQ::cholesky_decomposition.r: specifies the rounding parameter forMatQ::randomized_rounding.
Returns a lattice vector sampled according to the discrete Gaussian distribution.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::rational::{Q, MatQ};
use std::str::FromStr;
use crate::qfall_math::traits::Pow;
let covariance_matrix = MatQ::from_str("[[100,1],[1,17]]").unwrap();
let r = Q::from(4);
let sigma_sqrt = covariance_matrix - r.pow(2).unwrap() * MatQ::identity(2, 2);
let sample = MatZ::sample_d_common_non_spherical(&sigma_sqrt.cholesky_decomposition(), r).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputif ther < 0. - Returns a
MathErrorof typeNoSquareMatrixif the matrix is not symmetric.
This function implements SampleD according to Algorithm 1. in [2].
- [2] Peikert, Chris. “An efficient and parallel Gaussian sampler for lattices. In Annual Cryptology Conference, pp. 80-97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. https://link.springer.com/chapter/10.1007/978-3-642-14623-7_5
Sourcepub fn sample_d_precomputed_gso(
basis: &MatZ,
basis_gso: &MatQ,
center: &MatQ,
s: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_d_precomputed_gso( basis: &MatZ, basis_gso: &MatQ, center: &MatQ, s: impl Into<Q>, ) -> Result<Self, MathError>
SampleD samples a discrete Gaussian from the lattice with a provided basis.
We do not check whether basis is actually a basis or whether basis_gso is
actually the gso of basis. Hence, the callee is responsible for making sure
that basis provides a suitable basis and basis_gso is a corresponding GSO.
Parameters:
basis: specifies a basis for the lattice from which is sampledbasis_gso: specifies the precomputed gso forbasiscenter: specifies the positions of the center with peak probabilitys: specifies the Gaussian parameter, which is proportional to the standard deviationsigma * sqrt(2 * pi) = s
Returns a lattice vector sampled according to the discrete Gaussian distribution
or an error if s < 0, the number of rows of the basis and center differ,
or if center is not a column vector.
§Examples
use qfall_math::{integer::{MatZ, Z}, rational::{MatQ, Q}};
let basis = MatZ::identity(5, 5);
let center = MatQ::new(5, 1);
let basis_gso = MatQ::from(&basis).gso();
let sample = MatZ::sample_d_precomputed_gso(&basis, &basis_gso, ¢er, 1.25f32).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifs < 0. - Returns a
MathErrorof typeMismatchingMatrixDimensionif the number of rows of thebasisandcenterdiffer. - Returns a
MathErrorof typeStringConversionErrorifcenteris not a column vector.
§Panics …
- if the number of rows/columns of
basis_gsoandbasismismatch.
This function implements SampleD according to:
- [1] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008). Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. https://dl.acm.org/doi/pdf/10.1145/1374376.1374407
Source§impl MatZ
impl MatZ
Sourcepub fn sample_uniform(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
lower_bound: impl Into<Z>,
upper_bound: impl Into<Z>,
) -> Result<Self, MathError>
pub fn sample_uniform( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, lower_bound: impl Into<Z>, upper_bound: impl Into<Z>, ) -> Result<Self, MathError>
Outputs a MatZ instance with entries chosen uniform at random
in [lower_bound, upper_bound).
The internally used uniform at random chosen bytes are generated
by ThreadRng, which uses ChaCha12 and
is considered cryptographically secure.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should havelower_bound: specifies the included lower bound of the interval over which is sampledupper_bound: specifies the excluded upper bound of the interval over which is sampled
Returns a new MatZ instance with entries chosen
uniformly at random in [lower_bound, upper_bound) or a MathError
if the dimensions of the matrix or the interval were chosen too small.
§Examples
use qfall_math::integer::MatZ;
let matrix = MatZ::sample_uniform(3, 3, 17, 26).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntervalif the givenupper_boundisn’t at least larger thanlower_bound.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Source§impl MatZ
impl MatZ
Sourcepub fn reverse_columns(&mut self)
pub fn reverse_columns(&mut self)
Swaps the i-th column with the n-i-th column for all i <= n/2
of the specified matrix with n columns.
§Examples
use qfall_math::integer::MatZ;
let mut matrix = MatZ::new(4, 3);
matrix.reverse_columns();Sourcepub fn reverse_rows(&mut self)
pub fn reverse_rows(&mut self)
Swaps the i-th row with the n-i-th row for all i <= n/2
of the specified matrix with n rows.
§Examples
use qfall_math::integer::MatZ;
let mut matrix = MatZ::new(4, 3);
matrix.reverse_rows();Source§impl MatZ
impl MatZ
Sourcepub fn sort_by_column<T: Ord>(
&self,
cond_func: fn(&Self) -> Result<T, MathError>,
) -> Result<Self, MathError>
pub fn sort_by_column<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>
Sorts the columns of the matrix based on some condition defined by cond_func in an ascending order.
This condition is usually a norm with the described input-output behaviour.
Parameters:
cond_func: computes values implementingOrdover the columns of the specified matrix. These values are then used to re-order / sort the rows of the matrix.
Returns an empty Ok if the action could be performed successfully.
A MathError is returned if the execution of cond_func returned an error.
§Examples
§Use a build-in function as condition
use qfall_math::integer::MatZ;
use std::str::FromStr;
let mat = MatZ::from_str("[[3, 2, 1]]").unwrap();
let cmp = MatZ::from_str("[[1, 2, 3]]").unwrap();
let sorted = mat.sort_by_column(MatZ::norm_eucl_sqrd).unwrap();
assert_eq!(cmp, sorted);§Use a custom function as condition
This function needs to take a column vector as input and output a type implementing PartialOrd
use qfall_math::{integer::{MatZ, Z}, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use std::str::FromStr;
let mat = MatZ::from_str("[[3, 2, 1]]").unwrap();
let cmp = MatZ::from_str("[[1, 2, 3]]").unwrap();
fn custom_cond_func(matrix: &MatZ) -> Result<Z, MathError> {
let mut sum = Z::ZERO;
for entry in matrix.get_entries_rowwise() {
sum += entry;
}
Ok(sum)
}
let sorted = mat.sort_by_column(custom_cond_func).unwrap();
assert_eq!(cmp, sorted);§Errors and Failures
- Returns a
MathErrorof the same type ascond_funcif the execution ofcond_funcfails.
Sourcepub fn sort_by_row<T: Ord>(
&self,
cond_func: fn(&Self) -> Result<T, MathError>,
) -> Result<Self, MathError>
pub fn sort_by_row<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>
Sorts the rows of the matrix based on some condition defined by cond_func in an ascending order.
This condition is usually a norm with the described input-output behaviour.
Parameters:
cond_func: computes values implementingOrdover the columns of the specified matrix. These values are then used to re-order / sort the columns of the matrix.
Returns an empty Ok if the action could be performed successfully.
A MathError is returned if the execution of cond_func returned an error.
§Examples
§Use a build-in function as condition
use qfall_math::integer::MatZ;
use std::str::FromStr;
let mat = MatZ::from_str("[[3],[2],[1]]").unwrap();
let cmp = MatZ::from_str("[[1],[2],[3]]").unwrap();
let sorted = mat.sort_by_row(MatZ::norm_infty).unwrap();
assert_eq!(cmp, sorted);§Use a custom function as condition
This function needs to take a row vector as input and output a type implementing PartialOrd
use qfall_math::{integer::{MatZ, Z}, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use std::str::FromStr;
let mat = MatZ::from_str("[[3],[2],[1]]").unwrap();
let cmp = MatZ::from_str("[[1],[2],[3]]").unwrap();
fn custom_cond_func(matrix: &MatZ) -> Result<Z, MathError> {
let mut sum = Z::ZERO;
for entry in matrix.get_entries_columnwise() {
sum += entry;
}
Ok(sum)
}
let sorted = mat.sort_by_row(custom_cond_func).unwrap();
assert_eq!(cmp, sorted);§Errors and Failures
- Returns a
MathErrorof the same type ascond_funcif the execution ofcond_funcfails.
