pub struct MatPolyOverZ { /* private fields */ }Expand description
MatPolyOverZ is a matrix with entries of type PolyOverZ.
Attributes:
§Examples
§Matrix usage
use qfall_math::{
integer::{PolyOverZ, MatPolyOverZ},
traits::{MatrixGetEntry, MatrixSetEntry},
};
use std::str::FromStr;
// instantiate new matrix
let id_mat = MatPolyOverZ::from_str("[[1 1, 0],[0, 1 1]]").unwrap();
// clone object, set and get entry
let mut clone = id_mat.clone();
clone.set_entry(0, 0, PolyOverZ::from(2));
assert_eq!(
clone.get_entry(1, 1).unwrap(),
PolyOverZ::from_str("1 1").unwrap(),
);
// to_string
assert_eq!("[[1 1, 0],[0, 1 1]]", &id_mat.to_string());§Vector usage
use qfall_math::{
integer::{PolyOverZ, MatPolyOverZ},
};
use std::str::FromStr;
let row_vec = MatPolyOverZ::from_str("[[1 1, 0, 1 1]]").unwrap();
let col_vec = MatPolyOverZ::from_str("[[1 -5],[1 -1],[0]]").unwrap();
// check if matrix instance is vector
assert!(row_vec.is_row_vector());
assert!(col_vec.is_column_vector());Implementations§
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn add_safe(&self, other: &Self) -> Result<MatPolyOverZ, MathError>
pub fn add_safe(&self, other: &Self) -> Result<MatPolyOverZ, MathError>
Implements addition for two MatPolyOverZ matrices.
Parameters:
other: specifies the value to add toself
Returns the sum of both matrices as a MatPolyOverZ or an
error if the matrix dimensions mismatch.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
let b: MatPolyOverZ = MatPolyOverZ::from_str("[[1 -42, 0, 2 24 42],[3 1 12 4, 1 -1, 1 17]]").unwrap();
let c: MatPolyOverZ = a.add_safe(&b).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the matrix dimensions mismatch.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn mul_safe(&self, other: &Self) -> Result<Self, MathError>
pub fn mul_safe(&self, other: &Self) -> Result<Self, MathError>
Implements multiplication for two MatPolyOverZ values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatPolyOverZ
or an error if the dimensions of self and other do not match for multiplication.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[0, 2 42 24],[3 17 24 42, 1 17]]").unwrap();
let b: MatPolyOverZ = MatPolyOverZ::from_str("[[1 -42, 2 24 42],[3 1 12 4, 1 17]]").unwrap();
let c: MatPolyOverZ = a.mul_safe(&b).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the dimensions ofselfandotherdo not match for multiplication.
Sourcepub fn mul_mat_poly_ring_zq_safe(
&self,
other: &MatPolynomialRingZq,
) -> Result<MatPolynomialRingZq, MathError>
pub fn mul_mat_poly_ring_zq_safe( &self, other: &MatPolynomialRingZq, ) -> Result<MatPolynomialRingZq, MathError>
Implements multiplication for a MatPolyOverZ matrix with a MatPolynomialRingZq matrix.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_3 = &mat_1.mul_mat_poly_ring_zq_safe(&mat_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the dimensions ofselfandotherdo not match for multiplication.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn sub_safe(&self, other: &Self) -> Result<MatPolyOverZ, MathError>
pub fn sub_safe(&self, other: &Self) -> Result<MatPolyOverZ, MathError>
Implements subtraction for two MatPolyOverZ matrices.
Parameters:
other: specifies the value to subtract fromself
Returns the result of the subtraction as a MatPolyOverZ or an
error if the matrix dimensions mismatch.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
let b: MatPolyOverZ = MatPolyOverZ::from_str("[[1 -42, 0, 2 24 42],[3 1 12 4, 1 -1, 1 17]]").unwrap();
let c: MatPolyOverZ = a.sub_safe(&b).unwrap();§Errors
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the matrix dimensions mismatch.
Sourcepub fn sub_mat_poly_ring_zq_safe(
&self,
other: &MatPolynomialRingZq,
) -> Result<MatPolynomialRingZq, MathError>
pub fn sub_mat_poly_ring_zq_safe( &self, other: &MatPolynomialRingZq, ) -> Result<MatPolynomialRingZq, MathError>
Implements subtraction for a MatPolyOverZ matrix with a MatPolynomialRingZq matrix.
Parameters:
other: specifies the value to subtract fromself
Returns the subtraction of self by other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_3 = &mat_1.sub_mat_poly_ring_zq_safe(&mat_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the dimensions ofselfandotherdo not match for multiplication.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn new(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
) -> Self
pub fn new( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, ) -> Self
Creates a new matrix with num_rows rows, num_cols columns and
zeros as entries, where each entry is a PolyOverZ.
Parameters:
num_rows: number of rows the new matrix should havenum_cols: number of columns the new matrix should have
Returns a new MatPolyOverZ instance of the provided dimensions.
§Examples
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::new(5, 10);§Panics …
- if the number of rows or columns is negative,
0, or does not fit into ani64.
Sourcepub fn identity(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
) -> Self
pub fn identity( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, ) -> Self
Generate a num_rows times num_columns matrix with 1 on the
diagonal and 0 anywhere else.
Parameters:
rum_rows: the number of rows of the identity matrixnum_columns: the number of columns of the identity matrix
Returns a matrix with 1 across the diagonal and 0 anywhere else.
§Examples
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::identity(2, 3);
let identity = MatPolyOverZ::identity(10, 10);§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatPolyOverZ::new.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn norm_l_2_infty_sqrd(&self) -> Z
pub fn norm_l_2_infty_sqrd(&self) -> Z
Outputs the squared l_{2, ∞}-norm, i.e. it computes the squared Euclidean norm of each column of the matrix and returns the largest one.
§Examples
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[1 2, 1 3],[1 2, 0]]").unwrap();
let eucl_norm = mat.norm_l_2_infty_sqrd();
// 3^2 + 0^2 = 9
assert_eq!(Z::from(9), eucl_norm);Sourcepub fn norm_l_2_infty(&self) -> Q
pub fn norm_l_2_infty(&self) -> Q
Outputs the l_{2, ∞}-norm, i.e. it computes the Euclidean norm of each column of the matrix and returns the largest one.
§Examples
use qfall_math::{integer::MatPolyOverZ, rational::Q};
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[1 2, 1 3],[1 2, 0]]").unwrap();
let eucl_norm = mat.norm_l_2_infty();
// sqrt(3^2 + 0^2) = 3
assert_eq!(Q::from(3), eucl_norm);Sourcepub fn norm_l_infty_infty(&self) -> Z
pub fn norm_l_infty_infty(&self) -> Z
Outputs the l_{∞, ∞}-norm, i.e. it computes the ∞-norm of each column of the matrix and returns the largest one.
§Examples
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[1 2, 1 3],[1 2, 0]]").unwrap();
let eucl_norm = mat.norm_l_infty_infty();
// max{2, 3} = 3
assert_eq!(Z::from(3), eucl_norm);Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn is_identity(&self) -> bool
pub fn is_identity(&self) -> bool
Checks if a MatPolyOverZ is a identity matrix, i.e.
all entries on the diagonal are the constant polynomial 1 and 0 elsewhere.
Returns true if the matrix is the identity and false otherwise.
§Examples
use std::str::FromStr;
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::from_str("[[1 1, 0],[0, 1 1]]").unwrap();
assert!(matrix.is_identity());Sourcepub fn is_square(&self) -> bool
pub fn is_square(&self) -> bool
Checks if a MatPolyOverZ is a square matrix, i.e.
the number of rows and columns is identical.
Returns true if the number of rows and columns is identical.
§Examples
use std::str::FromStr;
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::from_str("[[1 1, 0],[0, 1 1]]").unwrap();
let check = matrix.is_square();Sourcepub fn is_zero(&self) -> bool
pub fn is_zero(&self) -> bool
Checks if a MatPolyOverZ is a zero matrix, i.e.
all entries are the constant polynomial 0 everywhere.
Returns true if the matrix is zero and false otherwise.
§Examples
use std::str::FromStr;
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::from_str("[[0, 0],[0, 0]]").unwrap();
let check = matrix.is_zero();Sourcepub fn is_symmetric(&self) -> bool
pub fn is_symmetric(&self) -> bool
Checks if a MatPolyOverZ is symmetric.
Returns true if we have a_ij == a_ji for all i,j.
§Examples
use qfall_math::integer::MatPolyOverZ;
let value = MatPolyOverZ::identity(2,2);
assert!(value.is_symmetric());Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn reduce_by_poly(&mut self, modulus: &PolyOverZ)
pub fn reduce_by_poly(&mut self, modulus: &PolyOverZ)
Entrywise reduces a matrix of polynomials by a polynomial modulus.
The modulus must have a leading coefficient of 1, else the function will panic.
Parameters:
modulus: Specifies the polynomial by whichselfis reduced
§Examples
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use std::str::FromStr;
let mut a = MatPolyOverZ::from_str("[[4 0 1 2 3, 3 0 1 1]]").unwrap();
let modulus = PolyOverZ::from_str("3 0 1 1").unwrap();
a.reduce_by_poly(&modulus);
assert_eq!(MatPolyOverZ::from_str("[[2 0 2, 0]]").unwrap(), a);§Panics …
- if the modulus does not have a leading coefficient of
1.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn sample_binomial(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
max_degree: impl TryInto<i64> + Display,
n: impl Into<Z>,
p: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_binomial( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, max_degree: impl TryInto<i64> + Display, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>
Outputs a MatPolyOverZ instance with entries chosen according to the binomial
distribution parameterized by n and p.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should havemax_degree: specifies the maximum length of all polynomials in the matrix, i.e. the maximum number of coefficients any polynomial in the matrix can haven: specifies the number of trialsp: specifies the probability of success
Returns a new MatPolyOverZ instance with entries chosen
according to the binomial distribution or a MathError
if n < 0, p ∉ (0,1), n does not fit into an i64,
or the dimensions of the matrix were chosen too small.
