pub trait SeriesTrait: Send + Sync + PrivateSeries + PrivateSeriesNumeric {
Show 69 methods fn rename(&mut self, name: &str); fn chunks(&self) -> &Vec<ArrayRef> ; fn take_iter(&self, _iter: &mut dyn TakeIterator) -> PolarsResult<Series>; unsafe fn take_iter_unchecked(&self, _iter: &mut dyn TakeIterator) -> Series; unsafe fn take_unchecked(&self, _idx: &IdxCa) -> PolarsResult<Series>; unsafe fn take_opt_iter_unchecked(
        &self,
        _iter: &mut dyn TakeIteratorNulls
    ) -> Series; fn take(&self, _indices: &IdxCa) -> PolarsResult<Series>; fn len(&self) -> usize; fn take_every(&self, n: usize) -> Series; fn has_validity(&self) -> bool; fn is_sorted(&self) -> IsSorted { ... } fn bitand(&self, _other: &Series) -> PolarsResult<Series> { ... } fn bitor(&self, _other: &Series) -> PolarsResult<Series> { ... } fn bitxor(&self, _other: &Series) -> PolarsResult<Series> { ... } fn chunk_lengths(&self) -> ChunkIdIter<'_> { ... } fn name(&self) -> &str { ... } fn field(&self) -> Cow<'_, Field> { ... } fn dtype(&self) -> &DataType { ... } fn n_chunks(&self) -> usize { ... } fn shrink_to_fit(&mut self) { ... } fn limit(&self, num_elements: usize) -> Series { ... } fn slice(&self, _offset: i64, _length: usize) -> Series { ... } fn filter(&self, _filter: &BooleanChunked) -> PolarsResult<Series> { ... } fn is_empty(&self) -> bool { ... } fn rechunk(&self) -> Series { ... } fn drop_nulls(&self) -> Series { ... } fn mean(&self) -> Option<f64> { ... } fn median(&self) -> Option<f64> { ... } fn new_from_index(&self, _index: usize, _length: usize) -> Series { ... } fn cast(&self, _data_type: &DataType) -> PolarsResult<Series> { ... } fn get(&self, _index: usize) -> PolarsResult<AnyValue<'_>> { ... } unsafe fn get_unchecked(&self, _index: usize) -> AnyValue<'_> { ... } fn sort_with(&self, _options: SortOptions) -> Series { ... } fn argsort(&self, options: SortOptions) -> IdxCa { ... } fn null_count(&self) -> usize { ... } fn unique(&self) -> PolarsResult<Series> { ... } fn n_unique(&self) -> PolarsResult<usize> { ... } fn arg_unique(&self) -> PolarsResult<IdxCa> { ... } fn arg_min(&self) -> Option<usize> { ... } fn arg_max(&self) -> Option<usize> { ... } fn is_null(&self) -> BooleanChunked { ... } fn is_not_null(&self) -> BooleanChunked { ... } fn is_unique(&self) -> PolarsResult<BooleanChunked> { ... } fn is_duplicated(&self) -> PolarsResult<BooleanChunked> { ... } fn reverse(&self) -> Series { ... } fn as_single_ptr(&mut self) -> PolarsResult<usize> { ... } fn shift(&self, _periods: i64) -> Series { ... } fn fill_null(&self, _strategy: FillNullStrategy) -> PolarsResult<Series> { ... } fn _sum_as_series(&self) -> Series { ... } fn max_as_series(&self) -> Series { ... } fn min_as_series(&self) -> Series { ... } fn median_as_series(&self) -> Series { ... } fn var_as_series(&self, _ddof: u8) -> Series { ... } fn std_as_series(&self, _ddof: u8) -> Series { ... } fn quantile_as_series(
        &self,
        _quantile: f64,
        _interpol: QuantileInterpolOptions
    ) -> PolarsResult<Series> { ... } fn fmt_list(&self) -> String { ... } fn clone_inner(&self) -> Arc<dyn SeriesTrait> { ... } fn get_object(&self, _index: usize) -> Option<&dyn PolarsObjectSafe> { ... } fn as_any(&self) -> &dyn Any { ... } fn as_any_mut(&mut self) -> &mut dyn Any { ... } fn peak_max(&self) -> BooleanChunked { ... } fn peak_min(&self) -> BooleanChunked { ... } fn is_in(&self, _other: &Series) -> PolarsResult<BooleanChunked> { ... } fn repeat_by(&self, _by: &IdxCa) -> ListChunked { ... } fn checked_div(&self, _rhs: &Series) -> PolarsResult<Series> { ... } fn is_first(&self) -> PolarsResult<BooleanChunked> { ... } fn mode(&self) -> PolarsResult<Series> { ... } fn rolling_apply(
        &self,
        _f: &dyn Fn(&Series) -> Series,
        _options: RollingOptionsFixedWindow
    ) -> PolarsResult<Series> { ... } fn str_concat(&self, _delimiter: &str) -> Utf8Chunked { ... }
}

Required Methods§

Rename the Series.

Underlying chunks.

Take by index from an iterator. This operation clones the data.

Take by index from an iterator. This operation clones the data.

Safety
  • This doesn’t check any bounds.
  • Iterator must be TrustedLen

Take by index if ChunkedArray contains a single chunk.

Safety

This doesn’t check any bounds.

Take by index from an iterator. This operation clones the data.

Safety
  • This doesn’t check any bounds.
  • Iterator must be TrustedLen

Take by index. This operation is clone.

Get length of series.

Take every nth value as a new Series

Return if any the chunks in this [ChunkedArray] have a validity bitmap. no bitmap means no null values.

Provided Methods§

Check if Series is sorted.

Examples found in repository?
src/utils/mod.rs (line 154)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
fn flatten_df(df: &DataFrame) -> impl Iterator<Item = DataFrame> + '_ {
    df.iter_chunks_physical().flat_map(|chunk| {
        let df = DataFrame::new_no_checks(
            df.iter()
                .zip(chunk.into_arrays())
                .map(|(s, arr)| {
                    // Safety:
                    // datatypes are correct
                    let mut out = unsafe {
                        Series::from_chunks_and_dtype_unchecked(s.name(), vec![arr], s.dtype())
                    };
                    out.set_sorted(s.is_sorted());
                    out
                })
                .collect(),
        );
        if df.height() == 0 {
            None
        } else {
            Some(df)
        }
    })
}
More examples
Hide additional examples
src/frame/groupby/mod.rs (line 348)
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    pub fn keys_sliced(&self, slice: Option<(i64, usize)>) -> Vec<Series> {
        #[allow(unused_assignments)]
        // needed to keep the lifetimes valid for this scope
        let mut groups_owned = None;

        let groups = if let Some((offset, len)) = slice {
            groups_owned = Some(self.groups.slice(offset, len));
            groups_owned.as_deref().unwrap()
        } else {
            &self.groups
        };

        POOL.install(|| {
            self.selected_keys
                .par_iter()
                .map(|s| {
                    match groups {
                        GroupsProxy::Idx(groups) => {
                            let mut iter = groups.iter().map(|(first, _idx)| first as usize);
                            // Safety:
                            // groups are always in bounds
                            let mut out = unsafe { s.take_iter_unchecked(&mut iter) };
                            if groups.sorted {
                                out.set_sorted(s.is_sorted());
                            };
                            out
                        }
                        GroupsProxy::Slice { groups, rolling } => {
                            if *rolling && !groups.is_empty() {
                                // groups can be sliced
                                let offset = groups[0][0];
                                let [upper_offset, upper_len] = groups[groups.len() - 1];
                                return s.slice(
                                    offset as i64,
                                    ((upper_offset + upper_len) - offset) as usize,
                                );
                            }

                            let mut iter = groups.iter().map(|&[first, _len]| first as usize);
                            // Safety:
                            // groups are always in bounds
                            let mut out = unsafe { s.take_iter_unchecked(&mut iter) };
                            // sliced groups are always in order of discovery
                            out.set_sorted(s.is_sorted());
                            out
                        }
                    }
                })
                .collect()
        })
    }

Get the lengths of the underlying chunks

Examples found in repository?
src/utils/mod.rs (line 184)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
pub fn split_df_as_ref(df: &DataFrame, n: usize) -> PolarsResult<Vec<DataFrame>> {
    let total_len = df.height();
    let chunk_size = total_len / n;

    if df.n_chunks() == n
        && df.get_columns()[0]
            .chunk_lengths()
            .all(|len| len.abs_diff(chunk_size) < 100)
    {
        return Ok(flatten_df(df).collect());
    }

    let mut out = Vec::with_capacity(n);

    for i in 0..n {
        let offset = i * chunk_size;
        let len = if i == (n - 1) {
            total_len - offset
        } else {
            chunk_size
        };
        let df = df.slice((i * chunk_size) as i64, len);
        if df.n_chunks() > 1 {
            // we add every chunk as separate dataframe. This make sure that every partition
            // deals with it.
            out.extend(flatten_df(&df))
        } else {
            out.push(df)
        }
    }

    Ok(out)
}
More examples
Hide additional examples
src/frame/mod.rs (line 451)
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    pub fn should_rechunk(&self) -> bool {
        let hb = RandomState::default();
        let hb2 = RandomState::with_seeds(392498, 98132457, 0, 412059);
        !self
            .columns
            .iter()
            // The idea is that we create a hash of the chunk lengths.
            // Consisting of the combined hash + the sum (assuming collision probability is nihil)
            // if not, we can add more hashes or at worst case we do an extra rechunk.
            // the old solution to this was clone all lengths to a vec and compare the vecs
            .map(|s| {
                s.chunk_lengths().map(|i| i as u64).fold(
                    (0u64, 0u64, s.n_chunks()),
                    |(lhash, lh2, n), rval| {
                        let mut h = hb.build_hasher();
                        rval.hash(&mut h);
                        let rhash = h.finish();
                        let mut h = hb2.build_hasher();
                        rval.hash(&mut h);
                        let rh2 = h.finish();
                        (
                            _boost_hash_combine(lhash, rhash),
                            _boost_hash_combine(lh2, rh2),
                            n,
                        )
                    },
                )
            })
            .all_equal()
    }

Name of series.

Examples found in repository?
src/series/series_trait.rs (line 575)
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    fn median_as_series(&self) -> Series {
        Series::full_null(self.name(), 1, self.dtype())
    }
    /// Get the variance of the Series as a new Series of length 1.
    fn var_as_series(&self, _ddof: u8) -> Series {
        Series::full_null(self.name(), 1, self.dtype())
    }
    /// Get the standard deviation of the Series as a new Series of length 1.
    fn std_as_series(&self, _ddof: u8) -> Series {
        Series::full_null(self.name(), 1, self.dtype())
    }
    /// Get the quantile of the ChunkedArray as a new Series of length 1.
    fn quantile_as_series(
        &self,
        _quantile: f64,
        _interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        Ok(Series::full_null(self.name(), 1, self.dtype()))
    }
More examples
Hide additional examples
src/series/implementations/object.rs (line 245)
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    fn _sum_as_series(&self) -> Series {
        ObjectChunked::<T>::full_null(self.name(), 1).into_series()
    }
    fn max_as_series(&self) -> Series {
        ObjectChunked::<T>::full_null(self.name(), 1).into_series()
    }
    fn min_as_series(&self) -> Series {
        ObjectChunked::<T>::full_null(self.name(), 1).into_series()
    }
    fn median_as_series(&self) -> Series {
        ObjectChunked::<T>::full_null(self.name(), 1).into_series()
    }
    fn var_as_series(&self, _ddof: u8) -> Series {
        ObjectChunked::<T>::full_null(self.name(), 1).into_series()
    }
    fn std_as_series(&self, _ddof: u8) -> Series {
        ObjectChunked::<T>::full_null(self.name(), 1).into_series()
    }
src/frame/mod.rs (line 195)
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
    fn check_already_present(&self, name: &str) -> PolarsResult<()> {
        if self.columns.iter().any(|s| s.name() == name) {
            Err(PolarsError::Duplicate(
                format!("column with name: '{name}' already present in DataFrame").into(),
            ))
        } else {
            Ok(())
        }
    }

    /// Reserve additional slots into the chunks of the series.
    pub(crate) fn reserve_chunks(&mut self, additional: usize) {
        for s in &mut self.columns {
            // Safety
            // do not modify the data, simply resize.
            unsafe { s.chunks_mut().reserve(additional) }
        }
    }

    /// Create a DataFrame from a Vector of Series.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("days", [0, 1, 2].as_ref());
    /// let s1 = Series::new("temp", [22.1, 19.9, 7.].as_ref());
    ///
    /// let df = DataFrame::new(vec![s0, s1])?;
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn new<S: IntoSeries>(columns: Vec<S>) -> PolarsResult<Self> {
        let mut first_len = None;

        let shape_err = |s: &[Series]| {
            let msg = format!(
                "Could not create a new DataFrame from Series. \
            The Series have different lengths. \
            Got {s:?}",
            );
            Err(PolarsError::ShapeMisMatch(msg.into()))
        };

        let series_cols = if S::is_series() {
            // Safety:
            // we are guarded by the type system here.
            #[allow(clippy::transmute_undefined_repr)]
            let series_cols = unsafe { std::mem::transmute::<Vec<S>, Vec<Series>>(columns) };
            let mut names = PlHashSet::with_capacity(series_cols.len());

            for s in &series_cols {
                match first_len {
                    Some(len) => {
                        if s.len() != len {
                            return shape_err(&series_cols);
                        }
                    }
                    None => first_len = Some(s.len()),
                }
                let name = s.name();

                if names.contains(name) {
                    _duplicate_err(name)?
                }

                names.insert(name);
            }
            // we drop early as the brchk thinks the &str borrows are used when calling the drop
            // of both `series_cols` and `names`
            drop(names);
            series_cols
        } else {
            let mut series_cols = Vec::with_capacity(columns.len());
            let mut names = PlHashSet::with_capacity(columns.len());

            // check for series length equality and convert into series in one pass
            for s in columns {
                let series = s.into_series();
                match first_len {
                    Some(len) => {
                        if series.len() != len {
                            return shape_err(&series_cols);
                        }
                    }
                    None => first_len = Some(series.len()),
                }
                // we have aliasing borrows so we must allocate a string
                let name = series.name().to_string();

                if names.contains(&name) {
                    _duplicate_err(&name)?
                }

                series_cols.push(series);
                names.insert(name);
            }
            drop(names);
            series_cols
        };

        Ok(DataFrame {
            columns: series_cols,
        })
    }

    /// Creates an empty `DataFrame` usable in a compile time context (such as static initializers).
    ///
    /// # Example
    ///
    /// ```rust
    /// use polars_core::prelude::DataFrame;
    /// static EMPTY: DataFrame = DataFrame::empty();
    /// ```
    pub const fn empty() -> Self {
        DataFrame::new_no_checks(Vec::new())
    }

    /// Removes the last `Series` from the `DataFrame` and returns it, or [`None`] if it is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1 = Series::new("Ocean", &["Atlantic", "Indian"]);
    /// let s2 = Series::new("Area (km²)", &[106_460_000, 70_560_000]);
    /// let mut df = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// assert_eq!(df.pop(), Some(s2));
    /// assert_eq!(df.pop(), Some(s1));
    /// assert_eq!(df.pop(), None);
    /// assert!(df.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn pop(&mut self) -> Option<Series> {
        self.columns.pop()
    }

    /// Add a new column at index 0 that counts the rows.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Name" => &["James", "Mary", "John", "Patricia"])?;
    /// assert_eq!(df1.shape(), (4, 1));
    ///
    /// let df2: DataFrame = df1.with_row_count("Id", None)?;
    /// assert_eq!(df2.shape(), (4, 2));
    /// println!("{}", df2);
    ///
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    ///  shape: (4, 2)
    ///  +-----+----------+
    ///  | Id  | Name     |
    ///  | --- | ---      |
    ///  | u32 | str      |
    ///  +=====+==========+
    ///  | 0   | James    |
    ///  +-----+----------+
    ///  | 1   | Mary     |
    ///  +-----+----------+
    ///  | 2   | John     |
    ///  +-----+----------+
    ///  | 3   | Patricia |
    ///  +-----+----------+
    /// ```
    pub fn with_row_count(&self, name: &str, offset: Option<IdxSize>) -> PolarsResult<Self> {
        let mut columns = Vec::with_capacity(self.columns.len() + 1);
        let offset = offset.unwrap_or(0);

        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);
        columns.push(ca.into_series());

        columns.extend_from_slice(&self.columns);
        DataFrame::new(columns)
    }

    /// Add a row count in place.
    pub fn with_row_count_mut(&mut self, name: &str, offset: Option<IdxSize>) -> &mut Self {
        let offset = offset.unwrap_or(0);
        let mut ca = IdxCa::from_vec(
            name,
            (offset..(self.height() as IdxSize) + offset).collect(),
        );
        ca.set_sorted(false);

        self.columns.insert(0, ca.into_series());
        self
    }

    /// Create a new `DataFrame` but does not check the length or duplicate occurrence of the `Series`.
    ///
    /// It is advised to use [Series::new](Series::new) in favor of this method.
    ///
    /// # Panic
    /// It is the callers responsibility to uphold the contract of all `Series`
    /// having an equal length, if not this may panic down the line.
    pub const fn new_no_checks(columns: Vec<Series>) -> DataFrame {
        DataFrame { columns }
    }

    /// Aggregate all chunks to contiguous memory.
    #[must_use]
    pub fn agg_chunks(&self) -> Self {
        // Don't parallelize this. Memory overhead
        let f = |s: &Series| s.rechunk();
        let cols = self.columns.iter().map(f).collect();
        DataFrame::new_no_checks(cols)
    }