Source§impl MatZ
impl MatZ
Sourcepub fn to_utf8(&self) -> Result<String, FromUtf8Error>
pub fn to_utf8(&self) -> Result<String, FromUtf8Error>
Enables conversion to a UTF8-Encoded String for MatZ values.
Every entry is padded with 00s s.t. all entries contain the same number of bytes.
Afterwards, they are appended row-by-row and converted.
The inverse to this function is MatZ::from_utf8 for valid UTF8-Encodings.
Warning: Not every byte-sequence forms a valid UTF8-Encoding.
In these cases, an error is returned. Please check the format of your message again.
The matrix entries are evaluated row by row, i.e. in the order of the output of mat_z.to_string().
Returns the corresponding UTF8-encoded String or a
FromUtf8Error if the byte sequence contains an invalid UTF8-character.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[104, 101, 108],[108, 111, 33]]").unwrap();
let message = matrix.to_utf8().unwrap();
assert_eq!("hello!", message);§Errors and Failures
- Returns a
FromUtf8Errorif the integer’s byte sequence contains invalid UTF8-characters.
Source§impl MatZ
impl MatZ
Sourcepub fn pretty_string(
&self,
nr_printed_rows: u64,
nr_printed_columns: u64,
) -> String
pub fn pretty_string( &self, nr_printed_rows: u64, nr_printed_columns: u64, ) -> String
Outputs the matrix as a String, where the upper leftmost nr_printed_rows x nr_printed_columns
submatrix is output entirely as well as the corresponding entries in the last column and row of the matrix.
Parameters:
nr_printed_rows: defines the number of rows of the upper leftmost matrix that are printed entirelynr_printed_columns: defines the number of columns of the upper leftmost matrix that are printed entirely
Returns a String representing the abbreviated matrix.
§Example
use qfall_math::integer::MatZ;
let matrix = MatZ::identity(10, 10);
println!("Matrix: {}", matrix.pretty_string(2, 2));
// outputs the following:
// Matrix: [
// [1, 0, , ..., 0],
// [0, 1, , ..., 0],
// [...],
// [0, 0, , ..., 1]
// ]Source§impl MatZ
impl MatZ
Sourcepub fn trace(&self) -> Result<Z, MathError>
pub fn trace(&self) -> Result<Z, MathError>
Returns the trace of a matrix and an error, if the matrix is not square.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2],[3, 4]]").unwrap();
let trace = matrix.trace().unwrap();§Errors and Failures
- Returns a
MathErrorof typeNoSquareMatrixif the matrix is not a square matrix
Source§impl MatZ
impl MatZ
Sourcepub fn transpose(&self) -> Self
pub fn transpose(&self) -> Self
Returns the transposed form of the given matrix, i.e. rows get transformed to columns and vice versa.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let mat = MatZ::from_str("[[2, 1],[2, 1],[2, 1]]").unwrap();
let cmp = MatZ::from_str("[[2, 2, 2],[1, 1, 1]]").unwrap();
assert_eq!(mat.transpose(), cmp);Source§impl MatZ
impl MatZ
Sourcepub unsafe fn get_fmpz_mat_struct(&mut self) -> &mut fmpz_mat_struct
pub unsafe fn get_fmpz_mat_struct(&mut self) -> &mut fmpz_mat_struct
Returns a mutable reference to the field matrix of type fmpz_mat_struct.
WARNING: The returned struct is part of flint_sys.
Any changes to this object are unsafe and may introduce memory leaks.
This function is a passthrough to enable users of this library to use flint_sys
and with that FLINT functions that might not be covered in our library yet.
If this is the case, please consider contributing to this open-source project
by opening a Pull Request at qfall_math
to provide this feature in the future.
§Safety
Any flint_sys struct and function is part of a FFI to the C-library FLINT.
As FLINT is a C-library, it does not provide all memory safety features
that Rust and our Wrapper provide.
Thus, using functions of flint_sys can introduce memory leaks.
Source§impl MatZ
impl MatZ
Sourcepub unsafe fn set_fmpz_mat_struct(&mut self, flint_struct: fmpz_mat_struct)
pub unsafe fn set_fmpz_mat_struct(&mut self, flint_struct: fmpz_mat_struct)
Sets the field matrix of type fmpz_mat_struct to flint_struct.
Parameters:
flint_struct: value to set the attribute to
This function is a passthrough to enable users of this library to use flint_sys
and with that FLINT functions that might not be covered in our library yet.
If this is the case, please consider contributing to this open-source project
by opening a Pull Request at qfall_math
to provide this feature in the future.
§Safety
Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.
Any flint_sys struct and function is part of a FFI to the C-library FLINT.
As FLINT is a C-library, it does not provide all memory safety features
that Rust and our Wrapper provide.
Thus, using functions of flint_sys can introduce memory leaks.
Source§impl MatZ
impl MatZ
Sourcepub fn dot_product(&self, other: &Self) -> Result<Z, MathError>
pub fn dot_product(&self, other: &Self) -> Result<Z, MathError>
Returns the dot product of two vectors of type MatZ.
Parameters:
other: specifies the other vector the dot product is calculated over
Returns the resulting dot_product as a Z or an error
if the given MatZ instances aren’t vectors or have different
numbers of entries.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let vec_1 = MatZ::from_str("[[1],[2],[3]]").unwrap();
let vec_2 = MatZ::from_str("[[1, 3, 2]]").unwrap();
let dot_prod = vec_1.dot_product(&vec_2).unwrap();
// 1*1 + 2*3 + 3*2 = 13
assert_eq!(Z::from(13), dot_prod);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatZinstance is not a (row or column) vector. - Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the given vectors have different lengths.
Source§impl MatZ
impl MatZ
Sourcepub fn is_row_vector(&self) -> bool
pub fn is_row_vector(&self) -> bool
Sourcepub fn is_column_vector(&self) -> bool
pub fn is_column_vector(&self) -> bool
Returns true if the provided MatZ has only one column,
i.e. is a column vector. Otherwise, returns false.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let vec = MatZ::from_str("[[1],[2],[3]]").unwrap();
assert!(vec.is_column_vector());
assert!(!vec.transpose().is_column_vector());Sourcepub fn has_single_entry(&self) -> bool
pub fn has_single_entry(&self) -> bool
Source§impl MatZ
impl MatZ
Sourcepub fn norm_eucl_sqrd(&self) -> Result<Z, MathError>
pub fn norm_eucl_sqrd(&self) -> Result<Z, MathError>
Returns the squared Euclidean norm or squared 2-norm of the given (row or column) vector
or an error if the given MatZ instance is not a (row or column) vector.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let vec = MatZ::from_str("[[1],[2],[3]]").unwrap();
let sqrd_2_norm = vec.norm_eucl_sqrd().unwrap();
// 1*1 + 2*2 + 3*3 = 14
assert_eq!(Z::from(14), sqrd_2_norm);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatZinstance is not a (row or column) vector.