§Examples
use qfall_math::integer::MatPolyOverZ;
let sample = MatPolyOverZ::sample_binomial(2, 2, 5, 2, 0.5).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifn < 0orp ∉ (0,1). - Returns a
MathErrorof typeConversionErrorifndoes not fit into ani64.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatPolyOverZ::new.
Sourcepub fn sample_binomial_with_offset(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
max_degree: impl TryInto<i64> + Display,
offset: impl Into<Z>,
n: impl Into<Z>,
p: impl Into<Q>,
) -> Result<Self, MathError>
pub fn sample_binomial_with_offset( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, max_degree: impl TryInto<i64> + Display, offset: impl Into<Z>, n: impl Into<Z>, p: impl Into<Q>, ) -> Result<Self, MathError>
Outputs a MatPolyOverZ instance with entries chosen according to the binomial
distribution parameterized by n and p with given offset.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should havemax_degree: specifies the maximum length of all polynomials in the matrix, i.e. the maximum number of coefficients any polynomial in the matrix can haveoffset: specifies an offset applied to each sample collected from the binomial distributionn: specifies the number of trialsp: specifies the probability of success
Returns a new MatPolyOverZ instance with entries chosen
according to the binomial distribution or a MathError
if n < 0, p ∉ (0,1), n does not fit into an i64,
or the dimensions of the matrix were chosen too small.
§Examples
use qfall_math::integer::MatPolyOverZ;
let sample = MatPolyOverZ::sample_binomial_with_offset(2, 2, 5, -1, 2, 0.5).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifn < 0orp ∉ (0,1). - Returns a
MathErrorof typeConversionErrorifndoes not fit into ani64. - Returns a
MathErrorof typeOutOfBoundsif themax_degreeis negative or it does not fit into ani64.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatPolyOverZ::new.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn sample_discrete_gauss(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
max_degree: impl TryInto<i64> + Display,
center: impl Into<Q>,
s: impl Into<Q>,
) -> Result<MatPolyOverZ, MathError>
pub fn sample_discrete_gauss( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, max_degree: impl TryInto<i64> + Display, center: impl Into<Q>, s: impl Into<Q>, ) -> Result<MatPolyOverZ, MathError>
Initializes a new matrix with dimensions num_rows x num_columns and with each entry
sampled independently according to the discrete Gaussian distribution,
using PolyOverZ::sample_discrete_gauss.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should havemax_degree: specifies the included maximal degree the createdPolyOverZshould havecenter: specifies the positions of the center with peak probabilitys: specifies the Gaussian parameter, which is proportional to the standard deviationsigma * sqrt(2 * pi) = s
Returns a MatPolyOverZ with each entry sampled independently from the
specified discrete Gaussian distribution or an error if s < 0.
§Examples
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::sample_discrete_gauss(3, 1, 5, 0, 1.25f32).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntegerInputifs < 0.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatPolyOverZ::new. - if
max_degreeis negative, or does not fit into ani64.
Sourcepub fn sample_d(
basis: &Self,
k: impl Into<i64>,
center: &[PolyOverQ],
s: impl Into<Q>,
) -> Result<MatPolyOverZ, MathError>
pub fn sample_d( basis: &Self, k: impl Into<i64>, center: &[PolyOverQ], s: impl Into<Q>, ) -> Result<MatPolyOverZ, MathError>
SampleD samples a discrete Gaussian from the lattice with a provided basis.
We do not check whether basis is actually a basis. Hence, the callee is
responsible for making sure that basis provides a suitable basis.
Parameters:
basis: specifies a basis for the lattice from which is sampledk: the maximal length the polynomial can havecenter: specifies the positions of the center with peak probabilitys: specifies the Gaussian parameter, which is proportional to the standard deviationsigma * sqrt(2 * pi) = s
Returns a vector of polynomials sampled according to the
discrete Gaussian distribution or an error if the basis is not a row vector,
s < 0, or the number of rows of the basis and center differ.
§Example
use qfall_math::{
integer::MatPolyOverZ,
rational::PolyOverQ,
};
use std::str::FromStr;
let basis = MatPolyOverZ::from_str("[[1 1, 3 0 1 -1, 2 2 2]]").unwrap();
let center = vec![PolyOverQ::default()];
let sample = MatPolyOverZ::sample_d(&basis, 3, ¢er, 10.5_f64).unwrap();§Errors and Failures
- Returns a
MathErrorof typeVectorFunctionCalledOnNonVector, if the basis is not a row vector. - Returns a
MathErrorof typeInvalidIntegerInputifs < 0. - Returns a
MathErrorof typeMismatchingMatrixDimensionif the number of rows of thebasisandcenterdiffer.
This function implements SampleD according to:
- [1] Gentry, Craig and Peikert, Chris and Vaikuntanathan, Vinod (2008). Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the fortieth annual ACM symposium on Theory of computing. https://dl.acm.org/doi/pdf/10.1145/1374376.1374407
§Panics …
- if the polynomials have higher length than the provided upper bound
k
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn sample_uniform(
num_rows: impl TryInto<i64> + Display,
num_cols: impl TryInto<i64> + Display,
max_degree: impl TryInto<i64> + Display,
lower_bound: impl Into<Z>,
upper_bound: impl Into<Z>,
) -> Result<Self, MathError>
pub fn sample_uniform( num_rows: impl TryInto<i64> + Display, num_cols: impl TryInto<i64> + Display, max_degree: impl TryInto<i64> + Display, lower_bound: impl Into<Z>, upper_bound: impl Into<Z>, ) -> Result<Self, MathError>
Outputs a MatPolyOverZ instance with polynomials as entries,
whose coefficients were chosen uniform at random in [lower_bound, upper_bound).
The internally used uniform at random chosen bytes are generated
by ThreadRng, which uses ChaCha12 and
is considered cryptographically secure.
Parameters:
num_rows: specifies the number of rows the new matrix should havenum_cols: specifies the number of columns the new matrix should havemax_degree: specifies the maximum length of all polynomials in the matrix, i.e. the maximum number of coefficients any polynomial in the matrix can havelower_bound: specifies the included lower bound of the interval over which is sampledupper_bound: specifies the excluded upper bound of the interval over which is sampled
Returns a new MatPolyOverZ instance with polynomials as entries,
whose coefficients were chosen uniformly at random in
[lower_bound, upper_bound) or a MathError
if the interval was chosen too small or the max_degree of the polynomials
is negative or too large to fit into i64.
§Examples
use qfall_math::integer::MatPolyOverZ;
let matrix = MatPolyOverZ::sample_uniform(3, 3, 5, 17, 26).unwrap();§Errors and Failures
- Returns a
MathErrorof typeInvalidIntervalif the givenupper_boundisn’t at least larger thanlower_bound. - Returns a
MathErrorof typeOutOfBoundsif themax_degreeis negative or it does not fit into ani64.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatPolyOverZ::new.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn reverse_columns(&mut self)
pub fn reverse_columns(&mut self)
Swaps the i-th column with the n-i-th column for all i <= n/2
of the specified matrix with n columns.
§Examples
use qfall_math::integer::MatPolyOverZ;
let mut matrix = MatPolyOverZ::new(4, 3);
matrix.reverse_columns();Sourcepub fn reverse_rows(&mut self)
pub fn reverse_rows(&mut self)
Swaps the i-th row with the n-i-th row for all i <= n/2
of the specified matrix with n rows.
§Examples
use qfall_math::integer::MatPolyOverZ;
let mut matrix = MatPolyOverZ::new(4, 3);
matrix.reverse_rows();Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn sort_by_column<T: Ord>(
&self,
cond_func: fn(&Self) -> Result<T, MathError>,
) -> Result<Self, MathError>
pub fn sort_by_column<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>
Sorts the columns of the matrix based on some condition defined by cond_func in an ascending order.
This condition is usually a norm with the described input-output behaviour.
Parameters:
cond_func: computes values implementingOrdover the columns of the specified matrix. These values are then used to re-order / sort the rows of the matrix.
Returns an empty Ok if the action could be performed successfully.
A MathError is returned if the execution of cond_func returned an error.
§Examples
§Use a build-in function as condition
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[2 3 4, 1 2, 1 1]]").unwrap();
let cmp = MatPolyOverZ::from_str("[[1 1, 1 2, 2 3 4]]").unwrap();
let sorted = mat.sort_by_column(MatPolyOverZ::norm_eucl_sqrd).unwrap();
assert_eq!(cmp, sorted);§Use a custom function as condition
This function needs to take a column vector as input and output a type implementing PartialOrd
use qfall_math::{integer::{MatPolyOverZ, Z}, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use crate::qfall_math::traits::GetCoefficient;
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[2 0 4, 1 2, 1 1]]").unwrap();
let cmp = MatPolyOverZ::from_str("[[2 0 4, 1 1, 1 2]]").unwrap();
fn custom_cond_func(matrix: &MatPolyOverZ) -> Result<Z, MathError> {
let mut sum = Z::ZERO;
for entry in matrix.get_entries_rowwise() {
sum += entry.get_coeff(0)?;
}
Ok(sum)
}
let sorted = mat.sort_by_column(custom_cond_func).unwrap();
assert_eq!(cmp, sorted);§Errors and Failures
- Returns a
MathErrorof the same type ascond_funcif the execution ofcond_funcfails.