    /// Shrink the capacity of this DataFrame to fit its length.
    pub fn shrink_to_fit(&mut self) {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            s.shrink_to_fit();
        }
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk.
    pub fn as_single_chunk(&mut self) -> &mut Self {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            *s = s.rechunk();
        }
        self
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk in parallel.
    /// This may lead to more peak memory consumption.
    pub fn as_single_chunk_par(&mut self) -> &mut Self {
        if self.columns.iter().any(|s| s.n_chunks() > 1) {
            self.columns = self.apply_columns_par(&|s| s.rechunk());
        }
        self
    }

    /// Estimates of the DataFrames columns consist of the same chunk sizes
    pub fn should_rechunk(&self) -> bool {
        let hb = RandomState::default();
        let hb2 = RandomState::with_seeds(392498, 98132457, 0, 412059);
        !self
            .columns
            .iter()
            // The idea is that we create a hash of the chunk lengths.
            // Consisting of the combined hash + the sum (assuming collision probability is nihil)
            // if not, we can add more hashes or at worst case we do an extra rechunk.
            // the old solution to this was clone all lengths to a vec and compare the vecs
            .map(|s| {
                s.chunk_lengths().map(|i| i as u64).fold(
                    (0u64, 0u64, s.n_chunks()),
                    |(lhash, lh2, n), rval| {
                        let mut h = hb.build_hasher();
                        rval.hash(&mut h);
                        let rhash = h.finish();
                        let mut h = hb2.build_hasher();
                        rval.hash(&mut h);
                        let rh2 = h.finish();
                        (
                            _boost_hash_combine(lhash, rhash),
                            _boost_hash_combine(lh2, rh2),
                            n,
                        )
                    },
                )
            })
            .all_equal()
    }

    /// Ensure all the chunks in the DataFrame are aligned.
    pub fn rechunk(&mut self) -> &mut Self {
        if self.should_rechunk() {
            self.as_single_chunk_par()
        } else {
            self
        }
    }

    /// Get the `DataFrame` schema.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Thing" => &["Observable universe", "Human stupidity"],
    ///                         "Diameter (m)" => &[8.8e26, f64::INFINITY])?;
    ///
    /// let f1: Field = Field::new("Thing", DataType::Utf8);
    /// let f2: Field = Field::new("Diameter (m)", DataType::Float64);
    /// let sc: Schema = Schema::from(vec![f1, f2].into_iter());
    ///
    /// assert_eq!(df.schema(), sc);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn schema(&self) -> Schema {
        Schema::from(self.iter().map(|s| s.field().into_owned()))
    }

    /// Get a reference to the `DataFrame` columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Adenine", "Cytosine", "Guanine", "Thymine"],
    ///                         "Symbol" => &["A", "C", "G", "T"])?;
    /// let columns: &Vec<Series> = df.get_columns();
    ///
    /// assert_eq!(columns[0].name(), "Name");
    /// assert_eq!(columns[1].name(), "Symbol");
    /// # Ok::<(), PolarsError>(())
    /// ```
    #[inline]
    pub fn get_columns(&self) -> &Vec<Series> {
        &self.columns
    }

    #[cfg(feature = "private")]
    #[inline]
    pub fn get_columns_mut(&mut self) -> &mut Vec<Series> {
        &mut self.columns
    }

    /// Iterator over the columns as `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Name", &["Pythagoras' theorem", "Shannon entropy"]);
    /// let s2: Series = Series::new("Formula", &["a²+b²=c²", "H=-Σ[P(x)log|P(x)|]"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// let mut iterator = df.iter();
    ///
    /// assert_eq!(iterator.next(), Some(&s1));
    /// assert_eq!(iterator.next(), Some(&s2));
    /// assert_eq!(iterator.next(), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn iter(&self) -> std::slice::Iter<'_, Series> {
        self.columns.iter()
    }

    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Language" => &["Rust", "Python"],
    ///                         "Designer" => &["Graydon Hoare", "Guido van Rossum"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Language", "Designer"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn get_column_names(&self) -> Vec<&str> {
        self.columns.iter().map(|s| s.name()).collect()
    }

    /// Get the `Vec<String>` representing the column names.
    pub fn get_column_names_owned(&self) -> Vec<String> {
        self.columns.iter().map(|s| s.name().to_string()).collect()
    }

    /// Set the column names.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Mathematical set" => &["ℕ", "ℤ", "𝔻", "ℚ", "ℝ", "ℂ"])?;
    /// df.set_column_names(&["Set"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Set"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn set_column_names<S: AsRef<str>>(&mut self, names: &[S]) -> PolarsResult<()> {
        if names.len() != self.columns.len() {
            return Err(PolarsError::ShapeMisMatch("the provided slice with column names has not the same size as the DataFrame's width".into()));
        }
        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(names.iter().map(|name| name.as_ref()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }

        let columns = mem::take(&mut self.columns);
        self.columns = columns
            .into_iter()
            .zip(names)
            .map(|(s, name)| {
                let mut s = s;
                s.rename(name.as_ref());
                s
            })
            .collect();
        Ok(())
    }

    /// Get the data types of the columns in the DataFrame.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let venus_air: DataFrame = df!("Element" => &["Carbon dioxide", "Nitrogen"],
    ///                                "Fraction" => &[0.965, 0.035])?;
    ///
    /// assert_eq!(venus_air.dtypes(), &[DataType::Utf8, DataType::Float64]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn dtypes(&self) -> Vec<DataType> {
        self.columns.iter().map(|s| s.dtype().clone()).collect()
    }

    /// The number of chunks per column
    pub fn n_chunks(&self) -> usize {
        match self.columns.get(0) {
            None => 0,
            Some(s) => s.n_chunks(),
        }
    }

    /// Get a reference to the schema fields of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let earth: DataFrame = df!("Surface type" => &["Water", "Land"],
    ///                            "Fraction" => &[0.708, 0.292])?;
    ///
    /// let f1: Field = Field::new("Surface type", DataType::Utf8);
    /// let f2: Field = Field::new("Fraction", DataType::Float64);
    ///
    /// assert_eq!(earth.fields(), &[f1, f2]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn fields(&self) -> Vec<Field> {
        self.columns
            .iter()
            .map(|s| s.field().into_owned())
            .collect()
    }

    /// Get (height, width) of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("1" => &[1, 2, 3, 4, 5])?;
    /// let df2: DataFrame = df!("1" => &[1, 2, 3, 4, 5],
    ///                          "2" => &[1, 2, 3, 4, 5])?;
    ///
    /// assert_eq!(df0.shape(), (0 ,0));
    /// assert_eq!(df1.shape(), (5, 1));
    /// assert_eq!(df2.shape(), (5, 2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn shape(&self) -> (usize, usize) {
        match self.columns.as_slice() {
            &[] => (0, 0),
            v => (v[0].len(), v.len()),
        }
    }

    /// Get the width of the `DataFrame` which is the number of columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Series 1" => &[0; 0])?;
    /// let df2: DataFrame = df!("Series 1" => &[0; 0],
    ///                          "Series 2" => &[0; 0])?;
    ///
    /// assert_eq!(df0.width(), 0);
    /// assert_eq!(df1.width(), 1);
    /// assert_eq!(df2.width(), 2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn width(&self) -> usize {
        self.columns.len()
    }

    /// Get the height of the `DataFrame` which is the number of rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Currency" => &["€", "$"])?;
    /// let df2: DataFrame = df!("Currency" => &["€", "$", "¥", "£", "₿"])?;
    ///
    /// assert_eq!(df0.height(), 0);
    /// assert_eq!(df1.height(), 2);
    /// assert_eq!(df2.height(), 5);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn height(&self) -> usize {
        self.shape().0
    }

    /// Check if the `DataFrame` is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = DataFrame::default();
    /// assert!(df1.is_empty());
    ///
    /// let df2: DataFrame = df!("First name" => &["Forever"],
    ///                          "Last name" => &["Alone"])?;
    /// assert!(!df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_empty(&self) -> bool {
        self.columns.is_empty()
    }

    pub(crate) fn hstack_mut_no_checks(&mut self, columns: &[Series]) -> &mut Self {
        for col in columns {
            self.columns.push(col.clone());
        }
        self
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn stack(df: &mut DataFrame, columns: &[Series]) {
    ///     df.hstack_mut(columns);
    /// }
    /// ```
    pub fn hstack_mut(&mut self, columns: &[Series]) -> PolarsResult<&mut Self> {
        let mut names = PlHashSet::with_capacity(self.columns.len());
        for s in &self.columns {
            names.insert(s.name());
        }

        let height = self.height();
        // first loop check validity. We don't do this in a single pass otherwise
        // this DataFrame is already modified when an error occurs.
        for col in columns {
            if col.len() != height && height != 0 {
                return Err(PolarsError::ShapeMisMatch(
                    format!("Could not horizontally stack Series. The Series length {} differs from the DataFrame height: {height}", col.len()).into()));
            }

            let name = col.name();
            if names.contains(name) {
                return Err(PolarsError::Duplicate(
                    format!("Cannot do hstack operation. Column with name: {name} already exists",)
                        .into(),
                ));
            }
            names.insert(name);
        }
        drop(names);
        Ok(self.hstack_mut_no_checks(columns))
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"])?;
    /// let s1: Series = Series::new("Proton", &[29, 47, 79]);
    /// let s2: Series = Series::new("Electron", &[29, 47, 79]);
    ///
    /// let df2: DataFrame = df1.hstack(&[s1, s2])?;
    /// assert_eq!(df2.shape(), (3, 3));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 3)
    /// +---------+--------+----------+
    /// | Element | Proton | Electron |
    /// | ---     | ---    | ---      |
    /// | str     | i32    | i32      |
    /// +=========+========+==========+
    /// | Copper  | 29     | 29       |
    /// +---------+--------+----------+
    /// | Silver  | 47     | 47       |
    /// +---------+--------+----------+
    /// | Gold    | 79     | 79       |
    /// +---------+--------+----------+
    /// ```
    pub fn hstack(&self, columns: &[Series]) -> PolarsResult<Self> {
        let mut new_cols = self.columns.clone();
        new_cols.extend_from_slice(columns);
        DataFrame::new(new_cols)
    }

    /// Concatenate a `DataFrame` to this `DataFrame` and return as newly allocated `DataFrame`.
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// let df3: DataFrame = df1.vstack(&df2)?;
    ///
    /// assert_eq!(df3.shape(), (5, 2));
    /// println!("{}", df3);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack(&self, other: &DataFrame) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.vstack_mut(other)?;
        Ok(df)
    }

    /// Concatenate a DataFrame to this DataFrame
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// df1.vstack_mut(&df2)?;
    ///
    /// assert_eq!(df1.shape(), (5, 2));
    /// println!("{}", df1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack_mut(&mut self, other: &DataFrame) -> PolarsResult<&mut Self> {
        if self.width() != other.width() {
            if self.width() == 0 {
                self.columns = other.columns.clone();
                return Ok(self);
            }

            return Err(PolarsError::ShapeMisMatch(
                format!("Could not vertically stack DataFrame. The DataFrames appended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.append(right).expect("should not fail");
                Ok(())
            })?;
        Ok(self)
    }

    /// Does not check if schema is correct
    pub(crate) fn vstack_mut_unchecked(&mut self, other: &DataFrame) {
        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .for_each(|(left, right)| {
                left.append(right).expect("should not fail");
            });
    }

    /// Extend the memory backed by this [`DataFrame`] with the values from `other`.
    ///
    /// Different from [`vstack`](Self::vstack) which adds the chunks from `other` to the chunks of this [`DataFrame`]
    /// `extend` appends the data from `other` to the underlying memory locations and thus may cause a reallocation.
    ///
    /// If this does not cause a reallocation, the resulting data structure will not have any extra chunks
    /// and thus will yield faster queries.
    ///
    /// Prefer `extend` over `vstack` when you want to do a query after a single append. For instance during
    /// online operations where you add `n` rows and rerun a query.
    ///
    /// Prefer `vstack` over `extend` when you want to append many times before doing a query. For instance
    /// when you read in multiple files and when to store them in a single `DataFrame`. In the latter case, finish the sequence
    /// of `append` operations with a [`rechunk`](Self::rechunk).
    pub fn extend(&mut self, other: &DataFrame) -> PolarsResult<()> {
        if self.width() != other.width() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Could not extend DataFrame. The DataFrames extended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.extend(right).unwrap();
                Ok(())
            })?;
        Ok(())
    }

    /// Remove a column by name and return the column removed.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Animal" => &["Tiger", "Lion", "Great auk"],
    ///                             "IUCN" => &["Endangered", "Vulnerable", "Extinct"])?;
    ///
    /// let s1: PolarsResult<Series> = df.drop_in_place("Average weight");
    /// assert!(s1.is_err());
    ///
    /// let s2: Series = df.drop_in_place("Animal")?;
    /// assert_eq!(s2, Series::new("Animal", &["Tiger", "Lion", "Great auk"]));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop_in_place(&mut self, name: &str) -> PolarsResult<Series> {
        let idx = self.check_name_to_idx(name)?;
        Ok(self.columns.remove(idx))
    }

    /// Return a new `DataFrame` where all null values are dropped.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Country" => ["Malta", "Liechtenstein", "North Korea"],
    ///                         "Tax revenue (% GDP)" => [Some(32.7), None, None])?;
    /// assert_eq!(df1.shape(), (3, 2));
    ///
    /// let df2: DataFrame = df1.drop_nulls(None)?;
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------------------+
    /// | Country | Tax revenue (% GDP) |
    /// | ---     | ---                 |
    /// | str     | f64                 |
    /// +=========+=====================+
    /// | Malta   | 32.7                |
    /// +---------+---------------------+
    /// ```
    pub fn drop_nulls(&self, subset: Option<&[String]>) -> PolarsResult<Self> {
        let selected_series;

        let mut iter = match subset {
            Some(cols) => {
                selected_series = self.select_series(cols)?;
                selected_series.iter()
            }
            None => self.columns.iter(),
        };

        // fast path for no nulls in df
        if iter.clone().all(|s| !s.has_validity()) {
            return Ok(self.clone());
        }

        let mask = iter
            .next()
            .ok_or_else(|| PolarsError::NoData("No data to drop nulls from".into()))?;
        let mut mask = mask.is_not_null();

        for s in iter {
            mask = mask & s.is_not_null();
        }
        self.filter(&mask)
    }

    /// Drop a column by name.
    /// This is a pure method and will return a new `DataFrame` instead of modifying
    /// the current one in place.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Ray type" => &["α", "β", "X", "γ"])?;
    /// let df2: DataFrame = df1.drop("Ray type")?;
    ///
    /// assert!(df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop(&self, name: &str) -> PolarsResult<Self> {
        let idx = self.check_name_to_idx(name)?;
        let mut new_cols = Vec::with_capacity(self.columns.len() - 1);

        self.columns.iter().enumerate().for_each(|(i, s)| {
            if i != idx {
                new_cols.push(s.clone())
            }
        });

        Ok(DataFrame::new_no_checks(new_cols))
    }

    pub fn drop_many<S: AsRef<str>>(&self, names: &[S]) -> Self {
        let names = names.iter().map(|s| s.as_ref()).collect();
        fn inner(df: &DataFrame, names: Vec<&str>) -> DataFrame {
            let mut new_cols = Vec::with_capacity(df.columns.len() - names.len());
            df.columns.iter().for_each(|s| {
                if !names.contains(&s.name()) {
                    new_cols.push(s.clone())
                }
            });

            DataFrame::new_no_checks(new_cols)
        }
        inner(self, names)
    }

    fn insert_at_idx_no_name_check(
        &mut self,
        index: usize,
        series: Series,
    ) -> PolarsResult<&mut Self> {
        if series.len() == self.height() {
            self.columns.insert(index, series);
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                .into(),
            ))
        }
    }

    /// Insert a new column at a given index.
    pub fn insert_at_idx<S: IntoSeries>(
        &mut self,
        index: usize,
        column: S,
    ) -> PolarsResult<&mut Self> {
        let series = column.into_series();
        self.check_already_present(series.name())?;
        self.insert_at_idx_no_name_check(index, series)
    }

    fn add_column_by_search(&mut self, series: Series) -> PolarsResult<()> {
        if let Some(idx) = self.find_idx_by_name(series.name()) {
            self.replace_at_idx(idx, series)?;
        } else {
            self.columns.push(series);
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    pub fn with_column<S: IntoSeries>(&mut self, column: S) -> PolarsResult<&mut Self> {
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }

    /// Select column(s) from this `DataFrame` and return them into a `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Methane", "Ethane", "Propane"],
    ///                         "Carbon" => &[1, 2, 3],
    ///                         "Hydrogen" => &[4, 6, 8])?;
    /// let sv: Vec<Series> = df.select_series(&["Carbon", "Hydrogen"])?;
    ///
    /// assert_eq!(df["Carbon"], sv[0]);
    /// assert_eq!(df["Hydrogen"], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_series(&self, selection: impl IntoVec<String>) -> PolarsResult<Vec<Series>> {
        let cols = selection.into_vec();
        self.select_series_impl(&cols)
    }

    fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
        self.columns
            .iter()
            .enumerate()
            .map(|(i, s)| (s.name(), i))
            .collect()
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_physical_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            let name_to_idx = self._names_to_idx_map();
            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self
                        .select_at_idx(idx)
                        .unwrap()
                        .to_physical_repr()
                        .into_owned())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.to_physical_repr().into_owned()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            // we hash, because there are user that having millions of columns.
            // # https://github.com/pola-rs/polars/issues/1023
            let name_to_idx = self._names_to_idx_map();