Sourcepub fn norm_eucl(&self) -> Result<Q, MathError>
pub fn norm_eucl(&self) -> Result<Q, MathError>
Returns the Euclidean norm or 2-norm of the given (row or column) vector
or an error if the given MatZ instance is not a (row or column) vector.
§Examples
use qfall_math::{integer::MatZ, rational::Q};
use std::str::FromStr;
let vec = MatZ::from_str("[[2],[2],[2],[2]]").unwrap();
let eucl_norm = vec.norm_eucl().unwrap();
// sqrt(4 * 2^2) = 4
assert_eq!(Q::from(4), eucl_norm);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatZinstance is not a (row or column) vector.
Sourcepub fn norm_infty(&self) -> Result<Z, MathError>
pub fn norm_infty(&self) -> Result<Z, MathError>
Returns the infinity norm or ∞-norm of the given (row or column) vector
or an error if the given MatZ instance is not a (row or column) vector.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let vec = MatZ::from_str("[[1],[2],[3]]").unwrap();
let infty_norm = vec.norm_infty().unwrap();
// max{1, 2, 3} = 3
assert_eq!(Z::from(3), infty_norm);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatZinstance is not a (row or column) vector.
Trait Implementations§
Source§impl Add<&MatZ> for &MatQ
impl Add<&MatZ> for &MatQ
Source§fn add(self, other: &MatZ) -> Self::Output
fn add(self, other: &MatZ) -> Self::Output
Implements the Add trait for two MatQ values.
Add is implemented for any combination of MatQ and MatZ.
Parameters:
other: specifies the value to add toself
Returns the sum of both numbers as a MatQ.
§Examples
use qfall_math::{rational::MatQ, integer::MatZ};
use std::str::FromStr;
let a = MatQ::from_str("[[1/2, 2/3, 3/4],[3/4, 4/5, 5/7]]").unwrap();
let b = MatZ::identity(2, 3);
let d: MatQ = &a + &b;
let e: MatQ = a + &b;
let f: MatQ = &b + d;
let g: MatQ = b + f;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl Add<&MatZ> for &MatZq
impl Add<&MatZ> for &MatZq
Source§fn add(self, other: &MatZ) -> Self::Output
fn add(self, other: &MatZ) -> Self::Output
Implements the Add trait for a MatZ and a MatZq matrix.
Add is implemented for any combination of MatZ and MatZq and vice versa.
Parameters:
other: specifies the value to add toself
Returns the sum of both numbers as a MatZq.
§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq};
use std::str::FromStr;
let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();
let c = &a + &b;
let d = a.clone() + b.clone();
let e = &b + &a;
let f = b + a;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl Add for &MatZ
impl Add for &MatZ
Source§fn add(self, other: Self) -> Self::Output
fn add(self, other: Self) -> Self::Output
Implements the Add trait for two MatZ values.
Add is implemented for any combination of MatZ and borrowed MatZ.
Parameters:
other: specifies the value to add toself
Returns the sum of both numbers as a MatZ.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a: MatZ = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b: MatZ = MatZ::from_str("[[1, 9, 3],[1, 0, 5]]").unwrap();
let c: MatZ = &a + &b;
let d: MatZ = a + b;
let e: MatZ = &c + d;
let f: MatZ = c + &e;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl AddAssign<&MatZ> for MatQ
impl AddAssign<&MatZ> for MatQ
Source§fn add_assign(&mut self, other: &MatZ)
fn add_assign(&mut self, other: &MatZ)
Documentation at MatQ::add_assign.
Source§impl AddAssign<&MatZ> for MatZq
impl AddAssign<&MatZ> for MatZq
Source§fn add_assign(&mut self, other: &MatZ)
fn add_assign(&mut self, other: &MatZ)
Documentation at MatZq::add_assign.
Source§impl AddAssign<MatZ> for MatQ
impl AddAssign<MatZ> for MatQ
Source§fn add_assign(&mut self, other: MatZ)
fn add_assign(&mut self, other: MatZ)
Documentation at MatQ::add_assign.
Source§impl AddAssign<MatZ> for MatZq
impl AddAssign<MatZ> for MatZq
Source§fn add_assign(&mut self, other: MatZ)
fn add_assign(&mut self, other: MatZ)
Documentation at MatZq::add_assign.
Source§impl AddAssign for MatZ
impl AddAssign for MatZ
Source§fn add_assign(&mut self, other: MatZ)
fn add_assign(&mut self, other: MatZ)
Documentation at MatZ::add_assign.
Source§impl Clone for MatZ
impl Clone for MatZ
Source§impl CompareBase<&MatZ> for MatNTTPolynomialRingZq
impl CompareBase<&MatZ> for MatNTTPolynomialRingZq
Source§impl CompareBase<&MatZ> for MatPolyOverZ
impl CompareBase<&MatZ> for MatPolyOverZ
Source§impl CompareBase<&MatZ> for MatPolynomialRingZq
impl CompareBase<&MatZ> for MatPolynomialRingZq
Source§impl CompareBase<&MatZ> for MatQ
impl CompareBase<&MatZ> for MatQ
Source§impl CompareBase<&MatZ> for MatZ
impl CompareBase<&MatZ> for MatZ
Source§impl CompareBase<&MatZ> for MatZq
impl CompareBase<&MatZ> for MatZq
Source§impl<Integer: Into<Z>> CompareBase<Integer> for MatZ
impl<Integer: Into<Z>> CompareBase<Integer> for MatZ
Source§impl CompareBase<MatZ> for MatNTTPolynomialRingZq
impl CompareBase<MatZ> for MatNTTPolynomialRingZq
Source§impl CompareBase<MatZ> for MatPolyOverZ
impl CompareBase<MatZ> for MatPolyOverZ
Source§impl CompareBase<MatZ> for MatPolynomialRingZq
impl CompareBase<MatZ> for MatPolynomialRingZq
Source§impl CompareBase<MatZ> for MatQ
impl CompareBase<MatZ> for MatQ
Source§impl CompareBase<MatZ> for MatZq
impl CompareBase<MatZ> for MatZq
Source§impl CompareBase for MatZ
impl CompareBase for MatZ
Source§impl Concatenate for &MatZ
impl Concatenate for &MatZ
Source§fn concat_vertical(self, other: Self) -> Result<Self::Output, MathError>
fn concat_vertical(self, other: Self) -> Result<Self::Output, MathError>
Concatenates self with other vertically, i.e. other is added below.
Parameters:
other: the other matrix to concatenate withself
Returns a vertical concatenation of the two matrices or a an error, if the matrices can not be concatenated vertically.
§Examples
use qfall_math::traits::*;
use qfall_math::integer::MatZ;
let mat_1 = MatZ::new(13, 5);
let mat_2 = MatZ::new(17, 5);
let mat_vert = mat_1.concat_vertical(&mat_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMismatchingMatrixDimensionif the matrices can not be concatenated due to mismatching dimensions
Source§fn concat_horizontal(self, other: Self) -> Result<Self::Output, MathError>
fn concat_horizontal(self, other: Self) -> Result<Self::Output, MathError>
Concatenates self with other horizontally, i.e. other is added on the right.
Parameters:
other: the other matrix to concatenate withself
Returns a horizontal concatenation of the two matrices or a an error, if the matrices can not be concatenated horizontally.
§Examples
use qfall_math::traits::*;
use qfall_math::integer::MatZ;
let mat_1 = MatZ::new(17, 5);
let mat_2 = MatZ::new(17, 6);
let mat_vert = mat_1.concat_horizontal(&mat_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMismatchingMatrixDimensionif the matrices can not be concatenated due to mismatching dimensions
type Output = MatZ
Source§impl<'de> Deserialize<'de> for MatZ
impl<'de> Deserialize<'de> for MatZ
Source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
Implements the deserialize option. This allows to create a MatZ from a given Json-object.