Sourcepub fn sort_by_row<T: Ord>(
&self,
cond_func: fn(&Self) -> Result<T, MathError>,
) -> Result<Self, MathError>
pub fn sort_by_row<T: Ord>( &self, cond_func: fn(&Self) -> Result<T, MathError>, ) -> Result<Self, MathError>
Sorts the rows of the matrix based on some condition defined by cond_func in an ascending order.
This condition is usually a norm with the described input-output behaviour.
Parameters:
cond_func: computes values implementingOrdover the columns of the specified matrix. These values are then used to re-order / sort the columns of the matrix.
Returns an empty Ok if the action could be performed successfully.
A MathError is returned if the execution of cond_func returned an error.
§Examples
§Use a build-in function as condition
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[2 3 4],[1 2],[1 1]]").unwrap();
let cmp = MatPolyOverZ::from_str("[[1 1],[1 2],[2 3 4]]").unwrap();
let sorted = mat.sort_by_row(MatPolyOverZ::norm_infty).unwrap();
assert_eq!(cmp, sorted);§Use a custom function as condition
This function needs to take a row vector as input and output a type implementing PartialOrd
use qfall_math::{integer::{MatPolyOverZ, Z}, error::MathError, traits::{MatrixDimensions, MatrixGetEntry}};
use crate::qfall_math::traits::GetCoefficient;
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[2 0 4],[1 2],[1 1]]").unwrap();
let cmp = MatPolyOverZ::from_str("[[2 0 4],[1 1],[1 2]]").unwrap();
fn custom_cond_func(matrix: &MatPolyOverZ) -> Result<Z, MathError> {
let mut sum = Z::ZERO;
for entry in matrix.get_entries_columnwise() {
sum += entry.get_coeff(0)?;
}
Ok(sum)
}
let sorted = mat.sort_by_row(custom_cond_func).unwrap();
assert_eq!(cmp, sorted);§Errors and Failures
- Returns a
MathErrorof the same type ascond_funcif the execution ofcond_funcfails.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn pretty_string(
&self,
nr_printed_rows: u64,
nr_printed_columns: u64,
) -> String
pub fn pretty_string( &self, nr_printed_rows: u64, nr_printed_columns: u64, ) -> String
Outputs the matrix as a String, where the upper leftmost nr_printed_rows x nr_printed_columns
submatrix is output entirely as well as the corresponding entries in the last column and row of the matrix.
Parameters:
nr_printed_rows: defines the number of rows of the upper leftmost matrix that are printed entirelynr_printed_columns: defines the number of columns of the upper leftmost matrix that are printed entirely
Returns a String representing the abbreviated matrix.
§Example
use qfall_math::integer::MatZ;
let matrix = MatZ::identity(10, 10);
println!("Matrix: {}", matrix.pretty_string(2, 2));
// outputs the following:
// Matrix: [
// [1, 0, , ..., 0],
// [0, 1, , ..., 0],
// [...],
// [0, 0, , ..., 1]
// ]Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn trace(&self) -> Result<PolyOverZ, MathError>
pub fn trace(&self) -> Result<PolyOverZ, MathError>
Returns the trace of a matrix and an error, if the matrix is not square.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let matrix = MatPolyOverZ::from_str("[[1 42, 2 1 2],[1 4, 0]]").unwrap();
let trace = matrix.trace().unwrap();§Errors and Failures
- Returns a
MathErrorof typeNoSquareMatrixif the matrix is not a square matrix.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn transpose(&self) -> Self
pub fn transpose(&self) -> Self
Returns the transposed form of the given matrix, i.e. rows get transformed to columns and vice versa.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat = MatPolyOverZ::from_str("[[0, 1 42],[3 17 24 42, 1 17]]").unwrap();
let cmp = MatPolyOverZ::from_str("[[0, 3 17 24 42],[1 42, 1 17]]").unwrap();
assert_eq!(mat.transpose(), cmp);Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub unsafe fn get_fmpz_poly_mat_struct(&mut self) -> &mut fmpz_poly_mat_struct
pub unsafe fn get_fmpz_poly_mat_struct(&mut self) -> &mut fmpz_poly_mat_struct
Returns a mutable reference to the field matrix of type fmpz_poly_mat_struct.
WARNING: The returned struct is part of flint_sys.
Any changes to this object are unsafe and may introduce memory leaks.
This function is a passthrough to enable users of this library to use flint_sys
and with that FLINT functions that might not be covered in our library yet.
If this is the case, please consider contributing to this open-source project
by opening a Pull Request at qfall_math
to provide this feature in the future.
§Safety
Any flint_sys struct and function is part of a FFI to the C-library FLINT.
As FLINT is a C-library, it does not provide all memory safety features
that Rust and our Wrapper provide.
Thus, using functions of flint_sys can introduce memory leaks.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub unsafe fn set_fmpz_poly_mat_struct(
&mut self,
flint_struct: fmpz_poly_mat_struct,
)
pub unsafe fn set_fmpz_poly_mat_struct( &mut self, flint_struct: fmpz_poly_mat_struct, )
Sets the field matrix of type fmpz_poly_mat_struct to flint_struct.
Parameters:
flint_struct: value to set the attribute to
This function is a passthrough to enable users of this library to use flint_sys
and with that FLINT functions that might not be covered in our library yet.
If this is the case, please consider contributing to this open-source project
by opening a Pull Request at qfall_math
to provide this feature in the future.
§Safety
Ensure that the old struct does not share any memory with any other structs that might be used in the future. The memory of the old struct is freed using this function.
Any flint_sys struct and function is part of a FFI to the C-library FLINT.
As FLINT is a C-library, it does not provide all memory safety features
that Rust and our Wrapper provide.
Thus, using functions of flint_sys can introduce memory leaks.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn dot_product(&self, other: &Self) -> Result<PolyOverZ, MathError>
pub fn dot_product(&self, other: &Self) -> Result<PolyOverZ, MathError>
Returns the dot product of two vectors of type MatPolyOverZ.
Note that the dimensions of the two vectors are irrelevant for the dot product.
Parameters:
other: specifies the other vector the dot product is calculated over
Returns the resulting dot_product as a PolyOverZ or an error
if the given MatPolyOverZ instances aren’t vectors or have different
numbers of entries.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let poly_vec_1 = MatPolyOverZ::from_str("[[4 -1 0 1 1],[2 1 2]]").unwrap();
let poly_vec_2 = MatPolyOverZ::from_str("[[4 -1 0 1 1, 1 42]]").unwrap();
let dot_prod = poly_vec_1.dot_product(&poly_vec_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatPolyOverZinstance is not a (row or column) vector. - Returns a
MathErrorof typeMathError::MismatchingMatrixDimensionif the given vectors have different lengths.
Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn is_row_vector(&self) -> bool
pub fn is_row_vector(&self) -> bool
Returns true if the provided MatPolyOverZ has only one row,
i.e. is a row vector. Otherwise, returns false.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let row_vec = MatPolyOverZ::from_str("[[1 1, 1 2, 1 3]]").unwrap();
let col_vec = MatPolyOverZ::from_str("[[1 1],[0],[1 3]]").unwrap();
assert!(row_vec.is_row_vector());
assert!(!col_vec.is_row_vector());Sourcepub fn is_column_vector(&self) -> bool
pub fn is_column_vector(&self) -> bool
Returns true if the provided MatPolyOverZ has only one column,
i.e. is a column vector. Otherwise, returns false.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let row_vec = MatPolyOverZ::from_str("[[1 1, 1 2, 1 3]]").unwrap();
let col_vec = MatPolyOverZ::from_str("[[1 1],[0],[1 3]]").unwrap();
assert!(col_vec.is_column_vector());
assert!(!row_vec.is_column_vector());Sourcepub fn is_vector(&self) -> bool
pub fn is_vector(&self) -> bool
Returns true if the provided MatPolyOverZ has only one column or one row,
i.e. is a vector. Otherwise, returns false.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let row_vec = MatPolyOverZ::from_str("[[1 1, 1 2, 1 3]]").unwrap();
let col_vec = MatPolyOverZ::from_str("[[1 1],[0],[1 3]]").unwrap();
assert!(row_vec.is_vector());
assert!(col_vec.is_vector());Sourcepub fn has_single_entry(&self) -> bool
pub fn has_single_entry(&self) -> bool
Returns true if the provided MatPolyOverZ has only one entry,
i.e. is a 1x1 matrix. Otherwise, returns false.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let vec = MatPolyOverZ::from_str("[[1 1]]").unwrap();
assert!(vec.has_single_entry());Source§impl MatPolyOverZ
impl MatPolyOverZ
Sourcepub fn norm_eucl_sqrd(&self) -> Result<Z, MathError>
pub fn norm_eucl_sqrd(&self) -> Result<Z, MathError>
Returns the squared Euclidean norm or 2-norm of the given (row or column) vector
or an error if the given MatPolyOverZ instance is not a (row or column) vector.
The squared Euclidean norm for a polynomial vector is obtained by
computing the sum of the squared Euclidean norms of the individual polynomials.
The squared Euclidean norm for a polynomial is obtained by treating the coefficients
of the polynomial as a vector and then applying the standard squared Euclidean norm.
§Examples
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;
let vec = MatPolyOverZ::from_str("[[1 1],[2 2 2],[1 3]]").unwrap();
let sqrd_2_norm = vec.norm_eucl_sqrd().unwrap();
assert_eq!(Z::from(18), sqrd_2_norm);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatPolyOverZinstance is not a (row or column) vector.