            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self.select_at_idx(idx).unwrap().clone())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.clone()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// Select a mutable series by name.
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_mut(&mut self, name: &str) -> Option<&mut Series> {
        let opt_idx = self.find_idx_by_name(name);

        match opt_idx {
            Some(idx) => self.select_at_idx_mut(idx),
            None => None,
        }
    }

    /// Does a filter but splits thread chunks vertically instead of horizontally
    /// This yields a DataFrame with `n_chunks == n_threads`.
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` value by indexes from an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let iterator = (0..9).into_iter();
    ///     df.take_iter(iterator)
    /// }
    /// ```
    pub fn take_iter<I>(&self, iter: I) -> PolarsResult<Self>
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        let new_col = self.try_apply_columns_par(&|s| {
            let mut i = iter.clone();
            s.take_iter(&mut i)
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` values by indexes from an iterator.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking but checks null validity.
    #[must_use]
    pub unsafe fn take_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            return self.take_unchecked_vectical(&idx_ca.into_inner());
        }

        let n_chunks = self.n_chunks();
        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            let idx_ca = idx_ca.into_inner();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_iter_unchecked(&mut i)
            })
        };
        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` values by indexes from an iterator that may contain None values.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking. Out of bounds may access uninitialized memory.
    /// Null validity is checked
    #[must_use]
    pub unsafe fn take_opt_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = Option<usize>> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked_vectical(&idx_ca);
        }

        let n_chunks = self.n_chunks();

        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_opt_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_opt_iter_unchecked(&mut i)
            })
        };

        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` rows by index values.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let idx = IdxCa::new("idx", &[0, 1, 9]);
    ///     df.take(&idx)
    /// }
    /// ```
    pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        let new_col = POOL.install(|| {
            self.try_apply_columns_par(&|s| match s.dtype() {
                DataType::Utf8 => s.take_threaded(&indices, true),
                _ => s.take(&indices),
            })
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    pub(crate) unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
        self.take_unchecked_impl(idx, true)
    }

    unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
        let cols = if allow_threads {
            POOL.install(|| {
                self.apply_columns_par(&|s| match s.dtype() {
                    DataType::Utf8 => s.take_unchecked_threaded(idx, true).unwrap(),
                    _ => s.take_unchecked(idx).unwrap(),
                })
            })
        } else {
            self.columns
                .iter()
                .map(|s| s.take_unchecked(idx).unwrap())
                .collect()
        };
        DataFrame::new_no_checks(cols)
    }

    unsafe fn take_unchecked_vectical(&self, indices: &IdxCa) -> Self {
        let n_threads = POOL.current_num_threads();
        let idxs = split_ca(indices, n_threads).unwrap();

        let dfs: Vec<_> = POOL.install(|| {
            idxs.par_iter()
                .map(|idx| {
                    let cols = self
                        .columns
                        .iter()
                        .map(|s| s.take_unchecked(idx).unwrap())
                        .collect();
                    DataFrame::new_no_checks(cols)
                })
                .collect()
        });

        let mut iter = dfs.into_iter();
        let first = iter.next().unwrap();
        iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        })
    }

    /// Rename a column in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
    ///     let original_name = "foo";
    ///     let new_name = "bar";
    ///     df.rename(original_name, new_name)
    /// }
    /// ```
    pub fn rename(&mut self, column: &str, name: &str) -> PolarsResult<&mut Self> {
        self.select_mut(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))
            .map(|s| s.rename(name))?;

        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(self.columns.iter().map(|s| s.name()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }
        Ok(self)
    }

    /// Sort `DataFrame` in place by a column.
    pub fn sort_in_place(
        &mut self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<&mut Self> {
        // a lot of indirection in both sorting and take
        self.as_single_chunk_par();
        let by_column = self.select_series(by_column)?;
        let reverse = reverse.into_vec();
        self.columns = self.sort_impl(by_column, reverse, false, None)?.columns;
        Ok(self)
    }

    /// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
    #[cfg(feature = "private")]
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

    /// Return a sorted clone of this `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn sort_example(df: &DataFrame, reverse: bool) -> PolarsResult<DataFrame> {
    ///     df.sort(["a"], reverse)
    /// }
    ///
    /// fn sort_by_multiple_columns_example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.sort(&["a", "b"], vec![false, true])
    /// }
    /// ```
    pub fn sort(
        &self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.sort_in_place(by_column, reverse)?;
        Ok(df)
    }

    /// Sort the `DataFrame` by a single column with extra options.
    pub fn sort_with_options(&self, by_column: &str, options: SortOptions) -> PolarsResult<Self> {
        let mut df = self.clone();
        // a lot of indirection in both sorting and take
        df.as_single_chunk_par();
        let by_column = vec![df.column(by_column)?.clone()];
        let reverse = vec![options.descending];
        df.columns = df
            .sort_impl(by_column, reverse, options.nulls_last, None)?
            .columns;
        Ok(df)
    }

    /// Replace a column with a `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Country" => &["United States", "China"],
    ///                         "Area (km²)" => &[9_833_520, 9_596_961])?;
    /// let s: Series = Series::new("Country", &["USA", "PRC"]);
    ///
    /// assert!(df.replace("Nation", s.clone()).is_err());
    /// assert!(df.replace("Country", s).is_ok());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
        self.apply(column, |_| new_col.into_series())
    }

    /// Replace or update a column. The difference between this method and [DataFrame::with_column]
    /// is that now the value of `column: &str` determines the name of the column and not the name
    /// of the `Series` passed to this method.
    pub fn replace_or_add<S: IntoSeries>(
        &mut self,
        column: &str,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_col = new_col.into_series();
        new_col.rename(column);
        self.with_column(new_col)
    }

    /// Replace column at index `idx` with a `Series`.
    ///
    /// # Example
    ///
    /// ```ignored
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.replace_at_idx(1, df.select_at_idx(1).unwrap() + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace_at_idx<S: IntoSeries>(
        &mut self,
        idx: usize,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_column = new_col.into_series();
        if new_column.len() != self.height() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Cannot replace Series at index {}. The shape of Series {} does not match that of the DataFrame {}",
                idx, new_column.len(), self.height()
                ).into()));
        };
        if idx >= self.width() {
            return Err(PolarsError::ComputeError(
                format!(
                    "Column index: {} outside of DataFrame with {} columns",
                    idx,
                    self.width()
                )
                .into(),
            ));
        }
        let old_col = &mut self.columns[idx];
        mem::swap(old_col, &mut new_column);
        Ok(self)
    }

    /// Apply a closure to a column. This is the recommended way to do in place modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("names", &["Jean", "Claude", "van"]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// fn str_to_len(str_val: &Series) -> Series {
    ///     str_val.utf8()
    ///         .unwrap()
    ///         .into_iter()
    ///         .map(|opt_name: Option<&str>| {
    ///             opt_name.map(|name: &str| name.len() as u32)
    ///          })
    ///         .collect::<UInt32Chunked>()
    ///         .into_series()
    /// }
    ///
    /// // Replace the names column by the length of the names.
    /// df.apply("names", str_to_len);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    |       |
    /// | ---    | names |
    /// | str    | u32   |
    /// +========+=======+
    /// | "ham"  | 4     |
    /// +--------+-------+
    /// | "spam" | 6     |
    /// +--------+-------+
    /// | "egg"  | 3     |
    /// +--------+-------+
    /// ```
    pub fn apply<F, S>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let idx = self.check_name_to_idx(name)?;
        self.apply_at_idx(idx, f)
    }

    /// Apply a closure to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.apply_at_idx(1, |s| s + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    | ascii |
    /// | ---    | ---   |
    /// | str    | i32   |
    /// +========+=======+
    /// | "ham"  | 102   |
    /// +--------+-------+
    /// | "spam" | 111   |
    /// +--------+-------+
    /// | "egg"  | 111   |
    /// +--------+-------+
    /// ```
    pub fn apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let df_height = self.height();
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();
        let new_col = f(col).into_series();
        match new_col.len() {
            1 => {
                let new_col = new_col.new_from_index(0, df_height);
                let _ = mem::replace(col, new_col);
            }
            len if (len == df_height) => {
                let _ = mem::replace(col, new_col);
            }
            len => {
                return Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Result Series has shape {} where the DataFrame has height {}",
                        len,
                        self.height()
                    )
                    .into(),
                ));
            }
        }

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given range of indexes.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// let idx = vec![0, 1, 4];
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set_at_idx_with(idx, |opt_val| opt_val.map(|string| format!("{}-is-modified", string)))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "ham-is-modified"   | 1      |
    /// +---------------------+--------+
    /// | "spam-is-modified"  | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "quack-is-modified" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();

        let _ = mem::replace(col, f(col).map(|s| s.into_series())?);

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given a boolean mask.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // create a mask
    /// let values = df.column("values")?;
    /// let mask = values.lt_eq(1)? | values.gt_eq(5_i32)?;
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set(&mask, Some("not_within_bounds"))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "not_within_bounds" | 1      |
    /// +---------------------+--------+
    /// | "spam"              | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "not_within_bounds" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply<F, S>(&mut self, column: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let idx = self
            .find_idx_by_name(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))?;
        self.try_apply_at_idx(idx, f)
    }

    /// Slice the `DataFrame` along the rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Fruit" => &["Apple", "Grape", "Grape", "Fig", "Fig"],
    ///                         "Color" => &["Green", "Red", "White", "White", "Red"])?;
    /// let sl: DataFrame = df.slice(2, 3);
    ///
    /// assert_eq!(sl.shape(), (3, 2));
    /// println!("{}", sl);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Output:
    /// ```text
    /// shape: (3, 2)
    /// +-------+-------+
    /// | Fruit | Color |
    /// | ---   | ---   |
    /// | str   | str   |
    /// +=======+=======+
    /// | Grape | White |
    /// +-------+-------+
    /// | Fig   | White |
    /// +-------+-------+
    /// | Fig   | Red   |
    /// +-------+-------+
    /// ```
    #[must_use]
    pub fn slice(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        let col = self
            .columns
            .iter()
            .map(|s| s.slice(offset, length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    #[must_use]
    pub fn slice_par(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns_par(&|s| s.slice(offset, length)))
    }

    #[must_use]
    pub fn _slice_and_realloc(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns(&|s| {
            let mut out = s.slice(offset, length);
            out.shrink_to_fit();
            out
        }))
    }

    /// Get the head of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank by GDP (2021)" => &[1, 2, 3, 4, 5],
    ///         "Continent" => &["North America", "Asia", "Asia", "Europe", "Europe"],
    ///         "Country" => &["United States", "China", "Japan", "Germany", "United Kingdom"],
    ///         "Capital" => &["Washington", "Beijing", "Tokyo", "Berlin", "London"])?;
    /// assert_eq!(countries.shape(), (5, 4));
    ///
    /// println!("{}", countries.head(Some(3)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 4)
    /// +--------------------+---------------+---------------+------------+
    /// | Rank by GDP (2021) | Continent     | Country       | Capital    |
    /// | ---                | ---           | ---           | ---        |
    /// | i32                | str           | str           | str        |
    /// +====================+===============+===============+============+
    /// | 1                  | North America | United States | Washington |
    /// +--------------------+---------------+---------------+------------+
    /// | 2                  | Asia          | China         | Beijing    |
    /// +--------------------+---------------+---------------+------------+
    /// | 3                  | Asia          | Japan         | Tokyo      |
    /// +--------------------+---------------+---------------+------------+
    /// ```
    #[must_use]
    pub fn head(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.head(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Get the tail of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank (2021)" => &[105, 106, 107, 108, 109],
    ///         "Apple Price (€/kg)" => &[0.75, 0.70, 0.70, 0.65, 0.52],
    ///         "Country" => &["Kosovo", "Moldova", "North Macedonia", "Syria", "Turkey"])?;
    /// assert_eq!(countries.shape(), (5, 3));
    ///
    /// println!("{}", countries.tail(Some(2)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (2, 3)
    /// +-------------+--------------------+---------+
    /// | Rank (2021) | Apple Price (€/kg) | Country |
    /// | ---         | ---                | ---     |
    /// | i32         | f64                | str     |
    /// +=============+====================+=========+
    /// | 108         | 0.63               | Syria   |
    /// +-------------+--------------------+---------+
    /// | 109         | 0.63               | Turkey  |
    /// +-------------+--------------------+---------+
    /// ```
    #[must_use]
    pub fn tail(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.tail(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks(&self) -> RecordBatchIter {
        RecordBatchIter {
            columns: &self.columns,
            idx: 0,
            n_chunks: self.n_chunks(),
        }
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches as physical values.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks_physical(&self) -> PhysRecordBatchIter<'_> {
        PhysRecordBatchIter {
            iters: self.columns.iter().map(|s| s.chunks().iter()).collect(),
        }
    }

    /// Get a `DataFrame` with all the columns in reversed order.
    #[must_use]
    pub fn reverse(&self) -> Self {
        let col = self.columns.iter().map(|s| s.reverse()).collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Shift the values by a given period and fill the parts that will be empty due to this operation
    /// with `Nones`.
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.shift) for more info on the `shift` operation.
    #[must_use]
    pub fn shift(&self, periods: i64) -> Self {
        let col = self.apply_columns_par(&|s| s.shift(periods));

        DataFrame::new_no_checks(col)
    }

    /// Replace None values with one of the following strategies:
    /// * Forward fill (replace None with the previous value)
    /// * Backward fill (replace None with the next value)
    /// * Mean fill (replace None with the mean of the whole array)
    /// * Min fill (replace None with the minimum of the whole array)
    /// * Max fill (replace None with the maximum of the whole array)
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.fill_null) for more info on the `fill_null` operation.
    pub fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
        let col = self.try_apply_columns_par(&|s| s.fill_null(strategy))?;

        Ok(DataFrame::new_no_checks(col))
    }

    /// Summary statistics for a DataFrame. Only summarizes numeric datatypes at the moment and returns nulls for non numeric datatypes.
    /// Try in keep output similar to pandas
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("categorical" => &["d","e","f"],
    ///                          "numeric" => &[1, 2, 3],
    ///                          "object" => &["a", "b", "c"])?;
    /// assert_eq!(df1.shape(), (3, 3));
    ///
    /// let df2: DataFrame = df1.describe(None);
    /// assert_eq!(df2.shape(), (8, 4));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (8, 4)
    /// ┌──────────┬─────────────┬─────────┬────────┐
    /// │ describe ┆ categorical ┆ numeric ┆ object │
    /// │ ---      ┆ ---         ┆ ---     ┆ ---    │
    /// │ str      ┆ f64         ┆ f64     ┆ f64    │
    /// ╞══════════╪═════════════╪═════════╪════════╡
    /// │ count    ┆ 3.0         ┆ 3.0     ┆ 3.0    │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ mean     ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ std      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ min      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 25%      ┆ null        ┆ 1.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 50%      ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 75%      ┆ null        ┆ 2.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ max      ┆ null        ┆ 3.0     ┆ null   │
    /// └──────────┴─────────────┴─────────┴────────┘
    /// ```
    #[must_use]
    #[cfg(feature = "describe")]
    pub fn describe(&self, percentiles: Option<&[f64]>) -> Self {
        fn describe_cast(df: &DataFrame) -> DataFrame {
            let mut columns: Vec<Series> = vec![];

            for s in df.columns.iter() {
                columns.push(s.cast(&DataType::Float64).expect("cast to float failed"));
            }

            DataFrame::new(columns).unwrap()
        }

        fn count(df: &DataFrame) -> DataFrame {
            let columns = df.apply_columns_par(&|s| Series::new(s.name(), [s.len() as IdxSize]));
            DataFrame::new_no_checks(columns)
        }

        let percentiles = percentiles.unwrap_or(&[0.25, 0.5, 0.75]);

        let mut headers: Vec<String> = vec![
            "count".to_string(),
            "mean".to_string(),
            "std".to_string(),
            "min".to_string(),
        ];

        let mut tmp: Vec<DataFrame> = vec![
            describe_cast(&count(self)),
            describe_cast(&self.mean()),
            describe_cast(&self.std(1)),
            describe_cast(&self.min()),
        ];

        for p in percentiles {
            tmp.push(describe_cast(
                &self
                    .quantile(*p, QuantileInterpolOptions::Linear)
                    .expect("quantile failed"),
            ));
            headers.push(format!("{}%", *p * 100.0));
        }

        // Keep order same as pandas
        tmp.push(describe_cast(&self.max()));
        headers.push("max".to_string());

        let mut summary = concat_df_unchecked(&tmp);

        summary
            .insert_at_idx(0, Series::new("describe", headers))
            .expect("insert of header failed");

        summary
    }

    /// Aggregate the columns to their maximum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.max();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 6       | 5       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn max(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.max_as_series());

        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their standard deviation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.std(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +-------------------+--------------------+
    /// | Die n°1           | Die n°2            |
    /// | ---               | ---                |
    /// | f64               | f64                |
    /// +===================+====================+
    /// | 2.280350850198276 | 1.0954451150103321 |
    /// +-------------------+--------------------+
    /// ```
    #[must_use]
    pub fn std(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.std_as_series(ddof));