Source§impl Display for MatZ
impl Display for MatZ
Source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Allows to convert a matrix of type MatZ into a String.
Returns the Matrix in form of a String. For matrix [[1, 2, 3],[4, 5, 6]]
the String looks like this [[1, 2, 3],[4, 5, 6]].
§Examples
use qfall_math::integer::MatZ;
use core::fmt;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2, 3],[4, 5, 6]]").unwrap();
println!("{matrix}");use qfall_math::integer::MatZ;
use core::fmt;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2, 3],[4, 5, 6]]").unwrap();
let matrix_string = matrix.to_string();Source§impl Div<&Z> for &MatZ
impl Div<&Z> for &MatZ
Source§fn div(self, divisor: &Z) -> Self::Output
fn div(self, divisor: &Z) -> Self::Output
Implements the Div trait for a MatZ matrix by a Z integer.
Div is also implemented for borrowed values.
Parameters:
divisor: specifies the divisor by which the matrix is divided
Returns the quotient of self divided by divisor as a MatQ.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let mat = MatZ::from_str("[[3, 5],[9, 22]]").unwrap();
let divisor = Z::from(3);
let mat_q = &mat / &divisor;
assert_eq!("[[1, 5/3],[3, 22/3]]", mat_q.to_string());§Panics …
- if the divisor is
0.
Source§impl Drop for MatZ
impl Drop for MatZ
Source§fn drop(&mut self)
fn drop(&mut self)
Drops the given MatZ value and frees the allocated memory.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let str_1 = "[[1, 2, 3],[3, 4, 5]]";
{
let a = MatZ::from_str(str_1).unwrap();
} // as a's scope ends here, it get's droppeduse qfall_math::integer::MatZ;
use std::str::FromStr;
let str_1 = "[[1, 2, 3],[3, 4, 5]]";
let a = MatZ::from_str(str_1).unwrap();
drop(a); // explicitly drops a's valueSource§impl<Integer: Into<Z>> Evaluate<Integer, MatZ> for MatPolyOverZ
impl<Integer: Into<Z>> Evaluate<Integer, MatZ> for MatPolyOverZ
Source§fn evaluate(&self, value: Integer) -> MatZ
fn evaluate(&self, value: Integer) -> MatZ
Evaluates a MatPolyOverZ on a given input entrywise.
Parameters:
value: the value with which to evaluate the matrix of polynomials.
Returns the evaluation of the polynomial as a MatZ.
§Examples
use qfall_math::traits::*;
use qfall_math::integer::Z;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let poly = MatPolyOverZ::from_str("[[0, 1 17, 2 24 42],[2 24 42, 2 24 42, 2 24 42]]").unwrap();
let res = poly.evaluate(3);Source§impl From<&MatZ> for MatPolyOverZ
impl From<&MatZ> for MatPolyOverZ
Source§fn from(matrix: &MatZ) -> Self
fn from(matrix: &MatZ) -> Self
Creates a MatPolyOverZ with constant polynomials defined by a MatZ.
Parameters
matrix: a matrix with constant integers.
Returns a matrix of polynomial that all have the first coefficient set to the value in the matrix.
§Examples
use qfall_math::integer::{MatZ, MatPolyOverZ};
let mat_z = MatZ::identity(10, 10);
let mat_poly = MatPolyOverZ::from(&mat_z);Source§impl From<&MatZ> for MatQ
impl From<&MatZ> for MatQ
Source§fn from(matrix: &MatZ) -> Self
fn from(matrix: &MatZ) -> Self
Source§impl From<&MatZ> for String
impl From<&MatZ> for String
Source§fn from(value: &MatZ) -> Self
fn from(value: &MatZ) -> Self
Converts a MatZ into its String representation.
Parameters:
value: specifies the matrix that will be represented as aString
Returns a String of the form "[[row_0],[row_1],...[row_n]]".
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let matrix = MatZ::from_str("[[6, 1],[5, 2]]").unwrap();
let string: String = matrix.into();Source§impl From<MatZ> for MatPolyOverZ
impl From<MatZ> for MatPolyOverZ
Source§impl FromCoefficientEmbedding<&MatZ> for PolyOverZ
impl FromCoefficientEmbedding<&MatZ> for PolyOverZ
Source§fn from_coefficient_embedding(embedding: &MatZ) -> Self
fn from_coefficient_embedding(embedding: &MatZ) -> Self
Computes a polynomial from a vector.
The first i-th entry of the column vector is taken
as the coefficient of the polynomial.
It inverts the operation of
PolyOverZ::into_coefficient_embedding.
Parameters:
embedding: the column vector that encodes the embedding
Returns a polynomial that corresponds to the embedding.
§Examples
use std::str::FromStr;
use qfall_math::{
integer::{MatZ, PolyOverZ},
traits::FromCoefficientEmbedding,
};
let vector = MatZ::from_str("[[17],[3],[-5]]").unwrap();
let poly = PolyOverZ::from_coefficient_embedding(&vector);
let cmp_poly = PolyOverZ::from_str("3 17 3 -5").unwrap();
assert_eq!(cmp_poly, poly);§Panics …
- if the provided embedding is not a column vector.
Source§impl FromStr for MatZ
impl FromStr for MatZ
Source§fn from_str(string: &str) -> Result<Self, MathError>
fn from_str(string: &str) -> Result<Self, MathError>
Creates a MatZ matrix with entries in Z from a String.
Parameters:
string: the matrix of form:"[[1, 2, 3],[4, 5, 6]]"for a 2x3 matrix with entries 1, 2, 3 in the first row and 4, 5, 6 in the second row.
Returns a MatZ or an error if the matrix is not formatted in a suitable way,
the number of rows or columns is too large (must fit into i64),
the number of entries in rows is unequal or if an entry is not formatted correctly.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let string = String::from("[[1, 2, 3],[3, 4, 5]]");
let matrix = MatZ::from_str(&string).unwrap();§Errors and Failures
- Returns a
MathErrorof typeStringConversionError- if the matrix is not formatted in a suitable way,
- if the number of rows or columns is too large (must fit into i64),
- if the number of entries in rows is unequal, or
- if an entry is not formatted correctly.
For further information see
Z::from_str.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatZ::new.
Source§impl IntoCoefficientEmbedding<MatZ> for &MatPolyOverZ
impl IntoCoefficientEmbedding<MatZ> for &MatPolyOverZ
Source§fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZ
fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZ
Computes the coefficient embedding of the matrix of polynomials
in a MatZ. Each column vector of polynomials is embedded into
size many row vectors of coefficients. The first one containing their
coefficients of degree 0, and the last one their coefficients
of degree size - 1.
It inverts the operation of MatPolyOverZ::from_coefficient_embedding.
Parameters:
size: determines the number of rows of the embedding. It has to be larger than the degree of the polynomial.
Returns a coefficient embedding as a matrix if size is large enough.
