Struct ppca::InferredMaskedMix
source · pub struct InferredMaskedMix { /* private fields */ }Expand description
The inferred probability distribution in the state space of a given sample of a PPCA Mixture
Model. This class is the analogous of InferredMasked for the PPCAMix model.
Implementations§
source§impl InferredMaskedMix
impl InferredMaskedMix
sourcepub fn log_posterior(&self) -> &DVector<f64>
pub fn log_posterior(&self) -> &DVector<f64>
The logarithm of the posterior distribution over the PPCA model indices.
sourcepub fn posterior(&self) -> DVector<f64>
pub fn posterior(&self) -> DVector<f64>
The posterior distribution over the PPCA model indices.
sourcepub fn covariance(&self) -> DMatrix<f64>
pub fn covariance(&self) -> DMatrix<f64>
The covariance matrices of the posterion distribution in the state space.
sourcepub fn smoothed(&self, mix: &PPCAMix) -> DVector<f64>
pub fn smoothed(&self, mix: &PPCAMix) -> DVector<f64>
The smoothed output values for a given output model.
sourcepub fn extrapolated(&self, mix: &PPCAMix, sample: &MaskedSample) -> DVector<f64>
pub fn extrapolated(&self, mix: &PPCAMix, sample: &MaskedSample) -> DVector<f64>
The extrapolated output values for a given output model and the corresponding sample.
sourcepub fn smoothed_covariance(&self, mix: &PPCAMix) -> DMatrix<f64>
pub fn smoothed_covariance(&self, mix: &PPCAMix) -> DMatrix<f64>
The covariance for the smoothed output values.
Note:
Afraid of the big, fat matrix? The method output_covariance_diagonal might just
save your life.
sourcepub fn smoothed_covariance_diagonal(&self, mix: &PPCAMix) -> DVector<f64>
pub fn smoothed_covariance_diagonal(&self, mix: &PPCAMix) -> DVector<f64>
Returns an approximation of the smoothed output covariance matrix, treating each masked output as an independent normal distribution.
Note:
Use this not to get lost with big matrices in the output, losing CPU, memory and hair.
sourcepub fn extrapolated_covariance(
&self,
mix: &PPCAMix,
sample: &MaskedSample
) -> DMatrix<f64>
pub fn extrapolated_covariance(
&self,
mix: &PPCAMix,
sample: &MaskedSample
) -> DMatrix<f64>
The covariance for the extraplated values for a given output model and extant values in a given sample.
Note:
Afraid of the big, fat matrix? The method output_covariance_diagonal might just
save your life.
sourcepub fn extrapolated_covariance_diagonal(
&self,
mix: &PPCAMix,
sample: &MaskedSample
) -> DVector<f64>
pub fn extrapolated_covariance_diagonal(
&self,
mix: &PPCAMix,
sample: &MaskedSample
) -> DVector<f64>
Returns an approximation of the extrapolated output covariance matrix, treating each masked output as an independent normal distribution.
Note
Use this not to get lost with big matrices in the output, losing CPU, memory and hair.
sourcepub fn posterior_sampler(&self) -> PosteriorSamplerMix
pub fn posterior_sampler(&self) -> PosteriorSamplerMix
Samples from the posterior distribution of an infered sample. The sample is smoothed, that is, it does not include the model isotropic noise.
Trait Implementations§
source§impl Clone for InferredMaskedMix
impl Clone for InferredMaskedMix
source§fn clone(&self) -> InferredMaskedMix
fn clone(&self) -> InferredMaskedMix
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl Debug for InferredMaskedMix
impl Debug for InferredMaskedMix
source§impl<'de> Deserialize<'de> for InferredMaskedMix
impl<'de> Deserialize<'de> for InferredMaskedMix
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Auto Trait Implementations§
impl RefUnwindSafe for InferredMaskedMix
impl Send for InferredMaskedMix
impl Sync for InferredMaskedMix
impl Unpin for InferredMaskedMix
impl UnwindSafe for InferredMaskedMix
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.