        DataFrame::new_no_checks(columns)
    }
    /// Aggregate the columns to their variation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.var(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 5.2     | 1.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn var(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.var_as_series(ddof));
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their minimum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.min();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 1       | 2       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn min(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.min_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their sum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.sum();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 16      | 16      |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn sum(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.sum_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their mean values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.mean();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 3.2     | 3.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn mean(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.mean_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their median values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.median();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 3       | 3       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn median(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.median_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their quantile values.
    pub fn quantile(&self, quantile: f64, interpol: QuantileInterpolOptions) -> PolarsResult<Self> {
        let columns = self.try_apply_columns_par(&|s| s.quantile_as_series(quantile, interpol))?;

        Ok(DataFrame::new_no_checks(columns))
    }

    /// Aggregate the column horizontally to their min values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmin(&self) -> PolarsResult<Option<Series>> {
        let min_fn = |acc: &Series, s: &Series| {
            let mask = acc.lt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their max values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmax(&self) -> PolarsResult<Option<Series>> {
        let max_fn = |acc: &Series, s: &Series| {
            let mask = acc.gt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their sum values.
    pub fn hsum(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        let sum_fn =
            |acc: &Series, s: &Series, none_strategy: NullStrategy| -> PolarsResult<Series> {
                let mut acc = acc.clone();
                let mut s = s.clone();
                if let NullStrategy::Ignore = none_strategy {
                    // if has nulls
                    if acc.has_validity() {
                        acc = acc.fill_null(FillNullStrategy::Zero)?;
                    }
                    if s.has_validity() {
                        s = s.fill_null(FillNullStrategy::Zero)?;
                    }
                }
                Ok(&acc + &s)
            };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => sum_fn(&self.columns[0], &self.columns[1], none_strategy).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| sum_fn(&l, &r, none_strategy).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their mean values.
    pub fn hmean(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            _ => {
                let columns = self
                    .columns
                    .iter()
                    .cloned()
                    .filter(|s| {
                        let dtype = s.dtype();
                        dtype.is_numeric() || matches!(dtype, DataType::Boolean)
                    })
                    .collect();
                let numeric_df = DataFrame::new_no_checks(columns);

                let sum = || numeric_df.hsum(none_strategy);

                let null_count = || {
                    numeric_df
                        .columns
                        .par_iter()
                        .map(|s| s.is_null().cast(&DataType::UInt32).unwrap())
                        .reduce_with(|l, r| &l + &r)
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 2 columns
                        .unwrap()
                };

                let (sum, null_count) = POOL.install(|| rayon::join(sum, null_count));
                let sum = sum?;

                // value lengths: len - null_count
                let value_length: UInt32Chunked =
                    (numeric_df.width().sub(&null_count)).u32().unwrap().clone();

                // make sure that we do not divide by zero
                // by replacing with None
                let value_length = value_length
                    .set(&value_length.equal(0), None)?
                    .into_series()
                    .cast(&DataType::Float64)?;

                Ok(sum.map(|sum| &sum / &value_length))
            }
        }
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe<F, B>(self, f: F) -> PolarsResult<B>
    where
        F: Fn(DataFrame) -> PolarsResult<B>,
    {
        f(self)
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe_mut<F, B>(&mut self, f: F) -> PolarsResult<B>
    where
        F: Fn(&mut DataFrame) -> PolarsResult<B>,
    {
        f(self)
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe_with_args<F, B, Args>(self, f: F, args: Args) -> PolarsResult<B>
    where
        F: Fn(DataFrame, Args) -> PolarsResult<B>,
    {
        f(self, args)
    }

    /// Drop duplicate rows from a `DataFrame`.
    /// *This fails when there is a column of type List in DataFrame*
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///               "flt" => [1., 1., 2., 2., 3., 3.],
    ///               "int" => [1, 1, 2, 2, 3, 3, ],
    ///               "str" => ["a", "a", "b", "b", "c", "c"]
    ///           }?;
    ///
    /// println!("{}", df.drop_duplicates(true, None)?);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Returns
    ///
    /// ```text
    /// +-----+-----+-----+
    /// | flt | int | str |
    /// | --- | --- | --- |
    /// | f64 | i32 | str |
    /// +=====+=====+=====+
    /// | 1   | 1   | "a" |
    /// +-----+-----+-----+
    /// | 2   | 2   | "b" |
    /// +-----+-----+-----+
    /// | 3   | 3   | "c" |
    /// +-----+-----+-----+
    /// ```
    #[deprecated(note = "use DataFrame::unique")]
    pub fn drop_duplicates(
        &self,
        maintain_order: bool,
        subset: Option<&[String]>,
    ) -> PolarsResult<Self> {
        match maintain_order {
            true => self.unique_stable(subset, UniqueKeepStrategy::First),
            false => self.unique(subset, UniqueKeepStrategy::First),
        }
    }

    /// Drop duplicate rows from a `DataFrame`.
    /// *This fails when there is a column of type List in DataFrame*
    ///
    /// Stable means that the order is maintained. This has a higher cost than an unstable distinct.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///               "flt" => [1., 1., 2., 2., 3., 3.],
    ///               "int" => [1, 1, 2, 2, 3, 3, ],
    ///               "str" => ["a", "a", "b", "b", "c", "c"]
    ///           }?;
    ///
    /// println!("{}", df.unique_stable(None, UniqueKeepStrategy::First)?);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Returns
    ///
    /// ```text
    /// +-----+-----+-----+
    /// | flt | int | str |
    /// | --- | --- | --- |
    /// | f64 | i32 | str |
    /// +=====+=====+=====+
    /// | 1   | 1   | "a" |
    /// +-----+-----+-----+
    /// | 2   | 2   | "b" |
    /// +-----+-----+-----+
    /// | 3   | 3   | "c" |
    /// +-----+-----+-----+
    /// ```
    pub fn unique_stable(
        &self,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<DataFrame> {
        self.unique_impl(true, subset, keep)
    }

    /// Unstable distinct. See [`DataFrame::unique_stable`].
    pub fn unique(
        &self,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<DataFrame> {
        self.unique_impl(false, subset, keep)
    }

    fn unique_impl(
        &self,
        maintain_order: bool,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<Self> {
        use UniqueKeepStrategy::*;
        let names = match &subset {
            Some(s) => s.iter().map(|s| &**s).collect(),
            None => self.get_column_names(),
        };

        let columns = match (keep, maintain_order) {
            (First, true) => {
                let gb = self.groupby_stable(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_first(groups) })
            }
            (Last, true) => {
                // maintain order by last values, so the sorted groups are not correct as they
                // are sorted by the first value
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                let last_idx: NoNull<IdxCa> = groups
                    .iter()
                    .map(|g| match g {
                        GroupsIndicator::Idx((_first, idx)) => idx[idx.len() - 1],
                        GroupsIndicator::Slice([first, len]) => first + len,
                    })
                    .collect();

                let last_idx = last_idx.sort(false);
                return Ok(unsafe { self.take_unchecked(&last_idx) });
            }
            (First, false) => {
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_first(groups) })
            }
            (Last, false) => {
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_last(groups) })
            }
        };
        Ok(DataFrame::new_no_checks(columns))
    }

    /// Get a mask of all the unique rows in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Company" => &["Apple", "Microsoft"],
    ///                         "ISIN" => &["US0378331005", "US5949181045"])?;
    /// let ca: ChunkedArray<BooleanType> = df.is_unique()?;
    ///
    /// assert!(ca.all());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        let gb = self.groupby(self.get_column_names())?;
        let groups = gb.take_groups();
        Ok(is_unique_helper(
            groups,
            self.height() as IdxSize,
            true,
            false,
        ))
    }

    /// Get a mask of all the duplicated rows in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Company" => &["Alphabet", "Alphabet"],
    ///                         "ISIN" => &["US02079K3059", "US02079K1079"])?;
    /// let ca: ChunkedArray<BooleanType> = df.is_duplicated()?;
    ///
    /// assert!(!ca.all());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        let gb = self.groupby(self.get_column_names())?;
        let groups = gb.take_groups();
        Ok(is_unique_helper(
            groups,
            self.height() as IdxSize,
            false,
            true,
        ))
    }

    /// Create a new `DataFrame` that shows the null counts per column.
    #[must_use]
    pub fn null_count(&self) -> Self {
        let cols = self
            .columns
            .iter()
            .map(|s| Series::new(s.name(), &[s.null_count() as IdxSize]))
            .collect();
        Self::new_no_checks(cols)
    }

    /// Hash and combine the row values
    #[cfg(feature = "row_hash")]
    pub fn hash_rows(
        &mut self,
        hasher_builder: Option<RandomState>,
    ) -> PolarsResult<UInt64Chunked> {
        let dfs = split_df(self, POOL.current_num_threads())?;
        let (cas, _) = df_rows_to_hashes_threaded(&dfs, hasher_builder)?;

        let mut iter = cas.into_iter();
        let mut acc_ca = iter.next().unwrap();
        for ca in iter {
            acc_ca.append(&ca);
        }
        Ok(acc_ca.rechunk())
    }

    /// Get the supertype of the columns in this DataFrame
    pub fn get_supertype(&self) -> Option<PolarsResult<DataType>> {
        self.columns
            .iter()
            .map(|s| Ok(s.dtype().clone()))
            .reduce(|acc, b| try_get_supertype(&acc?, &b.unwrap()))
    }

    #[cfg(feature = "chunked_ids")]
    #[doc(hidden)]
    //// Take elements by a slice of [`ChunkId`]s.
    /// # Safety
    /// Does not do any bound checks.
    /// `sorted` indicates if the chunks are sorted.
    #[doc(hidden)]
    pub unsafe fn _take_chunked_unchecked_seq(&self, idx: &[ChunkId], sorted: IsSorted) -> Self {
        let cols = self.apply_columns(&|s| s._take_chunked_unchecked(idx, sorted));

        DataFrame::new_no_checks(cols)
    }
    #[cfg(feature = "chunked_ids")]
    //// Take elements by a slice of optional [`ChunkId`]s.
    /// # Safety
    /// Does not do any bound checks.
    #[doc(hidden)]
    pub unsafe fn _take_opt_chunked_unchecked_seq(&self, idx: &[Option<ChunkId>]) -> Self {
        let cols = self.apply_columns(&|s| match s.dtype() {
            DataType::Utf8 => s._take_opt_chunked_unchecked_threaded(idx, true),
            _ => s._take_opt_chunked_unchecked(idx),
        });

        DataFrame::new_no_checks(cols)
    }

    #[cfg(feature = "chunked_ids")]
    pub(crate) unsafe fn take_chunked_unchecked(&self, idx: &[ChunkId], sorted: IsSorted) -> Self {
        let cols = self.apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s._take_chunked_unchecked_threaded(idx, sorted, true),
            _ => s._take_chunked_unchecked(idx, sorted),
        });

        DataFrame::new_no_checks(cols)
    }

    #[cfg(feature = "chunked_ids")]
    pub(crate) unsafe fn take_opt_chunked_unchecked(&self, idx: &[Option<ChunkId>]) -> Self {
        let cols = self.apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s._take_opt_chunked_unchecked_threaded(idx, true),
            _ => s._take_opt_chunked_unchecked(idx),
        });

        DataFrame::new_no_checks(cols)
    }

    /// Be careful with allowing threads when calling this in a large hot loop
    /// every thread split may be on rayon stack and lead to SO
    #[doc(hidden)]
    pub unsafe fn _take_unchecked_slice(&self, idx: &[IdxSize], allow_threads: bool) -> Self {
        self._take_unchecked_slice2(idx, allow_threads, IsSorted::Not)
    }

    #[doc(hidden)]
    pub unsafe fn _take_unchecked_slice2(
        &self,
        idx: &[IdxSize],
        allow_threads: bool,
        sorted: IsSorted,
    ) -> Self {
        #[cfg(debug_assertions)]
        {
            if idx.len() > 2 {
                match sorted {
                    IsSorted::Ascending => {
                        assert!(idx[0] <= idx[idx.len() - 1]);
                    }
                    IsSorted::Descending => {
                        assert!(idx[0] >= idx[idx.len() - 1]);
                    }
                    _ => {}
                }
            }
        }
        let ptr = idx.as_ptr() as *mut IdxSize;
        let len = idx.len();

        // create a temporary vec. we will not drop it.
        let mut ca = IdxCa::from_vec("", Vec::from_raw_parts(ptr, len, len));
        ca.set_sorted2(sorted);
        let out = self.take_unchecked_impl(&ca, allow_threads);

        // ref count of buffers should be one because we dropped all allocations
        let arr = {
            let arr_ref = std::mem::take(&mut ca.chunks).pop().unwrap();
            arr_ref
                .as_any()
                .downcast_ref::<PrimitiveArray<IdxSize>>()
                .unwrap()
                .clone()
        };
        // the only owned heap allocation is the `Vec` we created and must not be dropped
        let _ = std::mem::ManuallyDrop::new(arr.into_mut().right().unwrap());
        out
    }

    #[cfg(feature = "partition_by")]
    #[doc(hidden)]
    pub fn _partition_by_impl(
        &self,
        cols: &[String],
        stable: bool,
    ) -> PolarsResult<Vec<DataFrame>> {
        let groups = if stable {
            self.groupby_stable(cols)?.take_groups()
        } else {
            self.groupby(cols)?.take_groups()
        };

        // don't parallelize this
        // there is a lot of parallelization in take and this may easily SO
        POOL.install(|| {
            match groups {
                GroupsProxy::Idx(idx) => {
                    Ok(idx
                        .into_par_iter()
                        .map(|(_, group)| {
                            // groups are in bounds
                            unsafe { self._take_unchecked_slice(&group, false) }
                        })
                        .collect())
                }
                GroupsProxy::Slice { groups, .. } => Ok(groups
                    .into_par_iter()
                    .map(|[first, len]| self.slice(first as i64, len as usize))
                    .collect()),
            }
        })
    }

    /// Split into multiple DataFrames partitioned by groups
    #[cfg(feature = "partition_by")]
    #[cfg_attr(docsrs, doc(cfg(feature = "partition_by")))]
    pub fn partition_by(&self, cols: impl IntoVec<String>) -> PolarsResult<Vec<DataFrame>> {
        let cols = cols.into_vec();
        self._partition_by_impl(&cols, false)
    }

    /// Split into multiple DataFrames partitioned by groups
    /// Order of the groups are maintained.
    #[cfg(feature = "partition_by")]
    #[cfg_attr(docsrs, doc(cfg(feature = "partition_by")))]
    pub fn partition_by_stable(&self, cols: impl IntoVec<String>) -> PolarsResult<Vec<DataFrame>> {
        let cols = cols.into_vec();
        self._partition_by_impl(&cols, true)
    }

    /// Unnest the given `Struct` columns. This means that the fields of the `Struct` type will be
    /// inserted as columns.
    #[cfg(feature = "dtype-struct")]
    #[cfg_attr(docsrs, doc(cfg(feature = "dtype-struct")))]
    pub fn unnest<I: IntoVec<String>>(&self, cols: I) -> PolarsResult<DataFrame> {
        let cols = cols.into_vec();
        self.unnest_impl(cols.into_iter().collect())
    }

    #[cfg(feature = "dtype-struct")]
    fn unnest_impl(&self, cols: PlHashSet<String>) -> PolarsResult<DataFrame> {
        let mut new_cols = Vec::with_capacity(std::cmp::min(self.width() * 2, self.width() + 128));
        let mut count = 0;
        for s in &self.columns {
            if cols.contains(s.name()) {
                let ca = s.struct_()?;
                new_cols.extend_from_slice(ca.fields());
                count += 1;
            } else {
                new_cols.push(s.clone())
            }
        }
        if count != cols.len() {
            // one or more columns not found
            // the code below will return an error with the missing name
            let schema = self.schema();
            for col in cols {
                let _ = schema
                    .get(&col)
                    .ok_or_else(|| PolarsError::NotFound(col.into()))?;
            }
        }
        DataFrame::new(new_cols)
    }
}

pub struct RecordBatchIter<'a> {
    columns: &'a Vec<Series>,
    idx: usize,
    n_chunks: usize,
}

impl<'a> Iterator for RecordBatchIter<'a> {
    type Item = ArrowChunk;

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx >= self.n_chunks {
            None
        } else {
            // create a batch of the columns with the same chunk no.
            let batch_cols = self.columns.iter().map(|s| s.to_arrow(self.idx)).collect();
            self.idx += 1;

            Some(ArrowChunk::new(batch_cols))
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let n = self.n_chunks - self.idx;
        (n, Some(n))
    }
}

pub struct PhysRecordBatchIter<'a> {
    iters: Vec<std::slice::Iter<'a, ArrayRef>>,
}

impl Iterator for PhysRecordBatchIter<'_> {
    type Item = ArrowChunk;

    fn next(&mut self) -> Option<Self::Item> {
        self.iters
            .iter_mut()
            .map(|phys_iter| phys_iter.next().cloned())
            .collect::<Option<Vec<_>>>()
            .map(ArrowChunk::new)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if let Some(iter) = self.iters.first() {
            iter.size_hint()
        } else {
            (0, None)
        }
    }
}

impl Default for DataFrame {
    fn default() -> Self {
        DataFrame::new_no_checks(vec![])
    }
}

impl From<DataFrame> for Vec<Series> {
    fn from(df: DataFrame) -> Self {
        df.columns
    }
}

