Trait polars_core::prelude::IntoSeries
source · pub unsafe trait IntoSeries {
fn into_series(self) -> Series
where
Self: Sized;
fn is_series() -> bool { ... }
}Expand description
Used to convert a ChunkedArray, &dyn SeriesTrait and Series
into a Series.
Safety
This trait is marked unsafe as the is_series return is used
to transmute to Series. This must always return false except
for Series structs.
Required Methods§
fn into_series(self) -> Serieswhere
Self: Sized,
Provided Methods§
sourcefn is_series() -> bool
fn is_series() -> bool
Examples found in repository?
src/frame/mod.rs (line 237)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
pub fn new<S: IntoSeries>(columns: Vec<S>) -> PolarsResult<Self> {
let mut first_len = None;
let shape_err = |s: &[Series]| {
let msg = format!(
"Could not create a new DataFrame from Series. \
The Series have different lengths. \
Got {s:?}",
);
Err(PolarsError::ShapeMisMatch(msg.into()))
};
let series_cols = if S::is_series() {
// Safety:
// we are guarded by the type system here.
#[allow(clippy::transmute_undefined_repr)]
let series_cols = unsafe { std::mem::transmute::<Vec<S>, Vec<Series>>(columns) };
let mut names = PlHashSet::with_capacity(series_cols.len());
for s in &series_cols {
match first_len {
Some(len) => {
if s.len() != len {
return shape_err(&series_cols);
}
}
None => first_len = Some(s.len()),
}
let name = s.name();
if names.contains(name) {
_duplicate_err(name)?
}
names.insert(name);
}
// we drop early as the brchk thinks the &str borrows are used when calling the drop
// of both `series_cols` and `names`
drop(names);
series_cols
} else {
let mut series_cols = Vec::with_capacity(columns.len());
let mut names = PlHashSet::with_capacity(columns.len());
// check for series length equality and convert into series in one pass
for s in columns {
let series = s.into_series();
match first_len {
Some(len) => {
if series.len() != len {
return shape_err(&series_cols);
}
}
None => first_len = Some(series.len()),
}
// we have aliasing borrows so we must allocate a string
let name = series.name().to_string();
if names.contains(&name) {
_duplicate_err(&name)?
}
series_cols.push(series);
names.insert(name);
}
drop(names);
series_cols
};
Ok(DataFrame {
columns: series_cols,
})
}