Struct ppca::InferredMasked
source · pub struct InferredMasked { /* private fields */ }Expand description
The inferred probability distribution in the state space of a given sample.
Implementations§
source§impl InferredMasked
impl InferredMasked
sourcepub fn state(&self) -> &DVector<f64>
pub fn state(&self) -> &DVector<f64>
The mean of the probability distribution in the state space.
sourcepub fn covariance(&self) -> &DMatrix<f64>
pub fn covariance(&self) -> &DMatrix<f64>
The covariance matrix of the probability distribution in the state space. The covariances here can change from sample to sample, depending on the mask. If there is lots of masking in a sample, the covariance will be overall bigger.
sourcepub fn smoothed(&self, ppca: &PPCAModel) -> DVector<f64>
pub fn smoothed(&self, ppca: &PPCAModel) -> DVector<f64>
The smoothed output values for a given output model.
sourcepub fn extrapolated(
&self,
ppca: &PPCAModel,
sample: &MaskedSample
) -> DVector<f64>
pub fn extrapolated(
&self,
ppca: &PPCAModel,
sample: &MaskedSample
) -> DVector<f64>
The extrapolated output values for a given output model and extant values in a given sample.
sourcepub fn smoothed_covariance(&self, ppca: &PPCAModel) -> DMatrix<f64>
pub fn smoothed_covariance(&self, ppca: &PPCAModel) -> DMatrix<f64>
The covariance for the smoothed output values.
Note:
Afraid of the big, fat matrix? The method output_covariance_diagonal might just
save your life.
sourcepub fn smoothed_covariance_diagonal(&self, ppca: &PPCAModel) -> DVector<f64>
pub fn smoothed_covariance_diagonal(&self, ppca: &PPCAModel) -> DVector<f64>
Returns an approximation of the smoothed output covariance matrix, treating each masked output as an independent normal distribution.
Note:
Use this not to get lost with big matrices in the output, losing CPU, memory and hair.
sourcepub fn extrapolated_covariance(
&self,
ppca: &PPCAModel,
sample: &MaskedSample
) -> DMatrix<f64>
pub fn extrapolated_covariance(
&self,
ppca: &PPCAModel,
sample: &MaskedSample
) -> DMatrix<f64>
The covariance for the extraplated values for a given output model and extant values in a given sample.
Note:
Afraid of the big, fat matrix? The method output_covariance_diagonal might just
save your life.
sourcepub fn extrapolated_covariance_diagonal(
&self,
ppca: &PPCAModel,
sample: &MaskedSample
) -> DVector<f64>
pub fn extrapolated_covariance_diagonal(
&self,
ppca: &PPCAModel,
sample: &MaskedSample
) -> DVector<f64>
Returns an approximation of the extrapolated output covariance matrix, treating each masked output as an independent normal distribution.
Note
Use this not to get lost with big matrices in the output, losing CPU, memory and hair.
sourcepub fn posterior_sampler(&self) -> PosteriorSampler
pub fn posterior_sampler(&self) -> PosteriorSampler
Samples from the posterior distribution of an infered sample. The sample is smoothed, that is, it does not include the model isotropic noise.
Trait Implementations§
source§impl Clone for InferredMasked
impl Clone for InferredMasked
source§fn clone(&self) -> InferredMasked
fn clone(&self) -> InferredMasked
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl Debug for InferredMasked
impl Debug for InferredMasked
source§impl<'de> Deserialize<'de> for InferredMasked
impl<'de> Deserialize<'de> for InferredMasked
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Auto Trait Implementations§
impl RefUnwindSafe for InferredMasked
impl Send for InferredMasked
impl Sync for InferredMasked
impl Unpin for InferredMasked
impl UnwindSafe for InferredMasked
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.