// utility to test if we can vstack/extend the columns
fn can_extend(left: &Series, right: &Series) -> PolarsResult<()> {
    if left.dtype() != right.dtype() || left.name() != right.name() {
        if left.dtype() != right.dtype() {
            return Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot vstack: because column datatypes (dtypes) in the two DataFrames do not match for \
                                left.name='{}' with left.dtype={} != right.dtype={} with right.name='{}'",
                    left.name(),
                    left.dtype(),
                    right.dtype(),
                    right.name()
                )
                    .into(),
            ));
        } else {
            return Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot vstack: because column names in the two DataFrames do not match for \
                                left.name='{}' != right.name='{}'",
                    left.name(),
                    right.name()
                )
                .into(),
            ));
        }
    };
    Ok(())
}
src/series/unstable.rs (line 62)
57
58
59
60
61
62
63
64
65
    pub fn deep_clone(&self) -> Series {
        unsafe {
            let s = &(*self.container);
            debug_assert_eq!(s.chunks().len(), 1);
            let array_ref = s.chunks().get_unchecked(0).clone();
            let name = s.name();
            Series::from_chunks_and_dtype_unchecked(name, vec![array_ref], s.dtype())
        }
    }
src/frame/cross_join.rs (line 105)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    pub fn _cross_join_with_names(
        &self,
        other: &DataFrame,
        names: &[String],
    ) -> PolarsResult<DataFrame> {
        let (mut l_df, r_df) = self.cross_join_dfs(other, None, false)?;
        l_df.get_columns_mut().extend_from_slice(&r_df.columns);

        l_df.get_columns_mut()
            .iter_mut()
            .zip(names)
            .for_each(|(s, name)| {
                if s.name() != name {
                    s.rename(name);
                }
            });
        Ok(l_df)
    }
src/frame/groupby/mod.rs (line 385)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    fn prepare_agg(&self) -> PolarsResult<(Vec<Series>, Vec<Series>)> {
        let selection = match &self.selected_agg {
            Some(selection) => selection.clone(),
            None => {
                let by: Vec<_> = self.selected_keys.iter().map(|s| s.name()).collect();
                self.df
                    .get_column_names()
                    .into_iter()
                    .filter(|a| !by.contains(a))
                    .map(|s| s.to_string())
                    .collect()
            }
        };

        let keys = self.keys();
        let agg_col = self.df.select_series(selection)?;
        Ok((keys, agg_col))
    }

    /// Aggregate grouped series and compute the mean per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(&["temp", "rain"]).mean()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+-----------+-----------+
    /// | date       | temp_mean | rain_mean |
    /// | ---        | ---       | ---       |
    /// | Date       | f64       | f64       |
    /// +============+===========+===========+
    /// | 2020-08-23 | 9         | 0.1       |
    /// +------------+-----------+-----------+
    /// | 2020-08-22 | 4         | 0.155     |
    /// +------------+-----------+-----------+
    /// | 2020-08-21 | 15        | 0.15      |
    /// +------------+-----------+-----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn mean(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;

        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Mean);
            let mut agg = unsafe { agg_col.agg_mean(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the sum per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).sum()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+----------+
    /// | date       | temp_sum |
    /// | ---        | ---      |
    /// | Date       | i32      |
    /// +============+==========+
    /// | 2020-08-23 | 9        |
    /// +------------+----------+
    /// | 2020-08-22 | 8        |
    /// +------------+----------+
    /// | 2020-08-21 | 30       |
    /// +------------+----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn sum(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;

        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Sum);
            let mut agg = unsafe { agg_col.agg_sum(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the minimal value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).min()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+----------+
    /// | date       | temp_min |
    /// | ---        | ---      |
    /// | Date       | i32      |
    /// +============+==========+
    /// | 2020-08-23 | 9        |
    /// +------------+----------+
    /// | 2020-08-22 | 1        |
    /// +------------+----------+
    /// | 2020-08-21 | 10       |
    /// +------------+----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn min(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Min);
            let mut agg = unsafe { agg_col.agg_min(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the maximum value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).max()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+----------+
    /// | date       | temp_max |
    /// | ---        | ---      |
    /// | Date       | i32      |
    /// +============+==========+
    /// | 2020-08-23 | 9        |
    /// +------------+----------+
    /// | 2020-08-22 | 7        |
    /// +------------+----------+
    /// | 2020-08-21 | 20       |
    /// +------------+----------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn max(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Max);
            let mut agg = unsafe { agg_col.agg_max(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and find the first value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).first()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------+
    /// | date       | temp_first |
    /// | ---        | ---        |
    /// | Date       | i32        |
    /// +============+============+
    /// | 2020-08-23 | 9          |
    /// +------------+------------+
    /// | 2020-08-22 | 7          |
    /// +------------+------------+
    /// | 2020-08-21 | 20         |
    /// +------------+------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn first(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::First);
            let mut agg = unsafe { agg_col.agg_first(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and return the last value per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).last()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------+
    /// | date       | temp_last |
    /// | ---        | ---        |
    /// | Date       | i32        |
    /// +============+============+
    /// | 2020-08-23 | 9          |
    /// +------------+------------+
    /// | 2020-08-22 | 1          |
    /// +------------+------------+
    /// | 2020-08-21 | 10         |
    /// +------------+------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn last(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Last);
            let mut agg = unsafe { agg_col.agg_last(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` by counting the number of unique values.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).n_unique()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+---------------+
    /// | date       | temp_n_unique |
    /// | ---        | ---           |
    /// | Date       | u32           |
    /// +============+===============+
    /// | 2020-08-23 | 1             |
    /// +------------+---------------+
    /// | 2020-08-22 | 2             |
    /// +------------+---------------+
    /// | 2020-08-21 | 2             |
    /// +------------+---------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn n_unique(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::NUnique);
            let mut agg = unsafe { agg_col.agg_n_unique(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg.into_series());
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and determine the quantile per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// # use polars_arrow::prelude::QuantileInterpolOptions;
    ///
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).quantile(0.2, QuantileInterpolOptions::default())
    /// }
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn quantile(
        &self,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> PolarsResult<DataFrame> {
        if !(0.0..=1.0).contains(&quantile) {
            return Err(PolarsError::ComputeError(
                "quantile should be within 0.0 and 1.0".into(),
            ));
        }
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name =
                fmt_groupby_column(agg_col.name(), GroupByMethod::Quantile(quantile, interpol));
            let mut agg = unsafe { agg_col.agg_quantile(&self.groups, quantile, interpol) };
            agg.rename(&new_name);
            cols.push(agg.into_series());
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and determine the median per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).median()
    /// }
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn median(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Median);
            let mut agg = unsafe { agg_col.agg_median(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg.into_series());
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and determine the variance per group.
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn var(&self, ddof: u8) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Var(ddof));
            let mut agg = unsafe { agg_col.agg_var(&self.groups, ddof) };
            agg.rename(&new_name);
            cols.push(agg.into_series());
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped `Series` and determine the standard deviation per group.
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn std(&self, ddof: u8) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Std(ddof));
            let mut agg = unsafe { agg_col.agg_std(&self.groups, ddof) };
            agg.rename(&new_name);
            cols.push(agg.into_series());
        }
        DataFrame::new(cols)
    }

    /// Aggregate grouped series and compute the number of values per group.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.select(["temp"]).count()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------+
    /// | date       | temp_count |
    /// | ---        | ---        |
    /// | Date       | u32        |
    /// +============+============+
    /// | 2020-08-23 | 1          |
    /// +------------+------------+
    /// | 2020-08-22 | 2          |
    /// +------------+------------+
    /// | 2020-08-21 | 2          |
    /// +------------+------------+
    /// ```
    pub fn count(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;

        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::Count);
            let mut ca = self.groups.group_count();
            ca.rename(&new_name);
            cols.push(ca.into_series());
        }
        DataFrame::new(cols)
    }

    /// Get the groupby group indexes.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     df.groupby(["date"])?.groups()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +--------------+------------+
    /// | date         | groups     |
    /// | ---          | ---        |
    /// | Date(days)   | list [u32] |
    /// +==============+============+
    /// | 2020-08-23   | "[3]"      |
    /// +--------------+------------+
    /// | 2020-08-22   | "[2, 4]"   |
    /// +--------------+------------+
    /// | 2020-08-21   | "[0, 1]"   |
    /// +--------------+------------+
    /// ```
    pub fn groups(&self) -> PolarsResult<DataFrame> {
        let mut cols = self.keys();
        let mut column = self.groups.as_list_chunked();
        let new_name = fmt_groupby_column("", GroupByMethod::Groups);
        column.rename(&new_name);
        cols.push(column.into_series());
        DataFrame::new(cols)
    }

    /// Aggregate the groups of the groupby operation into lists.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example(df: DataFrame) -> PolarsResult<DataFrame> {
    ///     // GroupBy and aggregate to Lists
    ///     df.groupby(["date"])?.select(["temp"]).agg_list()
    /// }
    /// ```
    /// Returns:
    ///
    /// ```text
    /// +------------+------------------------+
    /// | date       | temp_agg_list          |
    /// | ---        | ---                    |
    /// | Date       | list [i32]             |
    /// +============+========================+
    /// | 2020-08-23 | "[Some(9)]"            |
    /// +------------+------------------------+
    /// | 2020-08-22 | "[Some(7), Some(1)]"   |
    /// +------------+------------------------+
    /// | 2020-08-21 | "[Some(20), Some(10)]" |
    /// +------------+------------------------+
    /// ```
    #[deprecated(since = "0.24.1", note = "use polars.lazy aggregations")]
    pub fn agg_list(&self) -> PolarsResult<DataFrame> {
        let (mut cols, agg_cols) = self.prepare_agg()?;
        for agg_col in agg_cols {
            let new_name = fmt_groupby_column(agg_col.name(), GroupByMethod::List);
            let mut agg = unsafe { agg_col.agg_list(&self.groups) };
            agg.rename(&new_name);
            cols.push(agg);
        }
        DataFrame::new(cols)
    }

Get field (used in schema)

Examples found in repository?
src/frame/mod.rs (line 497)
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
    pub fn schema(&self) -> Schema {
        Schema::from(self.iter().map(|s| s.field().into_owned()))
    }

    /// Get a reference to the `DataFrame` columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Adenine", "Cytosine", "Guanine", "Thymine"],
    ///                         "Symbol" => &["A", "C", "G", "T"])?;
    /// let columns: &Vec<Series> = df.get_columns();
    ///
    /// assert_eq!(columns[0].name(), "Name");
    /// assert_eq!(columns[1].name(), "Symbol");
    /// # Ok::<(), PolarsError>(())
    /// ```
    #[inline]
    pub fn get_columns(&self) -> &Vec<Series> {
        &self.columns
    }

    #[cfg(feature = "private")]
    #[inline]
    pub fn get_columns_mut(&mut self) -> &mut Vec<Series> {
        &mut self.columns
    }

    /// Iterator over the columns as `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Name", &["Pythagoras' theorem", "Shannon entropy"]);
    /// let s2: Series = Series::new("Formula", &["a²+b²=c²", "H=-Σ[P(x)log|P(x)|]"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// let mut iterator = df.iter();
    ///
    /// assert_eq!(iterator.next(), Some(&s1));
    /// assert_eq!(iterator.next(), Some(&s2));
    /// assert_eq!(iterator.next(), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn iter(&self) -> std::slice::Iter<'_, Series> {
        self.columns.iter()
    }

    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Language" => &["Rust", "Python"],
    ///                         "Designer" => &["Graydon Hoare", "Guido van Rossum"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Language", "Designer"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn get_column_names(&self) -> Vec<&str> {
        self.columns.iter().map(|s| s.name()).collect()
    }

    /// Get the `Vec<String>` representing the column names.
    pub fn get_column_names_owned(&self) -> Vec<String> {
        self.columns.iter().map(|s| s.name().to_string()).collect()
    }

    /// Set the column names.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Mathematical set" => &["ℕ", "ℤ", "𝔻", "ℚ", "ℝ", "ℂ"])?;
    /// df.set_column_names(&["Set"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Set"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn set_column_names<S: AsRef<str>>(&mut self, names: &[S]) -> PolarsResult<()> {
        if names.len() != self.columns.len() {
            return Err(PolarsError::ShapeMisMatch("the provided slice with column names has not the same size as the DataFrame's width".into()));
        }
        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(names.iter().map(|name| name.as_ref()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }

        let columns = mem::take(&mut self.columns);
        self.columns = columns
            .into_iter()
            .zip(names)
            .map(|(s, name)| {
                let mut s = s;
                s.rename(name.as_ref());
                s
            })
            .collect();
        Ok(())
    }

    /// Get the data types of the columns in the DataFrame.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let venus_air: DataFrame = df!("Element" => &["Carbon dioxide", "Nitrogen"],
    ///                                "Fraction" => &[0.965, 0.035])?;
    ///
    /// assert_eq!(venus_air.dtypes(), &[DataType::Utf8, DataType::Float64]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn dtypes(&self) -> Vec<DataType> {
        self.columns.iter().map(|s| s.dtype().clone()).collect()
    }

    /// The number of chunks per column
    pub fn n_chunks(&self) -> usize {
        match self.columns.get(0) {
            None => 0,
            Some(s) => s.n_chunks(),
        }
    }

    /// Get a reference to the schema fields of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let earth: DataFrame = df!("Surface type" => &["Water", "Land"],
    ///                            "Fraction" => &[0.708, 0.292])?;
    ///
    /// let f1: Field = Field::new("Surface type", DataType::Utf8);
    /// let f2: Field = Field::new("Fraction", DataType::Float64);
    ///
    /// assert_eq!(earth.fields(), &[f1, f2]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn fields(&self) -> Vec<Field> {
        self.columns
            .iter()
            .map(|s| s.field().into_owned())
            .collect()
    }
More examples
Hide additional examples
src/testing.rs (line 68)
66
67
68
69
70
71
72
73
74
75
76
77
    fn eq(&self, other: &Self) -> bool {
        self.len() == other.len()
            && self.field() == other.field()
            && self.null_count() == other.null_count()
            && self
                .equal(other)
                .unwrap()
                .sum()
                .map(|s| s as usize)
                .unwrap_or(0)
                == self.len()
    }

Get datatype of series.

Examples found in repository?
src/frame/mod.rs (line 614)
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
    pub fn dtypes(&self) -> Vec<DataType> {
        self.columns.iter().map(|s| s.dtype().clone()).collect()
    }

    /// The number of chunks per column
    pub fn n_chunks(&self) -> usize {
        match self.columns.get(0) {
            None => 0,
            Some(s) => s.n_chunks(),
        }
    }

    /// Get a reference to the schema fields of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let earth: DataFrame = df!("Surface type" => &["Water", "Land"],
    ///                            "Fraction" => &[0.708, 0.292])?;
    ///
    /// let f1: Field = Field::new("Surface type", DataType::Utf8);
    /// let f2: Field = Field::new("Fraction", DataType::Float64);
    ///
    /// assert_eq!(earth.fields(), &[f1, f2]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn fields(&self) -> Vec<Field> {
        self.columns
            .iter()
            .map(|s| s.field().into_owned())
            .collect()
    }

    /// Get (height, width) of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("1" => &[1, 2, 3, 4, 5])?;
    /// let df2: DataFrame = df!("1" => &[1, 2, 3, 4, 5],
    ///                          "2" => &[1, 2, 3, 4, 5])?;
    ///
    /// assert_eq!(df0.shape(), (0 ,0));
    /// assert_eq!(df1.shape(), (5, 1));
    /// assert_eq!(df2.shape(), (5, 2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn shape(&self) -> (usize, usize) {
        match self.columns.as_slice() {
            &[] => (0, 0),
            v => (v[0].len(), v.len()),
        }
    }

    /// Get the width of the `DataFrame` which is the number of columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Series 1" => &[0; 0])?;
    /// let df2: DataFrame = df!("Series 1" => &[0; 0],
    ///                          "Series 2" => &[0; 0])?;
    ///
    /// assert_eq!(df0.width(), 0);
    /// assert_eq!(df1.width(), 1);
    /// assert_eq!(df2.width(), 2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn width(&self) -> usize {
        self.columns.len()
    }

    /// Get the height of the `DataFrame` which is the number of rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df0: DataFrame = DataFrame::default();
    /// let df1: DataFrame = df!("Currency" => &["€", "$"])?;
    /// let df2: DataFrame = df!("Currency" => &["€", "$", "¥", "£", "₿"])?;
    ///
    /// assert_eq!(df0.height(), 0);
    /// assert_eq!(df1.height(), 2);
    /// assert_eq!(df2.height(), 5);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn height(&self) -> usize {
        self.shape().0
    }

    /// Check if the `DataFrame` is empty.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = DataFrame::default();
    /// assert!(df1.is_empty());
    ///
    /// let df2: DataFrame = df!("First name" => &["Forever"],
    ///                          "Last name" => &["Alone"])?;
    /// assert!(!df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_empty(&self) -> bool {
        self.columns.is_empty()
    }

    pub(crate) fn hstack_mut_no_checks(&mut self, columns: &[Series]) -> &mut Self {
        for col in columns {
            self.columns.push(col.clone());
        }
        self
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn stack(df: &mut DataFrame, columns: &[Series]) {
    ///     df.hstack_mut(columns);
    /// }
    /// ```
    pub fn hstack_mut(&mut self, columns: &[Series]) -> PolarsResult<&mut Self> {
        let mut names = PlHashSet::with_capacity(self.columns.len());
        for s in &self.columns {
            names.insert(s.name());
        }

        let height = self.height();
        // first loop check validity. We don't do this in a single pass otherwise
        // this DataFrame is already modified when an error occurs.
        for col in columns {
            if col.len() != height && height != 0 {
                return Err(PolarsError::ShapeMisMatch(
                    format!("Could not horizontally stack Series. The Series length {} differs from the DataFrame height: {height}", col.len()).into()));
            }

            let name = col.name();
            if names.contains(name) {
                return Err(PolarsError::Duplicate(
                    format!("Cannot do hstack operation. Column with name: {name} already exists",)
                        .into(),
                ));
            }
            names.insert(name);
        }
        drop(names);
        Ok(self.hstack_mut_no_checks(columns))
    }

