Struct ppca::PosteriorSampler
source · pub struct PosteriorSampler { /* private fields */ }Expand description
Samples from the posterior distribution of an infered sample. The sample is smoothed, that is, it does not include the model isotropic noise.
Trait Implementations§
source§impl Distribution<Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>> for PosteriorSampler
impl Distribution<Matrix<f64, Dynamic, Const<1>, VecStorage<f64, Dynamic, Const<1>>>> for PosteriorSampler
source§fn sample<R>(&self, rng: &mut R) -> DVector<f64>where
R: Rng + ?Sized,
fn sample<R>(&self, rng: &mut R) -> DVector<f64>where
R: Rng + ?Sized,
Generate a random value of
T, using rng as the source of randomness.Auto Trait Implementations§
impl RefUnwindSafe for PosteriorSampler
impl Send for PosteriorSampler
impl Sync for PosteriorSampler
impl Unpin for PosteriorSampler
impl UnwindSafe for PosteriorSampler
Blanket Implementations§
§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.