§Examples
use std::str::FromStr;
use qfall_math::{
integer::{MatZ, MatPolyOverZ},
traits::IntoCoefficientEmbedding,
};
let poly = MatPolyOverZ::from_str("[[1 1, 2 1 2],[1 -1, 2 -1 -2]]").unwrap();
let embedding = poly.into_coefficient_embedding(2);
let cmp_mat = MatZ::from_str("[[1, 1],[0, 2],[-1, -1],[0, -2]]").unwrap();
assert_eq!(cmp_mat, embedding);§Panics …
- if
sizeis not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§impl IntoCoefficientEmbedding<MatZ> for &PolyOverZ
impl IntoCoefficientEmbedding<MatZ> for &PolyOverZ
Source§fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZ
fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZ
Computes the coefficient embedding of the polynomial
in a MatZ as a column vector, where the i-th entry
of the vector corresponds to the i-th coefficient.
It inverts the operation of PolyOverZ::from_coefficient_embedding.
Parameters:
size: determines the number of rows of the embedding. It has to be larger than the degree of the polynomial.
Returns a coefficient embedding as a column vector if size is large enough.
§Examples
use std::str::FromStr;
use qfall_math::{
integer::{MatZ, PolyOverZ},
traits::IntoCoefficientEmbedding,
};
let poly = PolyOverZ::from_str("3 17 3 -5").unwrap();
let vector = poly.into_coefficient_embedding(4);
let cmp_vector = MatZ::from_str("[[17],[3],[-5],[0]]").unwrap();
assert_eq!(cmp_vector, vector);§Panics …
- if
sizeis not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§impl MatrixDimensions for MatZ
impl MatrixDimensions for MatZ
Source§fn get_num_rows(&self) -> i64
fn get_num_rows(&self) -> i64
Source§impl MatrixGetEntry<Z> for MatZ
impl MatrixGetEntry<Z> for MatZ
Source§unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> Z
unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> Z
Outputs the Z value of a specific matrix entry without checking
whether it’s part of the matrix.
Parameters:
row: specifies the row in which the entry is locatedcolumn: specifies the column in which the entry is located
Returns the Z value of the matrix at the position of the given
row and column.
§Safety
To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.
§Examples
use qfall_math::integer::{MatZ, Z};
use qfall_math::traits::MatrixGetEntry;
use std::str::FromStr;
let matrix = MatZ::from_str("[[1, 2, 3],[4, 5, 6],[7, 8, 9]]").unwrap();
assert_eq!(unsafe { matrix.get_entry_unchecked(0, 2) }, Z::from(3));
assert_eq!(unsafe { matrix.get_entry_unchecked(2, 1) }, Z::from(8));
assert_eq!(unsafe { matrix.get_entry_unchecked(2, 1) }, Z::from(8));Source§fn get_entry(
&self,
row: impl TryInto<i64> + Display,
column: impl TryInto<i64> + Display,
) -> Result<T, MathError>
fn get_entry( &self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, ) -> Result<T, MathError>
Source§fn get_entries(&self) -> Vec<Vec<T>>
fn get_entries(&self) -> Vec<Vec<T>>
Vec<Vec<T>> containing all entries of the matrix s.t.
any entry in row i and column j can be accessed via entries[i][j]
if entries = matrix.get_entries. Read moreSource§fn get_entries_rowwise(&self) -> Vec<T>
fn get_entries_rowwise(&self) -> Vec<T>
Source§impl MatrixGetSubmatrix for MatZ
impl MatrixGetSubmatrix for MatZ
Source§unsafe fn get_submatrix_unchecked(
&self,
row_1: i64,
row_2: i64,
col_1: i64,
col_2: i64,
) -> Self
unsafe fn get_submatrix_unchecked( &self, row_1: i64, row_2: i64, col_1: i64, col_2: i64, ) -> Self
Returns a deep copy of the submatrix defined by the given parameters and does not check the provided dimensions. There is also a safe version of this function that checks the input.
Parameters:
row_1: the starting row of the submatrix
row_2: the ending row of the submatrix
col_1: the starting column of the submatrix
col_2: the ending column of the submatrix
Returns the submatrix from (row_1, col_1) to (row_2, col_2)(exclusively).
§Examples
use qfall_math::{integer::MatZ, traits::MatrixGetSubmatrix};
use std::str::FromStr;
let mat = MatZ::identity(3, 3);
let sub_mat_1 = mat.get_submatrix(0, 2, 1, 1).unwrap();
let sub_mat_2 = mat.get_submatrix(0, -1, 1, -2).unwrap();
let sub_mat_3 = unsafe{mat.get_submatrix_unchecked(0, 3, 1, 2)};
let e_2 = MatZ::from_str("[[0],[1],[0]]").unwrap();
assert_eq!(e_2, sub_mat_1);
assert_eq!(e_2, sub_mat_2);
assert_eq!(e_2, sub_mat_3);§Safety
To use this function safely, make sure that the selected submatrix is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.
Source§fn get_row(
&self,
row: impl TryInto<i64> + Display + Clone,
) -> Result<Self, MathError>
fn get_row( &self, row: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>
Source§unsafe fn get_row_unchecked(&self, row: i64) -> Self
unsafe fn get_row_unchecked(&self, row: i64) -> Self
Source§fn get_column(
&self,
column: impl TryInto<i64> + Display + Clone,
) -> Result<Self, MathError>
fn get_column( &self, column: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>
Source§unsafe fn get_column_unchecked(&self, column: i64) -> Self
unsafe fn get_column_unchecked(&self, column: i64) -> Self
Source§fn get_submatrix(
&self,
row_1: impl TryInto<i64> + Display,
row_2: impl TryInto<i64> + Display,
col_1: impl TryInto<i64> + Display,
col_2: impl TryInto<i64> + Display,
) -> Result<Self, MathError>
fn get_submatrix( &self, row_1: impl TryInto<i64> + Display, row_2: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, col_2: impl TryInto<i64> + Display, ) -> Result<Self, MathError>
(row_1, col_1) to (row_2, col_2)(inclusively) are collected in
a new matrix.
Note that row_1 >= row_2 and col_1 >= col_2 must hold after converting negative indices.
Otherwise the function will panic. Read moreSource§impl<Integer: Into<Z>> MatrixSetEntry<Integer> for MatZ
impl<Integer: Into<Z>> MatrixSetEntry<Integer> for MatZ
Source§unsafe fn set_entry_unchecked(&mut self, row: i64, column: i64, value: Integer)
unsafe fn set_entry_unchecked(&mut self, row: i64, column: i64, value: Integer)
Sets the value of a specific matrix entry according to the provided value without checking whether the coordinate is part of the matrix.
Parameters:
row: specifies the row in which the entry is locatedcolumn: specifies the column in which the entry is locatedvalue: specifies the value to which the entry is set
§Safety
To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.
§Examples
use qfall_math::integer::{MatZ, Z};
use qfall_math::traits::MatrixSetEntry;
let mut matrix = MatZ::new(3, 3);
unsafe {
matrix.set_entry_unchecked(0, 1, 5);
matrix.set_entry_unchecked(2, 2, 9);
}
assert_eq!("[[0, 5, 0],[0, 0, 0],[0, 0, 9]]", matrix.to_string());Source§impl MatrixSetSubmatrix for MatZ
impl MatrixSetSubmatrix for MatZ
Source§unsafe fn set_submatrix_unchecked(
&mut self,
row_self_start: i64,
col_self_start: i64,
row_self_end: i64,
col_self_end: i64,
other: &Self,
row_other_start: i64,
col_other_start: i64,
row_other_end: i64,
col_other_end: i64,
)
unsafe fn set_submatrix_unchecked( &mut self, row_self_start: i64, col_self_start: i64, row_self_end: i64, col_self_end: i64, other: &Self, row_other_start: i64, col_other_start: i64, row_other_end: i64, col_other_end: i64, )
Sets the matrix entries in self to entries defined in other.