Sourcepub fn norm_eucl(&self) -> Result<Q, MathError>
pub fn norm_eucl(&self) -> Result<Q, MathError>
Returns the Euclidean norm or 2-norm of the given (row or column) vector
or an error if the given MatPolyOverZ instance is not a (row or column) vector.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let vec = MatPolyOverZ::from_str("[[1 2],[2 2 2],[1 2]]").unwrap();
let eucl_norm = vec.norm_eucl().unwrap();
assert_eq!(4, eucl_norm);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatPolyOverZinstance is not a (row or column) vector.
Sourcepub fn norm_infty(&self) -> Result<Z, MathError>
pub fn norm_infty(&self) -> Result<Z, MathError>
Returns the infinity norm or ∞-norm of the given (row or column) vector
or an error if the given MatPolyOverZ instance is not a (row or column) vector.
The infinity norm for a polynomial vector is obtained by computing the
infinity norm on the vector consisting of the infinity norms of the individual polynomials.
The infinity norm for a polynomial is obtained by treating the coefficients
of the polynomial as a vector and then applying the standard infinity norm.
§Examples
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;
let vec = MatPolyOverZ::from_str("[[1 1],[2 2 4],[1 3]]").unwrap();
let infty_norm = vec.norm_infty().unwrap();
assert_eq!(Z::from(4), infty_norm);§Errors and Failures
- Returns a
MathErrorof typeMathError::VectorFunctionCalledOnNonVectorif the givenMatPolyOverZinstance is not a (row or column) vector.
Trait Implementations§
Source§impl Add<&MatPolyOverZ> for &MatPolynomialRingZq
impl Add<&MatPolyOverZ> for &MatPolynomialRingZq
Source§fn add(self, other: &MatPolyOverZ) -> Self::Output
fn add(self, other: &MatPolyOverZ) -> Self::Output
Implements the Add trait for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix.
Add is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to add withself
Returns the addition of self and other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_3 = &mat_1 + &mat_2;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§type Output = MatPolynomialRingZq
type Output = MatPolynomialRingZq
+ operator.Source§impl Add for &MatPolyOverZ
impl Add for &MatPolyOverZ
Source§fn add(self, other: Self) -> Self::Output
fn add(self, other: Self) -> Self::Output
Implements the Add trait for two MatPolyOverZ values.
Add is implemented for any combination of MatPolyOverZ and borrowed MatPolyOverZ.
Parameters:
other: specifies the value to add toself
Returns the sum of both numbers as a MatPolyOverZ.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
let b: MatPolyOverZ = MatPolyOverZ::from_str("[[1 -42, 0, 2 24 42],[3 1 12 4, 1 -1, 1 17]]").unwrap();
let c: MatPolyOverZ = &a + &b;
let d: MatPolyOverZ = a + b;
let e: MatPolyOverZ = &c + d;
let f: MatPolyOverZ = c + &e;§Panics …
- if the dimensions of both matrices mismatch.
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
+ operator.Source§impl AddAssign<&MatPolyOverZ> for MatPolyOverZ
impl AddAssign<&MatPolyOverZ> for MatPolyOverZ
Source§fn add_assign(&mut self, other: &Self)
fn add_assign(&mut self, other: &Self)
Computes the addition of self and other reusing
the memory of self.
Parameters:
other: specifies the value to add toself
§Examples
use qfall_math::integer::MatPolyOverZ;
let mut a = MatPolyOverZ::identity(2, 2);
let b = MatPolyOverZ::new(2, 2);
a += &b;
a += b;§Panics …
- if the matrix dimensions mismatch.
Source§impl AddAssign<&MatPolyOverZ> for MatPolynomialRingZq
impl AddAssign<&MatPolyOverZ> for MatPolynomialRingZq
Source§fn add_assign(&mut self, other: &MatPolyOverZ)
fn add_assign(&mut self, other: &MatPolyOverZ)
Documentation at MatPolynomialRingZq::add_assign.
Source§impl AddAssign<MatPolyOverZ> for MatPolynomialRingZq
impl AddAssign<MatPolyOverZ> for MatPolynomialRingZq
Source§fn add_assign(&mut self, other: MatPolyOverZ)
fn add_assign(&mut self, other: MatPolyOverZ)
Documentation at MatPolynomialRingZq::add_assign.
Source§impl AddAssign for MatPolyOverZ
impl AddAssign for MatPolyOverZ
Source§fn add_assign(&mut self, other: MatPolyOverZ)
fn add_assign(&mut self, other: MatPolyOverZ)
Documentation at MatPolyOverZ::add_assign.
Source§impl Clone for MatPolyOverZ
impl Clone for MatPolyOverZ
Source§fn clone(&self) -> Self
fn clone(&self) -> Self
Clones the given element and returns a deep clone of the MatPolyOverZ element.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a = MatPolyOverZ::from_str("[[2 0 1],[1 15]]").unwrap();
let b = a.clone();1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl CompareBase<&MatPolyOverZ> for MatNTTPolynomialRingZq
impl CompareBase<&MatPolyOverZ> for MatNTTPolynomialRingZq
Source§impl CompareBase<&MatPolyOverZ> for MatPolyOverZ
impl CompareBase<&MatPolyOverZ> for MatPolyOverZ
Source§impl CompareBase<&MatPolyOverZ> for MatPolynomialRingZq
impl CompareBase<&MatPolyOverZ> for MatPolynomialRingZq
Source§impl CompareBase<&MatZ> for MatPolyOverZ
impl CompareBase<&MatZ> for MatPolyOverZ
Source§impl CompareBase<&PolyOverZ> for MatPolyOverZ
impl CompareBase<&PolyOverZ> for MatPolyOverZ
Source§impl<Integer: Into<Z>> CompareBase<Integer> for MatPolyOverZ
impl<Integer: Into<Z>> CompareBase<Integer> for MatPolyOverZ
Source§impl CompareBase<MatPolyOverZ> for MatNTTPolynomialRingZq
impl CompareBase<MatPolyOverZ> for MatNTTPolynomialRingZq
Source§impl CompareBase<MatPolyOverZ> for MatPolynomialRingZq
impl CompareBase<MatPolyOverZ> for MatPolynomialRingZq
Source§impl CompareBase<MatZ> for MatPolyOverZ
impl CompareBase<MatZ> for MatPolyOverZ
Source§impl CompareBase<PolyOverZ> for MatPolyOverZ
impl CompareBase<PolyOverZ> for MatPolyOverZ
Source§impl CompareBase for MatPolyOverZ
impl CompareBase for MatPolyOverZ
Source§impl Concatenate for &MatPolyOverZ
impl Concatenate for &MatPolyOverZ
Source§fn concat_vertical(self, other: Self) -> Result<Self::Output, MathError>
fn concat_vertical(self, other: Self) -> Result<Self::Output, MathError>
Concatenates self with other vertically, i.e. other is added below.
Parameters:
other: the other matrix to concatenate withself
Returns a vertical concatenation of the two matrices or an error, if the matrices can not be concatenated vertically.
§Examples
use qfall_math::traits::*;
use qfall_math::integer::MatPolyOverZ;
let mat_1 = MatPolyOverZ::new(13, 5);
let mat_2 = MatPolyOverZ::new(17, 5);
let mat_vert = mat_1.concat_vertical(&mat_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMismatchingMatrixDimensionif the matrices can not be concatenated due to mismatching dimensions.
Source§fn concat_horizontal(self, other: Self) -> Result<Self::Output, MathError>
fn concat_horizontal(self, other: Self) -> Result<Self::Output, MathError>
Concatenates self with other horizontally, i.e. other is added on the right.
Parameters:
other: the other matrix to concatenate withself
Returns a horizontal concatenation of the two matrices or a an error, if the matrices can not be concatenated horizontally.
§Examples
use qfall_math::traits::*;
use qfall_math::integer::MatPolyOverZ;
let mat_1 = MatPolyOverZ::new(17, 5);
let mat_2 = MatPolyOverZ::new(17, 6);
let mat_vert = mat_1.concat_horizontal(&mat_2).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMismatchingMatrixDimensionif the matrices can not be concatenated due to mismatching dimensions.
type Output = MatPolyOverZ
Source§impl Debug for MatPolyOverZ
impl Debug for MatPolyOverZ
Source§impl<'de> Deserialize<'de> for MatPolyOverZ
impl<'de> Deserialize<'de> for MatPolyOverZ
Source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
Implements the deserialize option. This allows to create a MatPolyOverZ from a given Json-object.
Source§impl Display for MatPolyOverZ
impl Display for MatPolyOverZ
Source§fn fmt(&self, f: &mut Formatter<'_>) -> Result
fn fmt(&self, f: &mut Formatter<'_>) -> Result
Allows to convert a matrix of type MatPolyOverZ into a String.
Returns the Matrix in form of a String. For matrix
[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]] the String looks
like this [[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]].
§Examples
use qfall_math::integer::MatPolyOverZ;
use core::fmt;
use std::str::FromStr;
let matrix = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
println!("{matrix}");use qfall_math::integer::MatPolyOverZ;
use core::fmt;
use std::str::FromStr;
let matrix = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
let matrix_string = matrix.to_string();Source§impl Drop for MatPolyOverZ
impl Drop for MatPolyOverZ
Source§fn drop(&mut self)
fn drop(&mut self)
Drops the given MatPolyOverZ value and frees the allocated memory.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
{
let a = MatPolyOverZ::from_str("[[2 0 1],[1 15]]").unwrap();
} // as a's scope ends here, it get's droppeduse qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a = MatPolyOverZ::from_str("[[2 0 1],[1 15]]").unwrap();
drop(a); // explicitly drops a's valueSource§impl<Integer: Into<Z>> Evaluate<Integer, MatZ> for MatPolyOverZ
impl<Integer: Into<Z>> Evaluate<Integer, MatZ> for MatPolyOverZ
Source§fn evaluate(&self, value: Integer) -> MatZ
fn evaluate(&self, value: Integer) -> MatZ
Evaluates a MatPolyOverZ on a given input entrywise.