    /// Add multiple `Series` to a `DataFrame`.
    /// The added `Series` are required to have the same length.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"])?;
    /// let s1: Series = Series::new("Proton", &[29, 47, 79]);
    /// let s2: Series = Series::new("Electron", &[29, 47, 79]);
    ///
    /// let df2: DataFrame = df1.hstack(&[s1, s2])?;
    /// assert_eq!(df2.shape(), (3, 3));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 3)
    /// +---------+--------+----------+
    /// | Element | Proton | Electron |
    /// | ---     | ---    | ---      |
    /// | str     | i32    | i32      |
    /// +=========+========+==========+
    /// | Copper  | 29     | 29       |
    /// +---------+--------+----------+
    /// | Silver  | 47     | 47       |
    /// +---------+--------+----------+
    /// | Gold    | 79     | 79       |
    /// +---------+--------+----------+
    /// ```
    pub fn hstack(&self, columns: &[Series]) -> PolarsResult<Self> {
        let mut new_cols = self.columns.clone();
        new_cols.extend_from_slice(columns);
        DataFrame::new(new_cols)
    }

    /// Concatenate a `DataFrame` to this `DataFrame` and return as newly allocated `DataFrame`.
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// let df3: DataFrame = df1.vstack(&df2)?;
    ///
    /// assert_eq!(df3.shape(), (5, 2));
    /// println!("{}", df3);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack(&self, other: &DataFrame) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.vstack_mut(other)?;
        Ok(df)
    }

    /// Concatenate a DataFrame to this DataFrame
    ///
    /// If many `vstack` operations are done, it is recommended to call [`DataFrame::rechunk`].
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df1: DataFrame = df!("Element" => &["Copper", "Silver", "Gold"],
    ///                          "Melting Point (K)" => &[1357.77, 1234.93, 1337.33])?;
    /// let df2: DataFrame = df!("Element" => &["Platinum", "Palladium"],
    ///                          "Melting Point (K)" => &[2041.4, 1828.05])?;
    ///
    /// df1.vstack_mut(&df2)?;
    ///
    /// assert_eq!(df1.shape(), (5, 2));
    /// println!("{}", df1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (5, 2)
    /// +-----------+-------------------+
    /// | Element   | Melting Point (K) |
    /// | ---       | ---               |
    /// | str       | f64               |
    /// +===========+===================+
    /// | Copper    | 1357.77           |
    /// +-----------+-------------------+
    /// | Silver    | 1234.93           |
    /// +-----------+-------------------+
    /// | Gold      | 1337.33           |
    /// +-----------+-------------------+
    /// | Platinum  | 2041.4            |
    /// +-----------+-------------------+
    /// | Palladium | 1828.05           |
    /// +-----------+-------------------+
    /// ```
    pub fn vstack_mut(&mut self, other: &DataFrame) -> PolarsResult<&mut Self> {
        if self.width() != other.width() {
            if self.width() == 0 {
                self.columns = other.columns.clone();
                return Ok(self);
            }

            return Err(PolarsError::ShapeMisMatch(
                format!("Could not vertically stack DataFrame. The DataFrames appended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.append(right).expect("should not fail");
                Ok(())
            })?;
        Ok(self)
    }

    /// Does not check if schema is correct
    pub(crate) fn vstack_mut_unchecked(&mut self, other: &DataFrame) {
        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .for_each(|(left, right)| {
                left.append(right).expect("should not fail");
            });
    }

    /// Extend the memory backed by this [`DataFrame`] with the values from `other`.
    ///
    /// Different from [`vstack`](Self::vstack) which adds the chunks from `other` to the chunks of this [`DataFrame`]
    /// `extend` appends the data from `other` to the underlying memory locations and thus may cause a reallocation.
    ///
    /// If this does not cause a reallocation, the resulting data structure will not have any extra chunks
    /// and thus will yield faster queries.
    ///
    /// Prefer `extend` over `vstack` when you want to do a query after a single append. For instance during
    /// online operations where you add `n` rows and rerun a query.
    ///
    /// Prefer `vstack` over `extend` when you want to append many times before doing a query. For instance
    /// when you read in multiple files and when to store them in a single `DataFrame`. In the latter case, finish the sequence
    /// of `append` operations with a [`rechunk`](Self::rechunk).
    pub fn extend(&mut self, other: &DataFrame) -> PolarsResult<()> {
        if self.width() != other.width() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Could not extend DataFrame. The DataFrames extended width {} differs from the parent DataFrames width {}", self.width(), other.width()).into()
            ));
        }

        self.columns
            .iter_mut()
            .zip(other.columns.iter())
            .try_for_each::<_, PolarsResult<_>>(|(left, right)| {
                can_extend(left, right)?;
                left.extend(right).unwrap();
                Ok(())
            })?;
        Ok(())
    }

    /// Remove a column by name and return the column removed.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Animal" => &["Tiger", "Lion", "Great auk"],
    ///                             "IUCN" => &["Endangered", "Vulnerable", "Extinct"])?;
    ///
    /// let s1: PolarsResult<Series> = df.drop_in_place("Average weight");
    /// assert!(s1.is_err());
    ///
    /// let s2: Series = df.drop_in_place("Animal")?;
    /// assert_eq!(s2, Series::new("Animal", &["Tiger", "Lion", "Great auk"]));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop_in_place(&mut self, name: &str) -> PolarsResult<Series> {
        let idx = self.check_name_to_idx(name)?;
        Ok(self.columns.remove(idx))
    }

    /// Return a new `DataFrame` where all null values are dropped.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Country" => ["Malta", "Liechtenstein", "North Korea"],
    ///                         "Tax revenue (% GDP)" => [Some(32.7), None, None])?;
    /// assert_eq!(df1.shape(), (3, 2));
    ///
    /// let df2: DataFrame = df1.drop_nulls(None)?;
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------------------+
    /// | Country | Tax revenue (% GDP) |
    /// | ---     | ---                 |
    /// | str     | f64                 |
    /// +=========+=====================+
    /// | Malta   | 32.7                |
    /// +---------+---------------------+
    /// ```
    pub fn drop_nulls(&self, subset: Option<&[String]>) -> PolarsResult<Self> {
        let selected_series;

        let mut iter = match subset {
            Some(cols) => {
                selected_series = self.select_series(cols)?;
                selected_series.iter()
            }
            None => self.columns.iter(),
        };

        // fast path for no nulls in df
        if iter.clone().all(|s| !s.has_validity()) {
            return Ok(self.clone());
        }

        let mask = iter
            .next()
            .ok_or_else(|| PolarsError::NoData("No data to drop nulls from".into()))?;
        let mut mask = mask.is_not_null();

        for s in iter {
            mask = mask & s.is_not_null();
        }
        self.filter(&mask)
    }

    /// Drop a column by name.
    /// This is a pure method and will return a new `DataFrame` instead of modifying
    /// the current one in place.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Ray type" => &["α", "β", "X", "γ"])?;
    /// let df2: DataFrame = df1.drop("Ray type")?;
    ///
    /// assert!(df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop(&self, name: &str) -> PolarsResult<Self> {
        let idx = self.check_name_to_idx(name)?;
        let mut new_cols = Vec::with_capacity(self.columns.len() - 1);

        self.columns.iter().enumerate().for_each(|(i, s)| {
            if i != idx {
                new_cols.push(s.clone())
            }
        });

        Ok(DataFrame::new_no_checks(new_cols))
    }

    pub fn drop_many<S: AsRef<str>>(&self, names: &[S]) -> Self {
        let names = names.iter().map(|s| s.as_ref()).collect();
        fn inner(df: &DataFrame, names: Vec<&str>) -> DataFrame {
            let mut new_cols = Vec::with_capacity(df.columns.len() - names.len());
            df.columns.iter().for_each(|s| {
                if !names.contains(&s.name()) {
                    new_cols.push(s.clone())
                }
            });

            DataFrame::new_no_checks(new_cols)
        }
        inner(self, names)
    }

    fn insert_at_idx_no_name_check(
        &mut self,
        index: usize,
        series: Series,
    ) -> PolarsResult<&mut Self> {
        if series.len() == self.height() {
            self.columns.insert(index, series);
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                .into(),
            ))
        }
    }

    /// Insert a new column at a given index.
    pub fn insert_at_idx<S: IntoSeries>(
        &mut self,
        index: usize,
        column: S,
    ) -> PolarsResult<&mut Self> {
        let series = column.into_series();
        self.check_already_present(series.name())?;
        self.insert_at_idx_no_name_check(index, series)
    }

    fn add_column_by_search(&mut self, series: Series) -> PolarsResult<()> {
        if let Some(idx) = self.find_idx_by_name(series.name()) {
            self.replace_at_idx(idx, series)?;
        } else {
            self.columns.push(series);
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    pub fn with_column<S: IntoSeries>(&mut self, column: S) -> PolarsResult<&mut Self> {
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }

    /// Select column(s) from this `DataFrame` and return them into a `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Methane", "Ethane", "Propane"],
    ///                         "Carbon" => &[1, 2, 3],
    ///                         "Hydrogen" => &[4, 6, 8])?;
    /// let sv: Vec<Series> = df.select_series(&["Carbon", "Hydrogen"])?;
    ///
    /// assert_eq!(df["Carbon"], sv[0]);
    /// assert_eq!(df["Hydrogen"], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_series(&self, selection: impl IntoVec<String>) -> PolarsResult<Vec<Series>> {
        let cols = selection.into_vec();
        self.select_series_impl(&cols)
    }

    fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
        self.columns
            .iter()
            .enumerate()
            .map(|(i, s)| (s.name(), i))
            .collect()
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_physical_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            let name_to_idx = self._names_to_idx_map();
            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self
                        .select_at_idx(idx)
                        .unwrap()
                        .to_physical_repr()
                        .into_owned())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.to_physical_repr().into_owned()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            // we hash, because there are user that having millions of columns.
            // # https://github.com/pola-rs/polars/issues/1023
            let name_to_idx = self._names_to_idx_map();

            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self.select_at_idx(idx).unwrap().clone())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.clone()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// Select a mutable series by name.
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_mut(&mut self, name: &str) -> Option<&mut Series> {
        let opt_idx = self.find_idx_by_name(name);

        match opt_idx {
            Some(idx) => self.select_at_idx_mut(idx),
            None => None,
        }
    }

    /// Does a filter but splits thread chunks vertically instead of horizontally
    /// This yields a DataFrame with `n_chunks == n_threads`.
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` value by indexes from an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let iterator = (0..9).into_iter();
    ///     df.take_iter(iterator)
    /// }
    /// ```
    pub fn take_iter<I>(&self, iter: I) -> PolarsResult<Self>
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        let new_col = self.try_apply_columns_par(&|s| {
            let mut i = iter.clone();
            s.take_iter(&mut i)
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` values by indexes from an iterator.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking but checks null validity.
    #[must_use]
    pub unsafe fn take_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            return self.take_unchecked_vectical(&idx_ca.into_inner());
        }

        let n_chunks = self.n_chunks();
        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            let idx_ca = idx_ca.into_inner();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_iter_unchecked(&mut i)
            })
        };
        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` values by indexes from an iterator that may contain None values.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking. Out of bounds may access uninitialized memory.
    /// Null validity is checked
    #[must_use]
    pub unsafe fn take_opt_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = Option<usize>> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked_vectical(&idx_ca);
        }

        let n_chunks = self.n_chunks();

        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_opt_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_opt_iter_unchecked(&mut i)
            })
        };

        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` rows by index values.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let idx = IdxCa::new("idx", &[0, 1, 9]);
    ///     df.take(&idx)
    /// }
    /// ```
    pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        let new_col = POOL.install(|| {
            self.try_apply_columns_par(&|s| match s.dtype() {
                DataType::Utf8 => s.take_threaded(&indices, true),
                _ => s.take(&indices),
            })
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    pub(crate) unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
        self.take_unchecked_impl(idx, true)
    }

    unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
        let cols = if allow_threads {
            POOL.install(|| {
                self.apply_columns_par(&|s| match s.dtype() {
                    DataType::Utf8 => s.take_unchecked_threaded(idx, true).unwrap(),
                    _ => s.take_unchecked(idx).unwrap(),
                })
            })
        } else {
            self.columns
                .iter()
                .map(|s| s.take_unchecked(idx).unwrap())
                .collect()
        };
        DataFrame::new_no_checks(cols)
    }

    unsafe fn take_unchecked_vectical(&self, indices: &IdxCa) -> Self {
        let n_threads = POOL.current_num_threads();
        let idxs = split_ca(indices, n_threads).unwrap();

        let dfs: Vec<_> = POOL.install(|| {
            idxs.par_iter()
                .map(|idx| {
                    let cols = self
                        .columns
                        .iter()
                        .map(|s| s.take_unchecked(idx).unwrap())
                        .collect();
                    DataFrame::new_no_checks(cols)
                })
                .collect()
        });

        let mut iter = dfs.into_iter();
        let first = iter.next().unwrap();
        iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        })
    }

    /// Rename a column in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
    ///     let original_name = "foo";
    ///     let new_name = "bar";
    ///     df.rename(original_name, new_name)
    /// }
    /// ```
    pub fn rename(&mut self, column: &str, name: &str) -> PolarsResult<&mut Self> {
        self.select_mut(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))
            .map(|s| s.rename(name))?;

        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(self.columns.iter().map(|s| s.name()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }
        Ok(self)
    }

    /// Sort `DataFrame` in place by a column.
    pub fn sort_in_place(
        &mut self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<&mut Self> {
        // a lot of indirection in both sorting and take
        self.as_single_chunk_par();
        let by_column = self.select_series(by_column)?;
        let reverse = reverse.into_vec();
        self.columns = self.sort_impl(by_column, reverse, false, None)?.columns;
        Ok(self)
    }

    /// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
    #[cfg(feature = "private")]
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

    /// Return a sorted clone of this `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn sort_example(df: &DataFrame, reverse: bool) -> PolarsResult<DataFrame> {
    ///     df.sort(["a"], reverse)
    /// }
    ///
    /// fn sort_by_multiple_columns_example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.sort(&["a", "b"], vec![false, true])
    /// }
    /// ```
    pub fn sort(
        &self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.sort_in_place(by_column, reverse)?;
        Ok(df)
    }

    /// Sort the `DataFrame` by a single column with extra options.
    pub fn sort_with_options(&self, by_column: &str, options: SortOptions) -> PolarsResult<Self> {
        let mut df = self.clone();
        // a lot of indirection in both sorting and take
        df.as_single_chunk_par();
        let by_column = vec![df.column(by_column)?.clone()];
        let reverse = vec![options.descending];
        df.columns = df
            .sort_impl(by_column, reverse, options.nulls_last, None)?
            .columns;
        Ok(df)
    }

    /// Replace a column with a `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Country" => &["United States", "China"],
    ///                         "Area (km²)" => &[9_833_520, 9_596_961])?;
    /// let s: Series = Series::new("Country", &["USA", "PRC"]);
    ///
    /// assert!(df.replace("Nation", s.clone()).is_err());
    /// assert!(df.replace("Country", s).is_ok());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
        self.apply(column, |_| new_col.into_series())
    }

    /// Replace or update a column. The difference between this method and [DataFrame::with_column]
    /// is that now the value of `column: &str` determines the name of the column and not the name
    /// of the `Series` passed to this method.
    pub fn replace_or_add<S: IntoSeries>(
        &mut self,
        column: &str,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_col = new_col.into_series();
        new_col.rename(column);
        self.with_column(new_col)
    }

    /// Replace column at index `idx` with a `Series`.
    ///
    /// # Example
    ///
    /// ```ignored
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.replace_at_idx(1, df.select_at_idx(1).unwrap() + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace_at_idx<S: IntoSeries>(
        &mut self,
        idx: usize,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_column = new_col.into_series();
        if new_column.len() != self.height() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Cannot replace Series at index {}. The shape of Series {} does not match that of the DataFrame {}",
                idx, new_column.len(), self.height()
                ).into()));
        };
        if idx >= self.width() {
            return Err(PolarsError::ComputeError(
                format!(
                    "Column index: {} outside of DataFrame with {} columns",
                    idx,
                    self.width()
                )
                .into(),
            ));
        }
        let old_col = &mut self.columns[idx];
        mem::swap(old_col, &mut new_column);
        Ok(self)
    }

    /// Apply a closure to a column. This is the recommended way to do in place modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("names", &["Jean", "Claude", "van"]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// fn str_to_len(str_val: &Series) -> Series {
    ///     str_val.utf8()
    ///         .unwrap()
    ///         .into_iter()
    ///         .map(|opt_name: Option<&str>| {
    ///             opt_name.map(|name: &str| name.len() as u32)
    ///          })
    ///         .collect::<UInt32Chunked>()
    ///         .into_series()
    /// }
    ///
    /// // Replace the names column by the length of the names.
    /// df.apply("names", str_to_len);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    |       |
    /// | ---    | names |
    /// | str    | u32   |
    /// +========+=======+
    /// | "ham"  | 4     |
    /// +--------+-------+
    /// | "spam" | 6     |
    /// +--------+-------+
    /// | "egg"  | 3     |
    /// +--------+-------+
    /// ```
    pub fn apply<F, S>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let idx = self.check_name_to_idx(name)?;
        self.apply_at_idx(idx, f)
    }