The entries in self starting from (row_self_start, col_self_start) up to
(row_self_end, col_self_end)are set to be
the entries from the submatrix from other defined by (row_other_start, col_other_start)
to (row_other_end, col_other_end) (exclusively).
Parameters:
row_self_start: the starting row of the matrix in which to set a submatrix
col_self_start: the starting column of the matrix in which to set a submatrix
other: the matrix from where to take the submatrix to set
row_other_start: the starting row of the specified submatrix
col_other_start: the starting column of the specified submatrix
row_other_end: the ending row of the specified submatrix
col_other_end:the ending column of the specified submatrix
§Examples
use qfall_math::{integer::MatZ, traits::MatrixSetSubmatrix};
use std::str::FromStr;
let mut mat = MatZ::identity(3, 3);
mat.set_submatrix(0, 1, &mat.clone(), 0, 0, 1, 1).unwrap();
// [[1,1,0],[0,0,1],[0,0,1]]
let mat_cmp = MatZ::from_str("[[1, 1, 0],[0, 0, 1],[0, 0, 1]]").unwrap();
assert_eq!(mat, mat_cmp);
unsafe{ mat.set_submatrix_unchecked(2, 0, 3, 2, &mat.clone(), 0, 0, 1, 2) };
let mat_cmp = MatZ::from_str("[[1, 1, 0],[0, 0, 1],[1, 1, 1]]").unwrap();
assert_eq!(mat, mat_cmp);§Safety
To use this function safely, make sure that the selected submatrices are part of the matrices, the submatrices are of the same dimensions and the base types are the same. If not, memory leaks, unexpected panics, etc. might occur.
Source§fn set_row(
&mut self,
row_0: impl TryInto<i64> + Display,
other: &Self,
row_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn set_row( &mut self, row_0: impl TryInto<i64> + Display, other: &Self, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
other. Read moreSource§unsafe fn set_row_unchecked(&mut self, row_0: i64, other: &Self, row_1: i64)
unsafe fn set_row_unchecked(&mut self, row_0: i64, other: &Self, row_1: i64)
other. Read moreSource§fn set_column(
&mut self,
col_0: impl TryInto<i64> + Display,
other: &Self,
col_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn set_column( &mut self, col_0: impl TryInto<i64> + Display, other: &Self, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
other. Read moreSource§unsafe fn set_column_unchecked(&mut self, col_0: i64, other: &Self, col_1: i64)
unsafe fn set_column_unchecked(&mut self, col_0: i64, other: &Self, col_1: i64)
other. Read moreSource§fn set_submatrix(
&mut self,
row_self_start: impl TryInto<i64> + Display,
col_self_start: impl TryInto<i64> + Display,
other: &Self,
row_other_start: impl TryInto<i64> + Display,
col_other_start: impl TryInto<i64> + Display,
row_other_end: impl TryInto<i64> + Display,
col_other_end: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn set_submatrix( &mut self, row_self_start: impl TryInto<i64> + Display, col_self_start: impl TryInto<i64> + Display, other: &Self, row_other_start: impl TryInto<i64> + Display, col_other_start: impl TryInto<i64> + Display, row_other_end: impl TryInto<i64> + Display, col_other_end: impl TryInto<i64> + Display, ) -> Result<(), MathError>
self to entries defined in other.
The entries in self starting from (row_self_start, col_self_start) are set to be
the entries from the submatrix from other defined by (row_other_start, col_other_start)
to (row_other_end, col_other_end) (inclusively).
The original matrix must have sufficiently many entries to contain the defined submatrix. Read moreSource§impl MatrixSwaps for MatZ
impl MatrixSwaps for MatZ
Source§fn swap_entries(
&mut self,
row_0: impl TryInto<i64> + Display,
col_0: impl TryInto<i64> + Display,
row_1: impl TryInto<i64> + Display,
col_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn swap_entries( &mut self, row_0: impl TryInto<i64> + Display, col_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
Swaps two entries of the specified matrix.
Parameters:
row_0: specifies the row, in which the first entry is locatedcol_0: specifies the column, in which the first entry is locatedrow_1: specifies the row, in which the second entry is locatedcol_1: specifies the column, in which the second entry is located
Negative indices can be used to index from the back, e.g., -1 for
the last element.
Returns an empty Ok if the action could be performed successfully.
Otherwise, a MathError is returned if one of the specified entries is not part of the matrix.
§Examples
use qfall_math::{integer::MatZ, traits::MatrixSwaps};
let mut matrix = MatZ::new(4, 3);
matrix.swap_entries(0, 0, 2, 1);§Errors and Failures
- Returns a
MathErrorof typeMathError::OutOfBoundsif row or column are greater than the matrix size.
Source§fn swap_columns(
&mut self,
col_0: impl TryInto<i64> + Display,
col_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn swap_columns( &mut self, col_0: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
Swaps two columns of the specified matrix.
Parameters:
col_0: specifies the first column which is swapped with the second onecol_1: specifies the second column which is swapped with the first one
Negative indices can be used to index from the back, e.g., -1 for
the last element.
Returns an empty Ok if the action could be performed successfully.
Otherwise, a MathError is returned if one of the specified columns is not part of the matrix.
§Examples
use qfall_math::{integer::MatZ, traits::MatrixSwaps};
let mut matrix = MatZ::new(4, 3);
matrix.swap_columns(0, 2);§Errors and Failures
- Returns a
MathErrorof typeOutOfBoundsif one of the given columns is greater than the matrix.
Source§fn swap_rows(
&mut self,
row_0: impl TryInto<i64> + Display,
row_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn swap_rows( &mut self, row_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
Swaps two rows of the specified matrix.
Parameters:
row_0: specifies the first row which is swapped with the second onerow_1: specifies the second row which is swapped with the first one
Negative indices can be used to index from the back, e.g., -1 for
the last element.
Returns an empty Ok if the action could be performed successfully.
Otherwise, a MathError is returned if one of the specified rows is not part of the matrix.
§Examples
use qfall_math::{integer::MatZ, traits::MatrixSwaps};
let mut matrix = MatZ::new(4, 3);
matrix.swap_rows(0, 2);§Errors and Failures
- Returns a
MathErrorof typeOutOfBoundsif one of the given rows is greater than the matrix.
Source§impl Mul<&MatQ> for &MatZ
impl Mul<&MatQ> for &MatZ
Source§fn mul(self, other: &MatQ) -> Self::Output
fn mul(self, other: &MatQ) -> Self::Output
Implements the Mul trait for MatZ and MatQ.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatQ.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::rational::MatQ;
use std::str::FromStr;
let a = MatZ::identity(2, 2);
let b = MatQ::from_str("[[2/3, 1/2],[8/4, 7]]").unwrap();
let c = &a * &b;
let d = a * b;
let e = &MatZ::identity(2, 2) * c;
let f = MatZ::identity(2, 2) * &e;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§impl Mul<&MatZ> for &MatQ
impl Mul<&MatZ> for &MatQ
Source§fn mul(self, other: &MatZ) -> Self::Output
fn mul(self, other: &MatZ) -> Self::Output
Implements the Mul trait for MatQ and MatZ.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatQ.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::rational::MatQ;
use std::str::FromStr;
let a = MatQ::from_str("[[2/3, 1/2],[8/4, 7]]").unwrap();
let b = MatZ::identity(2, 2);
let c = &a * &b;
let d = a * b;
let e = c * &MatZ::identity(2, 2);
let f = &e * MatZ::identity(2, 2);§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§impl Mul<&MatZ> for &MatZq
impl Mul<&MatZ> for &MatZq
Source§fn mul(self, other: &MatZ) -> Self::Output
fn mul(self, other: &MatZ) -> Self::Output
Implements the Mul trait for MatZq and MatZ.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatZq.