Parameters:
value: the value with which to evaluate the matrix of polynomials.
Returns the evaluation of the polynomial as a MatZ.
§Examples
use qfall_math::traits::*;
use qfall_math::integer::Z;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let poly = MatPolyOverZ::from_str("[[0, 1 17, 2 24 42],[2 24 42, 2 24 42, 2 24 42]]").unwrap();
let res = poly.evaluate(3);Source§impl From<&MatPolyOverZ> for MatPolyOverZ
impl From<&MatPolyOverZ> for MatPolyOverZ
Source§fn from(value: &MatPolyOverZ) -> Self
fn from(value: &MatPolyOverZ) -> Self
Alias for MatPolyOverZ::clone.
Source§impl From<&MatPolyOverZ> for String
impl From<&MatPolyOverZ> for String
Source§fn from(value: &MatPolyOverZ) -> Self
fn from(value: &MatPolyOverZ) -> Self
Converts a MatPolyOverZ into its String representation.
Parameters:
value: specifies the matrix that will be represented as aString
Returns a String of the form "[[row_0],[row_1],...[row_n]]".
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let matrix = MatPolyOverZ::from_str("[[1 17, 1 5],[2 1 7, 1 2]]").unwrap();
let string: String = matrix.into();Source§impl From<&MatZ> for MatPolyOverZ
impl From<&MatZ> for MatPolyOverZ
Source§fn from(matrix: &MatZ) -> Self
fn from(matrix: &MatZ) -> Self
Creates a MatPolyOverZ with constant polynomials defined by a MatZ.
Parameters
matrix: a matrix with constant integers.
Returns a matrix of polynomial that all have the first coefficient set to the value in the matrix.
§Examples
use qfall_math::integer::{MatZ, MatPolyOverZ};
let mat_z = MatZ::identity(10, 10);
let mat_poly = MatPolyOverZ::from(&mat_z);Source§impl From<MatPolyOverZ> for String
impl From<MatPolyOverZ> for String
Source§fn from(value: MatPolyOverZ) -> Self
fn from(value: MatPolyOverZ) -> Self
Documentation can be found at String::from for &MatPolyOverZ.
Source§impl From<MatZ> for MatPolyOverZ
impl From<MatZ> for MatPolyOverZ
Source§impl FromCoefficientEmbedding<(&MatZ, i64)> for MatPolyOverZ
impl FromCoefficientEmbedding<(&MatZ, i64)> for MatPolyOverZ
Source§fn from_coefficient_embedding(embedding: (&MatZ, i64)) -> Self
fn from_coefficient_embedding(embedding: (&MatZ, i64)) -> Self
Computes a MatPolyOverZ from a coefficient embedding.
Interprets the first degree + 1 many rows of the matrix as the
coefficients of the first row of polynomials. The first one containing
their coefficients of degree 0, and the last one their coefficients
of degree degree.
It inverts the operation of
MatPolyOverZ::into_coefficient_embedding.
Parameters:
embedding: the coefficient matrix and the maximal degree of the polynomials (defines how the matrix is split)
Returns a matrix of polynomials that corresponds to the embedding.
§Examples
use std::str::FromStr;
use qfall_math::{
integer::{MatZ, MatPolyOverZ},
traits::FromCoefficientEmbedding,
};
let matrix = MatZ::from_str("[[17, 1],[3, 2],[-5, 3]]").unwrap();
let poly = MatPolyOverZ::from_coefficient_embedding((&matrix, 2));
let cmp_poly = MatPolyOverZ::from_str("[[3 17 3 -5, 3 1 2 3]]").unwrap();
assert_eq!(cmp_poly, poly);Source§impl FromStr for MatPolyOverZ
impl FromStr for MatPolyOverZ
Source§fn from_str(string: &str) -> Result<Self, MathError>
fn from_str(string: &str) -> Result<Self, MathError>
Creates a MatPolyOverZ matrix from a String.
Warning: Each entry is parsed as a PolyOverZ object.
If an entry string starts with a correctly formatted PolyOverZ object,
the rest of this entry string is ignored. This means that the entry input
string "4 0 1 2 3" is the same as "4 0 1 2 3 4 5 6 7".
Parameters:
string: the matrix of form:"[[poly_1, poly_2, poly_3],[poly_4, poly_5, poly_6]]"for a 2x3 matrix where first three polynomials are in the first row and the second three are in the second row.
Returns a MatPolyOverZ or an error if the matrix is not formatted in a suitable way,
the number of rows or columns is too large (must fit into i64),
the number of entries in rows is unequal, or if an entry is not formatted correctly.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let matrix = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let str_1 = "[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]";
let matrix = MatPolyOverZ::from_str(str_1).unwrap();use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let string = String::from("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]");
let matrix = MatPolyOverZ::from_str(&string).unwrap();§Errors and Failures
- Returns a
MathErrorof typeMathError::StringConversionError,- if the matrix is not formatted in a suitable way,
- if the number of rows or columns is too large (must fit into i64),
- if the number of entries in rows is unequal, or
- if an entry is not formatted correctly.
For further information see
PolyOverZ::from_str.
§Panics …
- if the provided number of rows and columns are not suited to create a matrix.
For further information see
MatPolyOverZ::new.
Source§impl IntoCoefficientEmbedding<MatZ> for &MatPolyOverZ
impl IntoCoefficientEmbedding<MatZ> for &MatPolyOverZ
Source§fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZ
fn into_coefficient_embedding(self, size: impl Into<i64>) -> MatZ
Computes the coefficient embedding of the matrix of polynomials
in a MatZ. Each column vector of polynomials is embedded into
size many row vectors of coefficients. The first one containing their
coefficients of degree 0, and the last one their coefficients
of degree size - 1.
It inverts the operation of MatPolyOverZ::from_coefficient_embedding.
Parameters:
size: determines the number of rows of the embedding. It has to be larger than the degree of the polynomial.
Returns a coefficient embedding as a matrix if size is large enough.
§Examples
use std::str::FromStr;
use qfall_math::{
integer::{MatZ, MatPolyOverZ},
traits::IntoCoefficientEmbedding,
};
let poly = MatPolyOverZ::from_str("[[1 1, 2 1 2],[1 -1, 2 -1 -2]]").unwrap();
let embedding = poly.into_coefficient_embedding(2);
let cmp_mat = MatZ::from_str("[[1, 1],[0, 2],[-1, -1],[0, -2]]").unwrap();
assert_eq!(cmp_mat, embedding);§Panics …
- if
sizeis not larger than the degree of the polynomial, i.e. not all coefficients can be embedded.
Source§impl MatrixDimensions for MatPolyOverZ
impl MatrixDimensions for MatPolyOverZ
Source§fn get_num_rows(&self) -> i64
fn get_num_rows(&self) -> i64
Source§impl MatrixGetEntry<PolyOverZ> for MatPolyOverZ
impl MatrixGetEntry<PolyOverZ> for MatPolyOverZ
Source§unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> PolyOverZ
unsafe fn get_entry_unchecked(&self, row: i64, column: i64) -> PolyOverZ
Outputs the PolyOverZ value of a specific matrix entry
without checking whether it’s part of the matrix.
Parameters:
row: specifies the row in which the entry is locatedcolumn: specifies the column in which the entry is located
Returns the PolyOverZ value of the matrix at the position of the given
row and column.
§Safety
To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.
§Examples
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use qfall_math::traits::*;
use std::str::FromStr;
let matrix = MatPolyOverZ::from_str("[[1 1, 1 2],[1 3, 1 4],[0, 1 6]]").unwrap();
assert_eq!(PolyOverZ::from(2), unsafe { matrix.get_entry_unchecked(0, 1) });
assert_eq!(PolyOverZ::from(4), unsafe { matrix.get_entry_unchecked(1, 1) });Source§fn get_entry(
&self,
row: impl TryInto<i64> + Display,
column: impl TryInto<i64> + Display,
) -> Result<T, MathError>
fn get_entry( &self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, ) -> Result<T, MathError>
Source§fn get_entries(&self) -> Vec<Vec<T>>
fn get_entries(&self) -> Vec<Vec<T>>
Vec<Vec<T>> containing all entries of the matrix s.t.
any entry in row i and column j can be accessed via entries[i][j]
if entries = matrix.get_entries. Read moreSource§fn get_entries_rowwise(&self) -> Vec<T>
fn get_entries_rowwise(&self) -> Vec<T>
Source§impl MatrixGetSubmatrix for MatPolyOverZ
impl MatrixGetSubmatrix for MatPolyOverZ
Source§unsafe fn get_submatrix_unchecked(
&self,
row_1: i64,
row_2: i64,
col_1: i64,
col_2: i64,
) -> Self
unsafe fn get_submatrix_unchecked( &self, row_1: i64, row_2: i64, col_1: i64, col_2: i64, ) -> Self
Returns a deep copy of the submatrix defined by the given parameters and does not check the provided dimensions. There is also a safe version of this function that checks the input.
Parameters:
row_1: the starting row of the submatrix
row_2: the ending row of the submatrix
col_1: the starting column of the submatrix
col_2: the ending column of the submatrix
Returns the submatrix from (row_1, col_1) to (row_2, col_2)(exclusively).
§Examples
use qfall_math::{integer::MatPolyOverZ, traits::MatrixGetSubmatrix};
use std::str::FromStr;
let mat = MatPolyOverZ::identity(3, 3);
let sub_mat_1 = mat.get_submatrix(0, 2, 1, 1).unwrap();
let sub_mat_2 = mat.get_submatrix(0, -1, 1, -2).unwrap();
let sub_mat_3 = unsafe{mat.get_submatrix_unchecked(0, 3, 1, 2)};
let e_2 = MatPolyOverZ::from_str("[[0],[1 1],[0]]").unwrap();
assert_eq!(e_2, sub_mat_1);
assert_eq!(e_2, sub_mat_2);
assert_eq!(e_2, sub_mat_3);§Safety
To use this function safely, make sure that the selected submatrix is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.