    /// Apply a closure to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.apply_at_idx(1, |s| s + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    | ascii |
    /// | ---    | ---   |
    /// | str    | i32   |
    /// +========+=======+
    /// | "ham"  | 102   |
    /// +--------+-------+
    /// | "spam" | 111   |
    /// +--------+-------+
    /// | "egg"  | 111   |
    /// +--------+-------+
    /// ```
    pub fn apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let df_height = self.height();
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();
        let new_col = f(col).into_series();
        match new_col.len() {
            1 => {
                let new_col = new_col.new_from_index(0, df_height);
                let _ = mem::replace(col, new_col);
            }
            len if (len == df_height) => {
                let _ = mem::replace(col, new_col);
            }
            len => {
                return Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Result Series has shape {} where the DataFrame has height {}",
                        len,
                        self.height()
                    )
                    .into(),
                ));
            }
        }

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given range of indexes.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// let idx = vec![0, 1, 4];
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set_at_idx_with(idx, |opt_val| opt_val.map(|string| format!("{}-is-modified", string)))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "ham-is-modified"   | 1      |
    /// +---------------------+--------+
    /// | "spam-is-modified"  | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "quack-is-modified" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();

        let _ = mem::replace(col, f(col).map(|s| s.into_series())?);

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given a boolean mask.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // create a mask
    /// let values = df.column("values")?;
    /// let mask = values.lt_eq(1)? | values.gt_eq(5_i32)?;
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set(&mask, Some("not_within_bounds"))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "not_within_bounds" | 1      |
    /// +---------------------+--------+
    /// | "spam"              | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "not_within_bounds" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply<F, S>(&mut self, column: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let idx = self
            .find_idx_by_name(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))?;
        self.try_apply_at_idx(idx, f)
    }

    /// Slice the `DataFrame` along the rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Fruit" => &["Apple", "Grape", "Grape", "Fig", "Fig"],
    ///                         "Color" => &["Green", "Red", "White", "White", "Red"])?;
    /// let sl: DataFrame = df.slice(2, 3);
    ///
    /// assert_eq!(sl.shape(), (3, 2));
    /// println!("{}", sl);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Output:
    /// ```text
    /// shape: (3, 2)
    /// +-------+-------+
    /// | Fruit | Color |
    /// | ---   | ---   |
    /// | str   | str   |
    /// +=======+=======+
    /// | Grape | White |
    /// +-------+-------+
    /// | Fig   | White |
    /// +-------+-------+
    /// | Fig   | Red   |
    /// +-------+-------+
    /// ```
    #[must_use]
    pub fn slice(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        let col = self
            .columns
            .iter()
            .map(|s| s.slice(offset, length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    #[must_use]
    pub fn slice_par(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns_par(&|s| s.slice(offset, length)))
    }

    #[must_use]
    pub fn _slice_and_realloc(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns(&|s| {
            let mut out = s.slice(offset, length);
            out.shrink_to_fit();
            out
        }))
    }

    /// Get the head of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank by GDP (2021)" => &[1, 2, 3, 4, 5],
    ///         "Continent" => &["North America", "Asia", "Asia", "Europe", "Europe"],
    ///         "Country" => &["United States", "China", "Japan", "Germany", "United Kingdom"],
    ///         "Capital" => &["Washington", "Beijing", "Tokyo", "Berlin", "London"])?;
    /// assert_eq!(countries.shape(), (5, 4));
    ///
    /// println!("{}", countries.head(Some(3)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 4)
    /// +--------------------+---------------+---------------+------------+
    /// | Rank by GDP (2021) | Continent     | Country       | Capital    |
    /// | ---                | ---           | ---           | ---        |
    /// | i32                | str           | str           | str        |
    /// +====================+===============+===============+============+
    /// | 1                  | North America | United States | Washington |
    /// +--------------------+---------------+---------------+------------+
    /// | 2                  | Asia          | China         | Beijing    |
    /// +--------------------+---------------+---------------+------------+
    /// | 3                  | Asia          | Japan         | Tokyo      |
    /// +--------------------+---------------+---------------+------------+
    /// ```
    #[must_use]
    pub fn head(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.head(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Get the tail of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank (2021)" => &[105, 106, 107, 108, 109],
    ///         "Apple Price (€/kg)" => &[0.75, 0.70, 0.70, 0.65, 0.52],
    ///         "Country" => &["Kosovo", "Moldova", "North Macedonia", "Syria", "Turkey"])?;
    /// assert_eq!(countries.shape(), (5, 3));
    ///
    /// println!("{}", countries.tail(Some(2)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (2, 3)
    /// +-------------+--------------------+---------+
    /// | Rank (2021) | Apple Price (€/kg) | Country |
    /// | ---         | ---                | ---     |
    /// | i32         | f64                | str     |
    /// +=============+====================+=========+
    /// | 108         | 0.63               | Syria   |
    /// +-------------+--------------------+---------+
    /// | 109         | 0.63               | Turkey  |
    /// +-------------+--------------------+---------+
    /// ```
    #[must_use]
    pub fn tail(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.tail(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks(&self) -> RecordBatchIter {
        RecordBatchIter {
            columns: &self.columns,
            idx: 0,
            n_chunks: self.n_chunks(),
        }
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches as physical values.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks_physical(&self) -> PhysRecordBatchIter<'_> {
        PhysRecordBatchIter {
            iters: self.columns.iter().map(|s| s.chunks().iter()).collect(),
        }
    }

    /// Get a `DataFrame` with all the columns in reversed order.
    #[must_use]
    pub fn reverse(&self) -> Self {
        let col = self.columns.iter().map(|s| s.reverse()).collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Shift the values by a given period and fill the parts that will be empty due to this operation
    /// with `Nones`.
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.shift) for more info on the `shift` operation.
    #[must_use]
    pub fn shift(&self, periods: i64) -> Self {
        let col = self.apply_columns_par(&|s| s.shift(periods));

        DataFrame::new_no_checks(col)
    }

    /// Replace None values with one of the following strategies:
    /// * Forward fill (replace None with the previous value)
    /// * Backward fill (replace None with the next value)
    /// * Mean fill (replace None with the mean of the whole array)
    /// * Min fill (replace None with the minimum of the whole array)
    /// * Max fill (replace None with the maximum of the whole array)
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.fill_null) for more info on the `fill_null` operation.
    pub fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
        let col = self.try_apply_columns_par(&|s| s.fill_null(strategy))?;

        Ok(DataFrame::new_no_checks(col))
    }

    /// Summary statistics for a DataFrame. Only summarizes numeric datatypes at the moment and returns nulls for non numeric datatypes.
    /// Try in keep output similar to pandas
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("categorical" => &["d","e","f"],
    ///                          "numeric" => &[1, 2, 3],
    ///                          "object" => &["a", "b", "c"])?;
    /// assert_eq!(df1.shape(), (3, 3));
    ///
    /// let df2: DataFrame = df1.describe(None);
    /// assert_eq!(df2.shape(), (8, 4));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (8, 4)
    /// ┌──────────┬─────────────┬─────────┬────────┐
    /// │ describe ┆ categorical ┆ numeric ┆ object │
    /// │ ---      ┆ ---         ┆ ---     ┆ ---    │
    /// │ str      ┆ f64         ┆ f64     ┆ f64    │
    /// ╞══════════╪═════════════╪═════════╪════════╡
    /// │ count    ┆ 3.0         ┆ 3.0     ┆ 3.0    │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ mean     ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ std      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ min      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 25%      ┆ null        ┆ 1.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 50%      ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 75%      ┆ null        ┆ 2.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ max      ┆ null        ┆ 3.0     ┆ null   │
    /// └──────────┴─────────────┴─────────┴────────┘
    /// ```
    #[must_use]
    #[cfg(feature = "describe")]
    pub fn describe(&self, percentiles: Option<&[f64]>) -> Self {
        fn describe_cast(df: &DataFrame) -> DataFrame {
            let mut columns: Vec<Series> = vec![];

            for s in df.columns.iter() {
                columns.push(s.cast(&DataType::Float64).expect("cast to float failed"));
            }

            DataFrame::new(columns).unwrap()
        }

        fn count(df: &DataFrame) -> DataFrame {
            let columns = df.apply_columns_par(&|s| Series::new(s.name(), [s.len() as IdxSize]));
            DataFrame::new_no_checks(columns)
        }

        let percentiles = percentiles.unwrap_or(&[0.25, 0.5, 0.75]);

        let mut headers: Vec<String> = vec![
            "count".to_string(),
            "mean".to_string(),
            "std".to_string(),
            "min".to_string(),
        ];

        let mut tmp: Vec<DataFrame> = vec![
            describe_cast(&count(self)),
            describe_cast(&self.mean()),
            describe_cast(&self.std(1)),
            describe_cast(&self.min()),
        ];

        for p in percentiles {
            tmp.push(describe_cast(
                &self
                    .quantile(*p, QuantileInterpolOptions::Linear)
                    .expect("quantile failed"),
            ));
            headers.push(format!("{}%", *p * 100.0));
        }

        // Keep order same as pandas
        tmp.push(describe_cast(&self.max()));
        headers.push("max".to_string());

        let mut summary = concat_df_unchecked(&tmp);

        summary
            .insert_at_idx(0, Series::new("describe", headers))
            .expect("insert of header failed");

        summary
    }

    /// Aggregate the columns to their maximum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.max();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 6       | 5       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn max(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.max_as_series());

        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their standard deviation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.std(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +-------------------+--------------------+
    /// | Die n°1           | Die n°2            |
    /// | ---               | ---                |
    /// | f64               | f64                |
    /// +===================+====================+
    /// | 2.280350850198276 | 1.0954451150103321 |
    /// +-------------------+--------------------+
    /// ```
    #[must_use]
    pub fn std(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.std_as_series(ddof));

        DataFrame::new_no_checks(columns)
    }
    /// Aggregate the columns to their variation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.var(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 5.2     | 1.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn var(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.var_as_series(ddof));
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their minimum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.min();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 1       | 2       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn min(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.min_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their sum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.sum();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 16      | 16      |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn sum(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.sum_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their mean values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.mean();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 3.2     | 3.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn mean(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.mean_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their median values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.median();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 3       | 3       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn median(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.median_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their quantile values.
    pub fn quantile(&self, quantile: f64, interpol: QuantileInterpolOptions) -> PolarsResult<Self> {
        let columns = self.try_apply_columns_par(&|s| s.quantile_as_series(quantile, interpol))?;

        Ok(DataFrame::new_no_checks(columns))
    }

    /// Aggregate the column horizontally to their min values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmin(&self) -> PolarsResult<Option<Series>> {
        let min_fn = |acc: &Series, s: &Series| {
            let mask = acc.lt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their max values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmax(&self) -> PolarsResult<Option<Series>> {
        let max_fn = |acc: &Series, s: &Series| {
            let mask = acc.gt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their sum values.
    pub fn hsum(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        let sum_fn =
            |acc: &Series, s: &Series, none_strategy: NullStrategy| -> PolarsResult<Series> {
                let mut acc = acc.clone();
                let mut s = s.clone();
                if let NullStrategy::Ignore = none_strategy {
                    // if has nulls
                    if acc.has_validity() {
                        acc = acc.fill_null(FillNullStrategy::Zero)?;
                    }
                    if s.has_validity() {
                        s = s.fill_null(FillNullStrategy::Zero)?;
                    }
                }
                Ok(&acc + &s)
            };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => sum_fn(&self.columns[0], &self.columns[1], none_strategy).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| sum_fn(&l, &r, none_strategy).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their mean values.
    pub fn hmean(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            _ => {
                let columns = self
                    .columns
                    .iter()
                    .cloned()
                    .filter(|s| {
                        let dtype = s.dtype();
                        dtype.is_numeric() || matches!(dtype, DataType::Boolean)
                    })
                    .collect();
                let numeric_df = DataFrame::new_no_checks(columns);

                let sum = || numeric_df.hsum(none_strategy);

                let null_count = || {
                    numeric_df
                        .columns
                        .par_iter()
                        .map(|s| s.is_null().cast(&DataType::UInt32).unwrap())
                        .reduce_with(|l, r| &l + &r)
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 2 columns
                        .unwrap()
                };

                let (sum, null_count) = POOL.install(|| rayon::join(sum, null_count));
                let sum = sum?;

                // value lengths: len - null_count
                let value_length: UInt32Chunked =
                    (numeric_df.width().sub(&null_count)).u32().unwrap().clone();

                // make sure that we do not divide by zero
                // by replacing with None
                let value_length = value_length
                    .set(&value_length.equal(0), None)?
                    .into_series()
                    .cast(&DataType::Float64)?;

                Ok(sum.map(|sum| &sum / &value_length))
            }
        }
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe<F, B>(self, f: F) -> PolarsResult<B>
    where
        F: Fn(DataFrame) -> PolarsResult<B>,
    {
        f(self)
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe_mut<F, B>(&mut self, f: F) -> PolarsResult<B>
    where
        F: Fn(&mut DataFrame) -> PolarsResult<B>,
    {
        f(self)
    }

    /// Pipe different functions/ closure operations that work on a DataFrame together.
    pub fn pipe_with_args<F, B, Args>(self, f: F, args: Args) -> PolarsResult<B>
    where
        F: Fn(DataFrame, Args) -> PolarsResult<B>,
    {
        f(self, args)
    }

    /// Drop duplicate rows from a `DataFrame`.
    /// *This fails when there is a column of type List in DataFrame*
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///               "flt" => [1., 1., 2., 2., 3., 3.],
    ///               "int" => [1, 1, 2, 2, 3, 3, ],
    ///               "str" => ["a", "a", "b", "b", "c", "c"]
    ///           }?;
    ///
    /// println!("{}", df.drop_duplicates(true, None)?);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Returns
    ///
    /// ```text
    /// +-----+-----+-----+
    /// | flt | int | str |
    /// | --- | --- | --- |
    /// | f64 | i32 | str |
    /// +=====+=====+=====+
    /// | 1   | 1   | "a" |
    /// +-----+-----+-----+
    /// | 2   | 2   | "b" |
    /// +-----+-----+-----+
    /// | 3   | 3   | "c" |
    /// +-----+-----+-----+
    /// ```
    #[deprecated(note = "use DataFrame::unique")]
    pub fn drop_duplicates(
        &self,
        maintain_order: bool,
        subset: Option<&[String]>,
    ) -> PolarsResult<Self> {
        match maintain_order {
            true => self.unique_stable(subset, UniqueKeepStrategy::First),
            false => self.unique(subset, UniqueKeepStrategy::First),
        }
    }

    /// Drop duplicate rows from a `DataFrame`.
    /// *This fails when there is a column of type List in DataFrame*
    ///
    /// Stable means that the order is maintained. This has a higher cost than an unstable distinct.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///               "flt" => [1., 1., 2., 2., 3., 3.],
    ///               "int" => [1, 1, 2, 2, 3, 3, ],
    ///               "str" => ["a", "a", "b", "b", "c", "c"]
    ///           }?;
    ///
    /// println!("{}", df.unique_stable(None, UniqueKeepStrategy::First)?);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Returns
    ///
    /// ```text
    /// +-----+-----+-----+
    /// | flt | int | str |
    /// | --- | --- | --- |
    /// | f64 | i32 | str |
    /// +=====+=====+=====+
    /// | 1   | 1   | "a" |
    /// +-----+-----+-----+
    /// | 2   | 2   | "b" |
    /// +-----+-----+-----+
    /// | 3   | 3   | "c" |
    /// +-----+-----+-----+
    /// ```
    pub fn unique_stable(
        &self,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<DataFrame> {
        self.unique_impl(true, subset, keep)
    }

    /// Unstable distinct. See [`DataFrame::unique_stable`].
    pub fn unique(
        &self,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<DataFrame> {
        self.unique_impl(false, subset, keep)
    }

    fn unique_impl(
        &self,
        maintain_order: bool,
        subset: Option<&[String]>,
        keep: UniqueKeepStrategy,
    ) -> PolarsResult<Self> {
        use UniqueKeepStrategy::*;
        let names = match &subset {
            Some(s) => s.iter().map(|s| &**s).collect(),
            None => self.get_column_names(),
        };

        let columns = match (keep, maintain_order) {
            (First, true) => {
                let gb = self.groupby_stable(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_first(groups) })
            }
            (Last, true) => {
                // maintain order by last values, so the sorted groups are not correct as they
                // are sorted by the first value
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                let last_idx: NoNull<IdxCa> = groups
                    .iter()
                    .map(|g| match g {
                        GroupsIndicator::Idx((_first, idx)) => idx[idx.len() - 1],
                        GroupsIndicator::Slice([first, len]) => first + len,
                    })
                    .collect();

                let last_idx = last_idx.sort(false);
                return Ok(unsafe { self.take_unchecked(&last_idx) });
            }
            (First, false) => {
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_first(groups) })
            }
            (Last, false) => {
                let gb = self.groupby(names)?;
                let groups = gb.get_groups();
                self.apply_columns_par(&|s| unsafe { s.agg_last(groups) })
            }
        };
        Ok(DataFrame::new_no_checks(columns))
    }

    /// Get a mask of all the unique rows in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Company" => &["Apple", "Microsoft"],
    ///                         "ISIN" => &["US0378331005", "US5949181045"])?;
    /// let ca: ChunkedArray<BooleanType> = df.is_unique()?;
    ///
    /// assert!(ca.all());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        let gb = self.groupby(self.get_column_names())?;
        let groups = gb.take_groups();
        Ok(is_unique_helper(
            groups,
            self.height() as IdxSize,
            true,
            false,
        ))
    }