§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a = MatZq::from_str("[[2, 1],[1, 2]] mod 3").unwrap();
let b = MatZ::identity(2, 2);
let c = &a * &b;
let d = a * b;
let e = d * &MatZ::identity(2, 2);
let f = &e * MatZ::identity(2, 2);§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§impl Mul<&MatZq> for &MatZ
impl Mul<&MatZq> for &MatZ
Source§fn mul(self, other: &MatZq) -> Self::Output
fn mul(self, other: &MatZq) -> Self::Output
Implements the Mul trait for MatZ and MatZq.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatZq.
§Examples
use qfall_math::integer_mod_q::MatZq;
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a = MatZ::identity(2, 2);
let b = MatZq::from_str("[[2, 1],[1, 2]] mod 3").unwrap();
let c = &a * &b;
let d = a * b;
let e = &MatZ::identity(2, 2) * d;
let f = MatZ::identity(2, 2) * &e;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§impl Mul<&Q> for &MatZ
impl Mul<&Q> for &MatZ
Source§fn mul(self, scalar: &Q) -> Self::Output
fn mul(self, scalar: &Q) -> Self::Output
Implements the Mul trait for a MatZ matrix with a Q rational.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
scalar: specifies the scalar by which the matrix is multiplied
Returns the product of self and scalar as a MatQ.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::rational::Q;
use std::str::FromStr;
let mat_1 = MatZ::from_str("[[2, 1],[1, 2]]").unwrap();
let rational = Q::from((1,3));
let mat_2 = &mat_1 * &rational;Source§impl Mul<&Z> for &MatZ
impl Mul<&Z> for &MatZ
Source§fn mul(self, scalar: &Z) -> Self::Output
fn mul(self, scalar: &Z) -> Self::Output
Implements the Mul trait for a MatZ matrix with a Z integer.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
scalar: specifies the scalar by which the matrix is multiplied
Returns the product of self and scalar as a MatZ.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::integer::Z;
use std::str::FromStr;
let mat_1 = MatZ::from_str("[[2, 1],[1, 2]]").unwrap();
let integer = Z::from(3);
let mat_2 = &mat_1 * &integer;Source§impl Mul<&Zq> for &MatZ
impl Mul<&Zq> for &MatZ
Source§fn mul(self, scalar: &Zq) -> Self::Output
fn mul(self, scalar: &Zq) -> Self::Output
Implements the Mul trait for a MatZ matrix with a Zq representative of a residue class.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
scalar: specifies the scalar by which the matrix is multiplied
Returns the product of self and scalar as a MatZq.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::integer_mod_q::Zq;
use std::str::FromStr;
let mat_1 = MatZ::from_str("[[2, 1],[1, 2]]").unwrap();
let zq = Zq::from((1,3));
let mat_2 = &mat_1 * &zq;Source§impl Mul for &MatZ
impl Mul for &MatZ
Source§fn mul(self, other: Self) -> Self::Output
fn mul(self, other: Self) -> Self::Output
Implements the Mul trait for two MatZ values.
Mul is implemented for any combination of MatZ and borrowed MatZ.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatZ.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a = MatZ::from_str("[[2, 1],[1, 2]]").unwrap();
let b = MatZ::identity(2, 2);
let c = &a * &b;
let d = a * b;
let e = &c * d;
let f = c * &e;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§impl MulAssign<&Z> for MatZ
impl MulAssign<&Z> for MatZ
Source§fn mul_assign(&mut self, scalar: &Z)
fn mul_assign(&mut self, scalar: &Z)
Computes the scalar multiplication of self and scalar reusing
the memory of self.
Parameters:
scalar: specifies the value to multiply toself
Returns the scalar of the matrix as a MatZ.
§Examples
use qfall_math::integer::{Z,MatZ};
use std::str::FromStr;
let mut a = MatZ::from_str("[[2, 1],[1, 2]]").unwrap();
let b = Z::from(2);
a *= &b;
a *= b;
a *= 2;
a *= -2;Source§impl MulAssign<Z> for MatZ
impl MulAssign<Z> for MatZ
Source§fn mul_assign(&mut self, other: Z)
fn mul_assign(&mut self, other: Z)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<i16> for MatZ
impl MulAssign<i16> for MatZ
Source§fn mul_assign(&mut self, other: i16)
fn mul_assign(&mut self, other: i16)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<i32> for MatZ
impl MulAssign<i32> for MatZ
Source§fn mul_assign(&mut self, other: i32)
fn mul_assign(&mut self, other: i32)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<i64> for MatZ
impl MulAssign<i64> for MatZ
Source§fn mul_assign(&mut self, scalar: i64)
fn mul_assign(&mut self, scalar: i64)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<i8> for MatZ
impl MulAssign<i8> for MatZ
Source§fn mul_assign(&mut self, other: i8)
fn mul_assign(&mut self, other: i8)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<u16> for MatZ
impl MulAssign<u16> for MatZ
Source§fn mul_assign(&mut self, other: u16)
fn mul_assign(&mut self, other: u16)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<u32> for MatZ
impl MulAssign<u32> for MatZ
Source§fn mul_assign(&mut self, other: u32)
fn mul_assign(&mut self, other: u32)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<u64> for MatZ
impl MulAssign<u64> for MatZ
Source§fn mul_assign(&mut self, scalar: u64)
fn mul_assign(&mut self, scalar: u64)
Documentation at MatZ::mul_assign.
Source§impl MulAssign<u8> for MatZ
impl MulAssign<u8> for MatZ
Source§fn mul_assign(&mut self, other: u8)
fn mul_assign(&mut self, other: u8)
Documentation at MatZ::mul_assign.
Source§impl PartialEq<MatZ> for MatQ
impl PartialEq<MatZ> for MatQ
Source§fn eq(&self, other: &MatZ) -> bool
fn eq(&self, other: &MatZ) -> bool
Checks if an integer matrix and a rational matrix are equal. Used by the == and != operators.
PartialEq is also implemented for MatZ using MatQ.
Parameters:
other: the other value that is used to compare the elements
Returns true if the elements are equal, otherwise false.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::rational::MatQ;
use std::str::FromStr;
let a: MatQ = MatQ::from_str("[[42, 2],[3, 4]]").unwrap();
let b: MatZ = MatZ::from_str("[[42, 2],[3, 4]]").unwrap();
// These are all equivalent and return true.
let compared: bool = (a == b);
let compared: bool = (b == a);
let compared: bool = (&a == &b);
let compared: bool = (&b == &a);
let compared: bool = (a.eq(&b));
let compared: bool = (b.eq(&a));
let compared: bool = (MatQ::eq(&a, &b));
let compared: bool = (MatZ::eq(&b, &a));Source§impl PartialEq for MatZ
impl PartialEq for MatZ
Source§fn eq(&self, other: &Self) -> bool
fn eq(&self, other: &Self) -> bool
Checks if two MatZ instances are equal. Used by the == and != operators.