Source§fn get_row(
&self,
row: impl TryInto<i64> + Display + Clone,
) -> Result<Self, MathError>
fn get_row( &self, row: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>
Source§unsafe fn get_row_unchecked(&self, row: i64) -> Self
unsafe fn get_row_unchecked(&self, row: i64) -> Self
Source§fn get_column(
&self,
column: impl TryInto<i64> + Display + Clone,
) -> Result<Self, MathError>
fn get_column( &self, column: impl TryInto<i64> + Display + Clone, ) -> Result<Self, MathError>
Source§unsafe fn get_column_unchecked(&self, column: i64) -> Self
unsafe fn get_column_unchecked(&self, column: i64) -> Self
Source§fn get_submatrix(
&self,
row_1: impl TryInto<i64> + Display,
row_2: impl TryInto<i64> + Display,
col_1: impl TryInto<i64> + Display,
col_2: impl TryInto<i64> + Display,
) -> Result<Self, MathError>
fn get_submatrix( &self, row_1: impl TryInto<i64> + Display, row_2: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, col_2: impl TryInto<i64> + Display, ) -> Result<Self, MathError>
(row_1, col_1) to (row_2, col_2)(inclusively) are collected in
a new matrix.
Note that row_1 >= row_2 and col_1 >= col_2 must hold after converting negative indices.
Otherwise the function will panic. Read moreSource§impl MatrixSetEntry<&PolyOverZ> for MatPolyOverZ
impl MatrixSetEntry<&PolyOverZ> for MatPolyOverZ
Source§unsafe fn set_entry_unchecked(
&mut self,
row: i64,
column: i64,
value: &PolyOverZ,
)
unsafe fn set_entry_unchecked( &mut self, row: i64, column: i64, value: &PolyOverZ, )
Sets the value of a specific matrix entry according to a given value of type PolyOverZ
without checking whether the coordinate is part of the matrix.
Parameters:
row: specifies the row in which the entry is locatedcolumn: specifies the column in which the entry is locatedvalue: specifies the value to which the entry is set
§Safety
To use this function safely, make sure that the selected entry is part of the matrix. If it is not, memory leaks, unexpected panics, etc. might occur.
§Examples
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use qfall_math::traits::MatrixSetEntry;
use std::str::FromStr;
let mut matrix = MatPolyOverZ::new(2, 2);
let value = PolyOverZ::from_str("2 1 1").unwrap();
unsafe {
matrix.set_entry_unchecked(0, 1, &value);
matrix.set_entry_unchecked(1, 0, &PolyOverZ::from(2));
}
assert_eq!("[[0, 2 1 1],[1 2, 0]]", matrix.to_string());Source§impl MatrixSetEntry<PolyOverZ> for MatPolyOverZ
impl MatrixSetEntry<PolyOverZ> for MatPolyOverZ
Source§fn set_entry(
&mut self,
row: impl TryInto<i64> + Display,
column: impl TryInto<i64> + Display,
value: PolyOverZ,
) -> Result<(), MathError>
fn set_entry( &mut self, row: impl TryInto<i64> + Display, column: impl TryInto<i64> + Display, value: PolyOverZ, ) -> Result<(), MathError>
Documentation can be found at MatPolyOverZ::set_entry for &PolyOverZ.
Source§unsafe fn set_entry_unchecked(
&mut self,
row: i64,
column: i64,
value: PolyOverZ,
)
unsafe fn set_entry_unchecked( &mut self, row: i64, column: i64, value: PolyOverZ, )
Documentation can be found at MatPolyOverZ::set_entry for &PolyOverZ.
Source§impl MatrixSetSubmatrix for MatPolyOverZ
impl MatrixSetSubmatrix for MatPolyOverZ
Source§unsafe fn set_submatrix_unchecked(
&mut self,
row_self_start: i64,
col_self_start: i64,
row_self_end: i64,
col_self_end: i64,
other: &Self,
row_other_start: i64,
col_other_start: i64,
row_other_end: i64,
col_other_end: i64,
)
unsafe fn set_submatrix_unchecked( &mut self, row_self_start: i64, col_self_start: i64, row_self_end: i64, col_self_end: i64, other: &Self, row_other_start: i64, col_other_start: i64, row_other_end: i64, col_other_end: i64, )
Sets the matrix entries in self to entries defined in other.
The entries in self starting from (row_self_start, col_self_start) up to
(row_self_end, col_self_end)are set to be
the entries from the submatrix from other defined by (row_other_start, col_other_start)
to (row_other_end, col_other_end) (exclusively).
Parameters:
row_self_start: the starting row of the matrix in which to set a submatrix
col_self_start: the starting column of the matrix in which to set a submatrix
other: the matrix from where to take the submatrix to set
row_other_start: the starting row of the specified submatrix
col_other_start: the starting column of the specified submatrix
row_other_end: the ending row of the specified submatrix
col_other_end:the ending column of the specified submatrix
§Examples
use qfall_math::{integer::MatPolyOverZ, traits::MatrixSetSubmatrix};
use std::str::FromStr;
let mut mat = MatPolyOverZ::identity(3, 3);
mat.set_submatrix(0, 1, &mat.clone(), 0, 0, 1, 1).unwrap();
// [[1,1,0],[0,0,1],[0,0,1]]
let mat_cmp = MatPolyOverZ::from_str("[[1 1, 1 1, 0],[0, 0, 1 1],[0, 0, 1 1]]").unwrap();
assert_eq!(mat, mat_cmp);
unsafe{ mat.set_submatrix_unchecked(2, 0, 3, 2, &mat.clone(), 0, 0, 1, 2) };
let mat_cmp = MatPolyOverZ::from_str("[[1 1, 1 1, 0],[0, 0, 1 1],[1 1, 1 1, 1 1]]").unwrap();
assert_eq!(mat, mat_cmp);§Safety
To use this function safely, make sure that the selected submatrices are part of the matrices, the submatrices are of the same dimensions and the base types are the same. If not, memory leaks, unexpected panics, etc. might occur.
Source§fn set_row(
&mut self,
row_0: impl TryInto<i64> + Display,
other: &Self,
row_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn set_row( &mut self, row_0: impl TryInto<i64> + Display, other: &Self, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
other. Read moreSource§unsafe fn set_row_unchecked(&mut self, row_0: i64, other: &Self, row_1: i64)
unsafe fn set_row_unchecked(&mut self, row_0: i64, other: &Self, row_1: i64)
other. Read moreSource§fn set_column(
&mut self,
col_0: impl TryInto<i64> + Display,
other: &Self,
col_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn set_column( &mut self, col_0: impl TryInto<i64> + Display, other: &Self, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
other. Read moreSource§unsafe fn set_column_unchecked(&mut self, col_0: i64, other: &Self, col_1: i64)
unsafe fn set_column_unchecked(&mut self, col_0: i64, other: &Self, col_1: i64)
other. Read moreSource§fn set_submatrix(
&mut self,
row_self_start: impl TryInto<i64> + Display,
col_self_start: impl TryInto<i64> + Display,
other: &Self,
row_other_start: impl TryInto<i64> + Display,
col_other_start: impl TryInto<i64> + Display,
row_other_end: impl TryInto<i64> + Display,
col_other_end: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn set_submatrix( &mut self, row_self_start: impl TryInto<i64> + Display, col_self_start: impl TryInto<i64> + Display, other: &Self, row_other_start: impl TryInto<i64> + Display, col_other_start: impl TryInto<i64> + Display, row_other_end: impl TryInto<i64> + Display, col_other_end: impl TryInto<i64> + Display, ) -> Result<(), MathError>
self to entries defined in other.
The entries in self starting from (row_self_start, col_self_start) are set to be
the entries from the submatrix from other defined by (row_other_start, col_other_start)
to (row_other_end, col_other_end) (inclusively).
The original matrix must have sufficiently many entries to contain the defined submatrix. Read moreSource§impl MatrixSwaps for MatPolyOverZ
impl MatrixSwaps for MatPolyOverZ
Source§fn swap_entries(
&mut self,
row_0: impl TryInto<i64> + Display,
col_0: impl TryInto<i64> + Display,
row_1: impl TryInto<i64> + Display,
col_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn swap_entries( &mut self, row_0: impl TryInto<i64> + Display, col_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
Swaps two entries of the specified matrix.
Parameters:
row_0: specifies the row, in which the first entry is locatedcol_0: specifies the column, in which the first entry is locatedrow_1: specifies the row, in which the second entry is locatedcol_1: specifies the column, in which the second entry is located
Negative indices can be used to index from the back, e.g., -1 for
the last element.
Returns an empty Ok if the action could be performed successfully.
Otherwise, a MathError is returned if one of the specified entries is not part of the matrix.
§Examples
use qfall_math::{integer::MatPolyOverZ, traits::MatrixSwaps};
let mut matrix = MatPolyOverZ::new(4, 3);
matrix.swap_entries(0, 0, 2, 1);§Errors and Failures
- Returns a
MathErrorof typeMathError::OutOfBoundsif row or column are greater than the matrix size.
Source§fn swap_columns(
&mut self,
col_0: impl TryInto<i64> + Display,
col_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn swap_columns( &mut self, col_0: impl TryInto<i64> + Display, col_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
Swaps two columns of the specified matrix.
Parameters:
col_0: specifies the first column which is swapped with the second onecol_1: specifies the second column which is swapped with the first one
Negative indices can be used to index from the back, e.g., -1 for
the last element.
Returns an empty Ok if the action could be performed successfully.
Otherwise, a MathError is returned if one of the specified columns is not part of the matrix.
§Examples
use qfall_math::{integer::MatPolyOverZ, traits::MatrixSwaps};
let mut matrix = MatPolyOverZ::new(4, 3);
matrix.swap_columns(0, 2);§Errors and Failures
- Returns a
MathErrorof typeOutOfBoundsif one of the given columns is greater than the matrix.
Source§fn swap_rows(
&mut self,
row_0: impl TryInto<i64> + Display,
row_1: impl TryInto<i64> + Display,
) -> Result<(), MathError>
fn swap_rows( &mut self, row_0: impl TryInto<i64> + Display, row_1: impl TryInto<i64> + Display, ) -> Result<(), MathError>
Swaps two rows of the specified matrix.
Parameters:
row_0: specifies the first row which is swapped with the second onerow_1: specifies the second row which is swapped with the first one
Negative indices can be used to index from the back, e.g., -1 for
the last element.
Returns an empty Ok if the action could be performed successfully.
Otherwise, a MathError is returned if one of the specified rows is not part of the matrix.
§Examples
use qfall_math::{integer::MatPolyOverZ, traits::MatrixSwaps};
let mut matrix = MatPolyOverZ::new(4, 3);
matrix.swap_rows(0, 2);§Errors and Failures
- Returns a
MathErrorof typeOutOfBoundsif one of the given rows is greater than the matrix.
Source§impl Mul<&MatPolyOverZ> for &MatPolynomialRingZq
impl Mul<&MatPolyOverZ> for &MatPolynomialRingZq
Source§fn mul(self, other: &MatPolyOverZ) -> Self::Output
fn mul(self, other: &MatPolyOverZ) -> Self::Output
Implements the Mul trait for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_3 = &mat_1 * &mat_2;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§type Output = MatPolynomialRingZq
type Output = MatPolynomialRingZq
* operator.Source§impl Mul<&MatPolynomialRingZq> for &MatPolyOverZ
impl Mul<&MatPolynomialRingZq> for &MatPolyOverZ
Source§fn mul(self, other: &MatPolynomialRingZq) -> Self::Output
fn mul(self, other: &MatPolynomialRingZq) -> Self::Output
Implements the Mul trait for a MatPolyOverZ matrix with a MatPolynomialRingZq matrix.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_3 = &mat_1 * &mat_2;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§type Output = MatPolynomialRingZq
type Output = MatPolynomialRingZq
* operator.Source§impl Mul<&PolyOverZ> for &MatPolyOverZ
impl Mul<&PolyOverZ> for &MatPolyOverZ
Source§fn mul(self, scalar: &PolyOverZ) -> Self::Output
fn mul(self, scalar: &PolyOverZ) -> Self::Output
Implements the Mul trait for a MatPolyOverZ matrix with a PolyOverZ.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
scalar: specifies the scalar by which the matrix is multiplied
Returns the product of self and scalar as a MatPolyOverZ.
§Examples
use qfall_math::integer::MatPolyOverZ;
use qfall_math::integer::PolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let poly = PolyOverZ::from_str("3 1 2 3").unwrap();
let mat_2 = &mat_1 * &poly;Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
* operator.Source§impl Mul<&PolynomialRingZq> for &MatPolyOverZ
impl Mul<&PolynomialRingZq> for &MatPolyOverZ
Source§fn mul(self, scalar: &PolynomialRingZq) -> Self::Output
fn mul(self, scalar: &PolynomialRingZq) -> Self::Output
Implements the Mul trait for a MatPolyOverZ matrix with a PolynomialRingZq.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
scalar: Specifies the scalar by which the matrix is multiplied.
Returns the product of self and scalar as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::{ModulusPolynomialRingZq, PolynomialRingZq};
use qfall_math::integer::{MatPolyOverZ, PolyOverZ};
use std::str::FromStr;
let modulus = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 17").unwrap();
let poly_mat1 = MatPolyOverZ::from_str("[[3 0 1 1, 1 42],[0, 2 1 2]]").unwrap();
let poly = PolyOverZ::from_str("3 1 0 1").unwrap();
let poly_ring = PolynomialRingZq::from((&poly, &modulus));
let poly_ring_mat1 = &poly_mat1 * &poly_ring;Source§type Output = MatPolynomialRingZq
type Output = MatPolynomialRingZq
* operator.Source§impl Mul<&Z> for &MatPolyOverZ
impl Mul<&Z> for &MatPolyOverZ
Source§fn mul(self, scalar: &Z) -> Self::Output
fn mul(self, scalar: &Z) -> Self::Output
Implements the Mul trait for a MatPolyOverZ matrix with a Z integer.
Mul is implemented for any combination of owned and borrowed values.
Parameters:
scalar: specifies the scalar by which the matrix is multiplied
Returns the product of self and scalar as a MatPolyOverZ.
§Examples
use qfall_math::integer::MatPolyOverZ;
use qfall_math::integer::Z;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let integer = Z::from(3);
let mat_2 = &mat_1 * &integer;Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
* operator.Source§impl Mul for &MatPolyOverZ
impl Mul for &MatPolyOverZ
Source§fn mul(self, other: Self) -> Self::Output
fn mul(self, other: Self) -> Self::Output
Implements the Mul trait for two MatPolyOverZ values.
Mul is implemented for any combination of MatPolyOverZ and borrowed MatPolyOverZ.
Parameters:
other: specifies the value to multiply withself
Returns the product of self and other as a MatPolyOverZ.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
let b: MatPolyOverZ = MatPolyOverZ::from_str("[[1 -42, 2 24 42],[1 -1, 1 17],[0, 2 1 42]]").unwrap();
let c = &a * &b;
let d = a * b;
let e = &c * d;
let f = c * &e;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
* operator.Source§impl MulAssign<&PolyOverZ> for MatPolyOverZ
impl MulAssign<&PolyOverZ> for MatPolyOverZ
Source§fn mul_assign(&mut self, scalar: &PolyOverZ)
fn mul_assign(&mut self, scalar: &PolyOverZ)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<&Z> for MatPolyOverZ
impl MulAssign<&Z> for MatPolyOverZ
Source§fn mul_assign(&mut self, scalar: &Z)
fn mul_assign(&mut self, scalar: &Z)
Computes the scalar multiplication of self and scalar reusing
the memory of self.
Parameters:
scalar: specifies the value to multiply toself
Returns the scalar of the matrix as a MatPolyOverZ.
§Examples
use qfall_math::integer::{Z,PolyOverZ,MatPolyOverZ};
use std::str::FromStr;
let mut a = MatPolyOverZ::from_str("[[3 0 1 1, 1 42],[0, 2 1 2]]").unwrap();
let b = Z::from(2);
let c = PolyOverZ::from_str("2 1 -3").unwrap();
a *= &b;
a *= b;
a *= &c;
a *= c;
a *= 2;
a *= -2;Source§impl MulAssign<PolyOverZ> for MatPolyOverZ
impl MulAssign<PolyOverZ> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: PolyOverZ)
fn mul_assign(&mut self, other: PolyOverZ)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<Z> for MatPolyOverZ
impl MulAssign<Z> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: Z)
fn mul_assign(&mut self, other: Z)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<i16> for MatPolyOverZ
impl MulAssign<i16> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: i16)
fn mul_assign(&mut self, other: i16)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<i32> for MatPolyOverZ
impl MulAssign<i32> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: i32)
fn mul_assign(&mut self, other: i32)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<i64> for MatPolyOverZ
impl MulAssign<i64> for MatPolyOverZ
Source§fn mul_assign(&mut self, scalar: i64)
fn mul_assign(&mut self, scalar: i64)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<i8> for MatPolyOverZ
impl MulAssign<i8> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: i8)
fn mul_assign(&mut self, other: i8)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<u16> for MatPolyOverZ
impl MulAssign<u16> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: u16)
fn mul_assign(&mut self, other: u16)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<u32> for MatPolyOverZ
impl MulAssign<u32> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: u32)
fn mul_assign(&mut self, other: u32)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<u64> for MatPolyOverZ
impl MulAssign<u64> for MatPolyOverZ
Source§fn mul_assign(&mut self, scalar: u64)
fn mul_assign(&mut self, scalar: u64)
Documentation at MatPolyOverZ::mul_assign.
Source§impl MulAssign<u8> for MatPolyOverZ
impl MulAssign<u8> for MatPolyOverZ
Source§fn mul_assign(&mut self, other: u8)
fn mul_assign(&mut self, other: u8)
Documentation at MatPolyOverZ::mul_assign.
Source§impl PartialEq for MatPolyOverZ
impl PartialEq for MatPolyOverZ
Source§fn eq(&self, other: &Self) -> bool
fn eq(&self, other: &Self) -> bool
Checks if two matrices over PolyOverZ are equal. Used by the == and != operators.
Parameters:
other: the other value that is used to compare the elements
Returns true if the elements are equal, otherwise false.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = "[[0, 1 17, 2 24 42],[2 24 42, 2 24 42, 2 24 42]]";
let a: MatPolyOverZ = MatPolyOverZ::from_str(mat_1).unwrap();
let mat_2 = "[[1 17, 1 17, 2 24 42],[2 24 42, 2 24 42, 2 24 42]]";
let b: MatPolyOverZ = MatPolyOverZ::from_str(mat_2).unwrap();
// These are all equivalent and return false.
let compared: bool = (a == b);
let compared: bool = (&a == &b);
let compared: bool = (a.eq(&b));
let compared: bool = (MatPolyOverZ::eq(&a, &b));Source§impl Rem<&Modulus> for &MatPolyOverZ
impl Rem<&Modulus> for &MatPolyOverZ
Source§fn rem(self, modulus: &Modulus) -> Self::Output
fn rem(self, modulus: &Modulus) -> Self::Output
Computes self mod modulus as long as modulus is greater than 1.