Parameters:
other: the other value that is compare againstself
Returns true if the elements are equal, otherwise false.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a = MatZ::from_str("[[1, 2],[3, 4]]").unwrap();
let b = MatZ::from_str("[[1, 2],[2, 4]]").unwrap();
// These are all equivalent and return false.
let compared: bool = (a == b);
let compared: bool = (&a == &b);
let compared: bool = (a.eq(&b));
let compared: bool = (MatZ::eq(&a, &b));Source§impl Rem<&Modulus> for &MatZ
impl Rem<&Modulus> for &MatZ
Source§fn rem(self, modulus: &Modulus) -> Self::Output
fn rem(self, modulus: &Modulus) -> Self::Output
Computes self mod modulus.
For negative entries in self, the smallest positive representative is returned.
Parameters:
modulus: specifies a non-zero integer over which the positive remainders are computed
Returns self mod modulus as a MatZ instance.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::integer_mod_q::Modulus;
use std::str::FromStr;
let a: MatZ = MatZ::from_str("[[-2],[42]]").unwrap();
let b = Modulus::from(24);
let c: MatZ = &a % &b;Source§impl Rem<&Z> for &MatZ
impl Rem<&Z> for &MatZ
Source§fn rem(self, modulus: &Z) -> Self::Output
fn rem(self, modulus: &Z) -> Self::Output
Computes self mod modulus as long as modulus is greater than 1.
For negative entries in self, the smallest positive representative is returned.
Parameters:
modulus: specifies a non-zero integer over which the positive remainders are computed
Returns self mod modulus as a MatZ instance.
§Examples
use qfall_math::integer::{MatZ, Z};
use std::str::FromStr;
let a: MatZ = MatZ::from_str("[[-2],[42]]").unwrap();
let b: Z = Z::from(24);
let c: MatZ = a % b;§Panics …
- if
modulusis smaller than2.
Source§impl Sub<&MatQ> for &MatZ
impl Sub<&MatQ> for &MatZ
Source§fn sub(self, other: &MatQ) -> Self::Output
fn sub(self, other: &MatQ) -> Self::Output
Implements the Sub trait for a MatZ and a MatQ matrix.
Sub is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the matrix to subtract fromself.
Returns the subtraction of self and other as a MatQ.
§Examples
use qfall_math::{integer::MatZ, rational::MatQ};
use std::str::FromStr;
let a = MatQ::from_str("[[1/2, 9, 3/8],[1/7, 0, 5]]").unwrap();
let b = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let c = &b - &a;
let d = b.clone() - a.clone();
let e = &b - &a;
let f = b - a;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl Sub<&MatZ> for &MatQ
impl Sub<&MatZ> for &MatQ
Source§fn sub(self, other: &MatZ) -> Self::Output
fn sub(self, other: &MatZ) -> Self::Output
Implements the Sub trait for a MatQ and a MatZ matrix.
Sub is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the matrix to subtract fromself.
Returns the subtraction of self and other as a MatQ.
§Examples
use qfall_math::{integer::MatZ, rational::MatQ};
use std::str::FromStr;
let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatQ::from_str("[[1/2, 9, 3/8],[1/7, 0, 5]]").unwrap();
let c = &b - &a;
let d = b.clone() - a.clone();
let e = &b - &a;
let f = b - a;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl Sub<&MatZ> for &MatZq
impl Sub<&MatZ> for &MatZq
Source§fn sub(self, other: &MatZ) -> Self::Output
fn sub(self, other: &MatZ) -> Self::Output
Implements the Sub trait for a MatZq and a MatZ matrix.
Sub is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the matrix to subtract fromself.
Returns the subtraction of self and other as a MatZq.
§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq};
use std::str::FromStr;
let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();
let c = &b - &a;
let d = b.clone() - a.clone();
let e = &b - &a;
let f = b - a;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl Sub<&MatZq> for &MatZ
impl Sub<&MatZq> for &MatZ
Source§fn sub(self, other: &MatZq) -> Self::Output
fn sub(self, other: &MatZq) -> Self::Output
Implements the Sub trait for a MatZ and a MatZq matrix.
Sub is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the matrix to subtract fromself.
Returns the subtraction of self and other as a MatZq.
§Examples
use qfall_math::{integer::MatZ, integer_mod_q::MatZq};
use std::str::FromStr;
let a = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b = MatZq::from_str("[[1, 9, 3],[1, 0, 5]] mod 7").unwrap();
let c = &a - &b;
let d = a.clone() - b.clone();
let e = &a - &b;
let f = a - b;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl Sub for &MatZ
impl Sub for &MatZ
Source§fn sub(self, other: Self) -> Self::Output
fn sub(self, other: Self) -> Self::Output
Implements the Sub trait for two MatZ values.
Sub is implemented for any combination of MatZ and borrowed MatZ.
Parameters:
other: specifies the value to subtract fromself
Returns the result of the subtraction as a MatZ.
§Examples
use qfall_math::integer::MatZ;
use std::str::FromStr;
let a: MatZ = MatZ::from_str("[[1, 2, 3],[3, 4, 5]]").unwrap();
let b: MatZ = MatZ::from_str("[[1, 9, 3],[1, 0, 5]]").unwrap();
let c: MatZ = &a - &b;
let d: MatZ = a - b;
let e: MatZ = &c - d;
let f: MatZ = c - &e;§Panics …
- if the dimensions of both matrices mismatch.
Source§impl SubAssign<&MatZ> for MatQ
impl SubAssign<&MatZ> for MatQ
Source§fn sub_assign(&mut self, other: &MatZ)
fn sub_assign(&mut self, other: &MatZ)
Documentation at MatQ::sub_assign.
Source§impl SubAssign<&MatZ> for MatZq
impl SubAssign<&MatZ> for MatZq
Source§fn sub_assign(&mut self, other: &MatZ)
fn sub_assign(&mut self, other: &MatZ)
Documentation at MatZq::sub_assign.
Source§impl SubAssign<MatZ> for MatQ
impl SubAssign<MatZ> for MatQ
Source§fn sub_assign(&mut self, other: MatZ)
fn sub_assign(&mut self, other: MatZ)
Documentation at MatQ::sub_assign.
Source§impl SubAssign<MatZ> for MatZq
impl SubAssign<MatZ> for MatZq
Source§fn sub_assign(&mut self, other: MatZ)
fn sub_assign(&mut self, other: MatZ)
Documentation at MatZq::sub_assign.
Source§impl SubAssign for MatZ
impl SubAssign for MatZ
Source§fn sub_assign(&mut self, other: MatZ)
fn sub_assign(&mut self, other: MatZ)
Documentation at MatZ::sub_assign.
Source§impl Tensor for MatZ
impl Tensor for MatZ
Source§fn tensor_product(&self, other: &Self) -> Self
fn tensor_product(&self, other: &Self) -> Self
Computes the tensor product of self with other.
Parameters:
other: the value with which the tensor product is computed.
Returns the tensor product of self with other.
§Examples
use qfall_math::integer::MatZ;
use qfall_math::traits::Tensor;
use std::str::FromStr;
let mat_1 = MatZ::from_str("[[1, 1],[2, 2]]").unwrap();
let mat_2 = MatZ::from_str("[[1, 2],[3, 4]]").unwrap();
let mat_ab = mat_1.tensor_product(&mat_2);
let mat_ba = mat_2.tensor_product(&mat_1);
let res_ab = "[[1, 2, 1, 2],[3, 4, 3, 4],[2, 4, 2, 4],[6, 8, 6, 8]]";
let res_ba = "[[1, 1, 2, 2],[2, 2, 4, 4],[3, 3, 4, 4],[6, 6, 8, 8]]";
assert_eq!(mat_ab, MatZ::from_str(res_ab).unwrap());
assert_eq!(mat_ba, MatZ::from_str(res_ba).unwrap());