For negative entries in self, the smallest positive representative is returned.
Parameters:
modulus: specifies a non-zero integer over which the positive remainders are computed
Returns self mod modulus as a MatPolyOverZ instance.
§Examples
use qfall_math::integer::MatPolyOverZ;
use qfall_math::integer_mod_q::Modulus;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[2 1 -2],[1 42]]").unwrap();
let b = Modulus::from(24);
let c: MatPolyOverZ = &a % &b;Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<&Z> for &MatPolyOverZ
impl Rem<&Z> for &MatPolyOverZ
Source§fn rem(self, modulus: &Z) -> Self::Output
fn rem(self, modulus: &Z) -> Self::Output
Computes self mod modulus as long as modulus is greater than 1.
For negative entries in self, the smallest positive representative is returned.
Parameters:
modulus: specifies a non-zero integer over which the positive remainders are computed
Returns self mod modulus as a MatPolyOverZ instance.
§Examples
use qfall_math::integer::{MatPolyOverZ, Z};
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[2 1 -2],[1 42]]").unwrap();
let b: Z = Z::from(24);
let c: MatPolyOverZ = a % b;§Panics …
- if
modulusis smaller than2.
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl<Mod: Into<ModulusPolynomialRingZq>> Rem<Mod> for &MatPolyOverZ
impl<Mod: Into<ModulusPolynomialRingZq>> Rem<Mod> for &MatPolyOverZ
Source§fn rem(self, modulus: Mod) -> Self::Output
fn rem(self, modulus: Mod) -> Self::Output
Computes self mod modulus as long as modulus is greater than 1.
For negative entries in self, the smallest positive representative is returned.
Parameters:
modulus: specifies a non-zero integer over which the positive remainders are computed
Returns self mod modulus as a MatPolyOverZ instance.
§Examples
use qfall_math::integer::MatPolyOverZ;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[2 1 -2],[1 42]]").unwrap();
let b = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 24").unwrap();
let c: MatPolyOverZ = &a % &b;Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl<Mod: Into<ModulusPolynomialRingZq>> Rem<Mod> for MatPolyOverZ
impl<Mod: Into<ModulusPolynomialRingZq>> Rem<Mod> for MatPolyOverZ
Source§fn rem(self, modulus: Mod) -> Self::Output
fn rem(self, modulus: Mod) -> Self::Output
Computes self mod modulus as long as modulus is greater than 1.
For negative entries in self, the smallest positive representative is returned.
Parameters:
modulus: specifies a non-zero integer over which the positive remainders are computed
Returns self mod modulus as a MatPolyOverZ instance.
§Examples
use qfall_math::integer::MatPolyOverZ;
use qfall_math::integer_mod_q::ModulusPolynomialRingZq;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[2 1 -2],[1 42]]").unwrap();
let b = ModulusPolynomialRingZq::from_str("4 1 0 0 1 mod 24").unwrap();
let c: MatPolyOverZ = &a % &b;Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<i16> for MatPolyOverZ
impl Rem<i16> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<i32> for MatPolyOverZ
impl Rem<i32> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<i64> for MatPolyOverZ
impl Rem<i64> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<i8> for MatPolyOverZ
impl Rem<i8> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<u16> for MatPolyOverZ
impl Rem<u16> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<u32> for MatPolyOverZ
impl Rem<u32> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<u64> for MatPolyOverZ
impl Rem<u64> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Rem<u8> for MatPolyOverZ
impl Rem<u8> for MatPolyOverZ
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
% operator.Source§impl Serialize for MatPolyOverZ
impl Serialize for MatPolyOverZ
Source§fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>where
S: Serializer,
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>where
S: Serializer,
Implements the serialize option. This allows to create a Json-object from a given MatPolyOverZ.
Source§impl Sub<&MatPolyOverZ> for &MatPolynomialRingZq
impl Sub<&MatPolyOverZ> for &MatPolynomialRingZq
Source§fn sub(self, other: &MatPolyOverZ) -> Self::Output
fn sub(self, other: &MatPolyOverZ) -> Self::Output
Implements the Sub trait for a MatPolynomialRingZq matrix with a MatPolyOverZ matrix.
Sub is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to subtract fromself
Returns the subtraction of self by other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_3 = &mat_1 - &mat_2;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§type Output = MatPolynomialRingZq
type Output = MatPolynomialRingZq
- operator.Source§impl Sub<&MatPolynomialRingZq> for &MatPolyOverZ
impl Sub<&MatPolynomialRingZq> for &MatPolyOverZ
Source§fn sub(self, other: &MatPolynomialRingZq) -> Self::Output
fn sub(self, other: &MatPolynomialRingZq) -> Self::Output
Implements the Sub trait for a MatPolyOverZ matrix with a MatPolynomialRingZq matrix.
Sub is implemented for any combination of owned and borrowed values.
Parameters:
other: specifies the value to subtract fromself
Returns the subtraction of self by other as a MatPolynomialRingZq.
§Examples
use qfall_math::integer_mod_q::MatPolynomialRingZq;
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]]").unwrap();
let mat_2 = MatPolynomialRingZq::from_str("[[2 1 42, 1 17],[1 8, 2 5 6]] / 3 1 2 3 mod 17").unwrap();
let mat_3 = &mat_1 - &mat_2;§Panics …
- if the dimensions of
selfandotherdo not match for multiplication.
Source§type Output = MatPolynomialRingZq
type Output = MatPolynomialRingZq
- operator.Source§impl Sub for &MatPolyOverZ
impl Sub for &MatPolyOverZ
Source§fn sub(self, other: Self) -> Self::Output
fn sub(self, other: Self) -> Self::Output
Implements the Sub trait for two MatPolyOverZ values.
Sub is implemented for any combination of MatPolyOverZ and borrowed MatPolyOverZ.
Parameters:
other: specifies the value to subtract fromself
Returns the result of the subtraction as a MatPolyOverZ.
§Examples
use qfall_math::integer::MatPolyOverZ;
use std::str::FromStr;
let a: MatPolyOverZ = MatPolyOverZ::from_str("[[0, 1 42, 2 42 24],[3 17 24 42, 1 17, 1 42]]").unwrap();
let b: MatPolyOverZ = MatPolyOverZ::from_str("[[1 -42, 0, 2 24 42],[3 1 12 4, 1 -1, 1 17]]").unwrap();
let c: MatPolyOverZ = &a - &b;
let d: MatPolyOverZ = a - b;
let e: MatPolyOverZ = &c - d;
let f: MatPolyOverZ = c - &e;§Panics …
- if the dimensions of both matrices mismatch.
Source§type Output = MatPolyOverZ
type Output = MatPolyOverZ
- operator.Source§impl SubAssign<&MatPolyOverZ> for MatPolyOverZ
impl SubAssign<&MatPolyOverZ> for MatPolyOverZ
Source§fn sub_assign(&mut self, other: &Self)
fn sub_assign(&mut self, other: &Self)
Computes the subtraction of self and other reusing
the memory of self.
Parameters:
other: specifies the value to subtract fromself
§Examples
use qfall_math::integer::MatPolyOverZ;
let mut a = MatPolyOverZ::identity(2, 2);
let b = MatPolyOverZ::new(2, 2);
a -= &b;
a -= b;§Panics …
- if the matrix dimensions mismatch.
Source§impl SubAssign<&MatPolyOverZ> for MatPolynomialRingZq
impl SubAssign<&MatPolyOverZ> for MatPolynomialRingZq
Source§fn sub_assign(&mut self, other: &MatPolyOverZ)
fn sub_assign(&mut self, other: &MatPolyOverZ)
Documentation at MatPolynomialRingZq::sub_assign.
Source§impl SubAssign<MatPolyOverZ> for MatPolynomialRingZq
impl SubAssign<MatPolyOverZ> for MatPolynomialRingZq
Source§fn sub_assign(&mut self, other: MatPolyOverZ)
fn sub_assign(&mut self, other: MatPolyOverZ)
Documentation at MatPolynomialRingZq::sub_assign.
Source§impl SubAssign for MatPolyOverZ
impl SubAssign for MatPolyOverZ
Source§fn sub_assign(&mut self, other: MatPolyOverZ)
fn sub_assign(&mut self, other: MatPolyOverZ)
Documentation at MatPolyOverZ::sub_assign.
Source§impl Tensor for MatPolyOverZ
impl Tensor for MatPolyOverZ
Source§fn tensor_product(&self, other: &Self) -> Self
fn tensor_product(&self, other: &Self) -> Self
Computes the tensor product of self with other.
Parameters:
other: the value with which the tensor product is computed.
Returns the tensor product of self with other.
§Examples
use qfall_math::integer::MatPolyOverZ;
use qfall_math::traits::Tensor;
use std::str::FromStr;
let mat_1 = MatPolyOverZ::from_str("[[1 1, 2 1 1]]").unwrap();
let mat_2 = MatPolyOverZ::from_str("[[1 1, 1 2]]").unwrap();
let mat_ab = mat_1.tensor_product(&mat_2);
let mat_ba = mat_2.tensor_product(&mat_1);
let res_ab = "[[1 1, 1 2, 2 1 1, 2 2 2]]";
let res_ba = "[[1 1, 2 1 1, 1 2, 2 2 2]]";
assert_eq!(mat_ab, MatPolyOverZ::from_str(res_ab).unwrap());
assert_eq!(mat_ba, MatPolyOverZ::from_str(res_ba).unwrap());