    /// Get a mask of all the duplicated rows in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Company" => &["Alphabet", "Alphabet"],
    ///                         "ISIN" => &["US02079K3059", "US02079K1079"])?;
    /// let ca: ChunkedArray<BooleanType> = df.is_duplicated()?;
    ///
    /// assert!(!ca.all());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        let gb = self.groupby(self.get_column_names())?;
        let groups = gb.take_groups();
        Ok(is_unique_helper(
            groups,
            self.height() as IdxSize,
            false,
            true,
        ))
    }

    /// Create a new `DataFrame` that shows the null counts per column.
    #[must_use]
    pub fn null_count(&self) -> Self {
        let cols = self
            .columns
            .iter()
            .map(|s| Series::new(s.name(), &[s.null_count() as IdxSize]))
            .collect();
        Self::new_no_checks(cols)
    }

    /// Hash and combine the row values
    #[cfg(feature = "row_hash")]
    pub fn hash_rows(
        &mut self,
        hasher_builder: Option<RandomState>,
    ) -> PolarsResult<UInt64Chunked> {
        let dfs = split_df(self, POOL.current_num_threads())?;
        let (cas, _) = df_rows_to_hashes_threaded(&dfs, hasher_builder)?;

        let mut iter = cas.into_iter();
        let mut acc_ca = iter.next().unwrap();
        for ca in iter {
            acc_ca.append(&ca);
        }
        Ok(acc_ca.rechunk())
    }

    /// Get the supertype of the columns in this DataFrame
    pub fn get_supertype(&self) -> Option<PolarsResult<DataType>> {
        self.columns
            .iter()
            .map(|s| Ok(s.dtype().clone()))
            .reduce(|acc, b| try_get_supertype(&acc?, &b.unwrap()))
    }

    #[cfg(feature = "chunked_ids")]
    #[doc(hidden)]
    //// Take elements by a slice of [`ChunkId`]s.
    /// # Safety
    /// Does not do any bound checks.
    /// `sorted` indicates if the chunks are sorted.
    #[doc(hidden)]
    pub unsafe fn _take_chunked_unchecked_seq(&self, idx: &[ChunkId], sorted: IsSorted) -> Self {
        let cols = self.apply_columns(&|s| s._take_chunked_unchecked(idx, sorted));

        DataFrame::new_no_checks(cols)
    }
    #[cfg(feature = "chunked_ids")]
    //// Take elements by a slice of optional [`ChunkId`]s.
    /// # Safety
    /// Does not do any bound checks.
    #[doc(hidden)]
    pub unsafe fn _take_opt_chunked_unchecked_seq(&self, idx: &[Option<ChunkId>]) -> Self {
        let cols = self.apply_columns(&|s| match s.dtype() {
            DataType::Utf8 => s._take_opt_chunked_unchecked_threaded(idx, true),
            _ => s._take_opt_chunked_unchecked(idx),
        });

        DataFrame::new_no_checks(cols)
    }

    #[cfg(feature = "chunked_ids")]
    pub(crate) unsafe fn take_chunked_unchecked(&self, idx: &[ChunkId], sorted: IsSorted) -> Self {
        let cols = self.apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s._take_chunked_unchecked_threaded(idx, sorted, true),
            _ => s._take_chunked_unchecked(idx, sorted),
        });

        DataFrame::new_no_checks(cols)
    }

    #[cfg(feature = "chunked_ids")]
    pub(crate) unsafe fn take_opt_chunked_unchecked(&self, idx: &[Option<ChunkId>]) -> Self {
        let cols = self.apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s._take_opt_chunked_unchecked_threaded(idx, true),
            _ => s._take_opt_chunked_unchecked(idx),
        });

        DataFrame::new_no_checks(cols)
    }

    /// Be careful with allowing threads when calling this in a large hot loop
    /// every thread split may be on rayon stack and lead to SO
    #[doc(hidden)]
    pub unsafe fn _take_unchecked_slice(&self, idx: &[IdxSize], allow_threads: bool) -> Self {
        self._take_unchecked_slice2(idx, allow_threads, IsSorted::Not)
    }

    #[doc(hidden)]
    pub unsafe fn _take_unchecked_slice2(
        &self,
        idx: &[IdxSize],
        allow_threads: bool,
        sorted: IsSorted,
    ) -> Self {
        #[cfg(debug_assertions)]
        {
            if idx.len() > 2 {
                match sorted {
                    IsSorted::Ascending => {
                        assert!(idx[0] <= idx[idx.len() - 1]);
                    }
                    IsSorted::Descending => {
                        assert!(idx[0] >= idx[idx.len() - 1]);
                    }
                    _ => {}
                }
            }
        }
        let ptr = idx.as_ptr() as *mut IdxSize;
        let len = idx.len();

        // create a temporary vec. we will not drop it.
        let mut ca = IdxCa::from_vec("", Vec::from_raw_parts(ptr, len, len));
        ca.set_sorted2(sorted);
        let out = self.take_unchecked_impl(&ca, allow_threads);

        // ref count of buffers should be one because we dropped all allocations
        let arr = {
            let arr_ref = std::mem::take(&mut ca.chunks).pop().unwrap();
            arr_ref
                .as_any()
                .downcast_ref::<PrimitiveArray<IdxSize>>()
                .unwrap()
                .clone()
        };
        // the only owned heap allocation is the `Vec` we created and must not be dropped
        let _ = std::mem::ManuallyDrop::new(arr.into_mut().right().unwrap());
        out
    }

    #[cfg(feature = "partition_by")]
    #[doc(hidden)]
    pub fn _partition_by_impl(
        &self,
        cols: &[String],
        stable: bool,
    ) -> PolarsResult<Vec<DataFrame>> {
        let groups = if stable {
            self.groupby_stable(cols)?.take_groups()
        } else {
            self.groupby(cols)?.take_groups()
        };

        // don't parallelize this
        // there is a lot of parallelization in take and this may easily SO
        POOL.install(|| {
            match groups {
                GroupsProxy::Idx(idx) => {
                    Ok(idx
                        .into_par_iter()
                        .map(|(_, group)| {
                            // groups are in bounds
                            unsafe { self._take_unchecked_slice(&group, false) }
                        })
                        .collect())
                }
                GroupsProxy::Slice { groups, .. } => Ok(groups
                    .into_par_iter()
                    .map(|[first, len]| self.slice(first as i64, len as usize))
                    .collect()),
            }
        })
    }

    /// Split into multiple DataFrames partitioned by groups
    #[cfg(feature = "partition_by")]
    #[cfg_attr(docsrs, doc(cfg(feature = "partition_by")))]
    pub fn partition_by(&self, cols: impl IntoVec<String>) -> PolarsResult<Vec<DataFrame>> {
        let cols = cols.into_vec();
        self._partition_by_impl(&cols, false)
    }

    /// Split into multiple DataFrames partitioned by groups
    /// Order of the groups are maintained.
    #[cfg(feature = "partition_by")]
    #[cfg_attr(docsrs, doc(cfg(feature = "partition_by")))]
    pub fn partition_by_stable(&self, cols: impl IntoVec<String>) -> PolarsResult<Vec<DataFrame>> {
        let cols = cols.into_vec();
        self._partition_by_impl(&cols, true)
    }

    /// Unnest the given `Struct` columns. This means that the fields of the `Struct` type will be
    /// inserted as columns.
    #[cfg(feature = "dtype-struct")]
    #[cfg_attr(docsrs, doc(cfg(feature = "dtype-struct")))]
    pub fn unnest<I: IntoVec<String>>(&self, cols: I) -> PolarsResult<DataFrame> {
        let cols = cols.into_vec();
        self.unnest_impl(cols.into_iter().collect())
    }

    #[cfg(feature = "dtype-struct")]
    fn unnest_impl(&self, cols: PlHashSet<String>) -> PolarsResult<DataFrame> {
        let mut new_cols = Vec::with_capacity(std::cmp::min(self.width() * 2, self.width() + 128));
        let mut count = 0;
        for s in &self.columns {
            if cols.contains(s.name()) {
                let ca = s.struct_()?;
                new_cols.extend_from_slice(ca.fields());
                count += 1;
            } else {
                new_cols.push(s.clone())
            }
        }
        if count != cols.len() {
            // one or more columns not found
            // the code below will return an error with the missing name
            let schema = self.schema();
            for col in cols {
                let _ = schema
                    .get(&col)
                    .ok_or_else(|| PolarsError::NotFound(col.into()))?;
            }
        }
        DataFrame::new(new_cols)
    }
}

pub struct RecordBatchIter<'a> {
    columns: &'a Vec<Series>,
    idx: usize,
    n_chunks: usize,
}

impl<'a> Iterator for RecordBatchIter<'a> {
    type Item = ArrowChunk;

    fn next(&mut self) -> Option<Self::Item> {
        if self.idx >= self.n_chunks {
            None
        } else {
            // create a batch of the columns with the same chunk no.
            let batch_cols = self.columns.iter().map(|s| s.to_arrow(self.idx)).collect();
            self.idx += 1;

            Some(ArrowChunk::new(batch_cols))
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let n = self.n_chunks - self.idx;
        (n, Some(n))
    }
}

pub struct PhysRecordBatchIter<'a> {
    iters: Vec<std::slice::Iter<'a, ArrayRef>>,
}

impl Iterator for PhysRecordBatchIter<'_> {
    type Item = ArrowChunk;

    fn next(&mut self) -> Option<Self::Item> {
        self.iters
            .iter_mut()
            .map(|phys_iter| phys_iter.next().cloned())
            .collect::<Option<Vec<_>>>()
            .map(ArrowChunk::new)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if let Some(iter) = self.iters.first() {
            iter.size_hint()
        } else {
            (0, None)
        }
    }
}

impl Default for DataFrame {
    fn default() -> Self {
        DataFrame::new_no_checks(vec![])
    }
}

impl From<DataFrame> for Vec<Series> {
    fn from(df: DataFrame) -> Self {
        df.columns
    }
}

// utility to test if we can vstack/extend the columns
fn can_extend(left: &Series, right: &Series) -> PolarsResult<()> {
    if left.dtype() != right.dtype() || left.name() != right.name() {
        if left.dtype() != right.dtype() {
            return Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot vstack: because column datatypes (dtypes) in the two DataFrames do not match for \
                                left.name='{}' with left.dtype={} != right.dtype={} with right.name='{}'",
                    left.name(),
                    left.dtype(),
                    right.dtype(),
                    right.name()
                )
                    .into(),
            ));
        } else {
            return Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot vstack: because column names in the two DataFrames do not match for \
                                left.name='{}' != right.name='{}'",
                    left.name(),
                    right.name()
                )
                .into(),
            ));
        }
    };
    Ok(())
}
More examples
Hide additional examples
src/frame/groupby/aggregations/dispatch.rs (line 10)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    fn restore_logical(&self, out: Series) -> Series {
        if self.dtype().is_logical() {
            out.cast(self.dtype()).unwrap()
        } else {
            out
        }
    }

    #[doc(hidden)]
    pub fn agg_valid_count(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<IdxType, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else if !self.has_validity() {
                    Some(idx.len() as IdxSize)
                } else {
                    let take =
                        unsafe { self.take_iter_unchecked(&mut idx.iter().map(|i| *i as usize)) };
                    Some((take.len() - take.null_count()) as IdxSize)
                }
            }),
            GroupsProxy::Slice { groups, .. } => {
                _agg_helper_slice::<IdxType, _>(groups, |[first, len]| {
                    debug_assert!(len <= self.len() as IdxSize);
                    if len == 0 {
                        None
                    } else if !self.has_validity() {
                        Some(len)
                    } else {
                        let take = self.slice_from_offsets(first, len);
                        Some((take.len() - take.null_count()) as IdxSize)
                    }
                })
            }
        }
    }

    #[doc(hidden)]
    pub unsafe fn agg_first(&self, groups: &GroupsProxy) -> Series {
        let out = match groups {
            GroupsProxy::Idx(groups) => {
                let mut iter = groups.iter().map(|(first, idx)| {
                    if idx.is_empty() {
                        None
                    } else {
                        Some(first as usize)
                    }
                });
                // Safety:
                // groups are always in bounds
                self.take_opt_iter_unchecked(&mut iter)
            }
            GroupsProxy::Slice { groups, .. } => {
                let mut iter =
                    groups.iter().map(
                        |&[first, len]| {
                            if len == 0 {
                                None
                            } else {
                                Some(first as usize)
                            }
                        },
                    );
                // Safety:
                // groups are always in bounds
                self.take_opt_iter_unchecked(&mut iter)
            }
        };
        self.restore_logical(out)
    }

    #[doc(hidden)]
    pub unsafe fn agg_n_unique(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<IdxType, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else {
                    let take = self.take_iter_unchecked(&mut idx.iter().map(|i| *i as usize));
                    take.n_unique().ok().map(|v| v as IdxSize)
                }
            }),
            GroupsProxy::Slice { groups, .. } => {
                _agg_helper_slice::<IdxType, _>(groups, |[first, len]| {
                    debug_assert!(len <= self.len() as IdxSize);
                    if len == 0 {
                        None
                    } else {
                        let take = self.slice_from_offsets(first, len);
                        take.n_unique().ok().map(|v| v as IdxSize)
                    }
                })
            }
        }
    }

    #[doc(hidden)]
    pub unsafe fn agg_median(&self, groups: &GroupsProxy) -> Series {
        use DataType::*;

        match self.dtype() {
            Float32 => SeriesWrap(self.f32().unwrap().clone()).agg_median(groups),
            Float64 => SeriesWrap(self.f64().unwrap().clone()).agg_median(groups),
            dt if dt.is_numeric() || dt.is_temporal() => {
                let ca = self.to_physical_repr();
                let physical_type = ca.dtype();
                let s = apply_method_physical_integer!(ca, agg_median, groups);
                if dt.is_logical() {
                    // back to physical and then
                    // back to logical type
                    s.cast(physical_type).unwrap().cast(dt).unwrap()
                } else {
                    s
                }
            }
            _ => Series::full_null("", groups.len(), self.dtype()),
        }
    }

    #[doc(hidden)]
    pub unsafe fn agg_quantile(
        &self,
        groups: &GroupsProxy,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> Series {
        use DataType::*;

        match self.dtype() {
            Float32 => {
                SeriesWrap(self.f32().unwrap().clone()).agg_quantile(groups, quantile, interpol)
            }
            Float64 => {
                SeriesWrap(self.f64().unwrap().clone()).agg_quantile(groups, quantile, interpol)
            }
            dt if dt.is_numeric() || dt.is_temporal() => {
                let ca = self.to_physical_repr();
                let physical_type = ca.dtype();
                let s =
                    apply_method_physical_integer!(ca, agg_quantile, groups, quantile, interpol);
                if dt.is_logical() {
                    // back to physical and then
                    // back to logical type
                    s.cast(physical_type).unwrap().cast(dt).unwrap()
                } else {
                    s
                }
            }
            _ => Series::full_null("", groups.len(), self.dtype()),
        }
    }

    #[doc(hidden)]
    pub unsafe fn agg_mean(&self, groups: &GroupsProxy) -> Series {
        use DataType::*;

        match self.dtype() {
            Boolean => self.cast(&Float64).unwrap().agg_mean(groups),
            Float32 => SeriesWrap(self.f32().unwrap().clone()).agg_mean(groups),
            Float64 => SeriesWrap(self.f64().unwrap().clone()).agg_mean(groups),
            dt if dt.is_numeric() => {
                apply_method_physical_integer!(self, agg_mean, groups)
            }
            dt @ Duration(_) => {
                let s = self.to_physical_repr();
                // agg_mean returns Float64
                let out = s.agg_mean(groups);
                // cast back to Int64 and then to logical duration type
                out.cast(&Int64).unwrap().cast(dt).unwrap()
            }
            _ => Series::full_null("", groups.len(), self.dtype()),
        }
    }
src/testing.rs (line 9)
8
9
10
11
12
13
14
    pub fn series_equal(&self, other: &Series) -> bool {
        if self.null_count() > 0 || other.null_count() > 0 || self.dtype() != other.dtype() {
            false
        } else {
            self.series_equal_missing(other)
        }
    }
src/frame/arithmetic.rs (line 13)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
fn get_supertype_all(df: &DataFrame, rhs: &Series) -> PolarsResult<DataType> {
    df.columns
        .iter()
        .fold(Ok(rhs.dtype().clone()), |dt, s| match dt {
            Ok(dt) => try_get_supertype(s.dtype(), &dt),
            e => e,
        })
}

macro_rules! impl_arithmetic {
    ($self:expr, $rhs:expr, $operand: tt) => {{
        let st = get_supertype_all($self, $rhs)?;
        let rhs = $rhs.cast(&st)?;
        let cols = $self.columns.par_iter().map(|s| {
            Ok(&s.cast(&st)? $operand &rhs)
        }).collect::<PolarsResult<_>>()?;
        Ok(DataFrame::new_no_checks(cols))
    }}
}

impl Add<&Series> for &DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn add(self, rhs: &Series) -> Self::Output {
        impl_arithmetic!(self, rhs, +)
    }
}

impl Add<&Series> for DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn add(self, rhs: &Series) -> Self::Output {
        (&self).add(rhs)
    }
}

impl Sub<&Series> for &DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn sub(self, rhs: &Series) -> Self::Output {
        impl_arithmetic!(self, rhs, -)
    }
}

impl Sub<&Series> for DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn sub(self, rhs: &Series) -> Self::Output {
        (&self).sub(rhs)
    }
}

impl Mul<&Series> for &DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn mul(self, rhs: &Series) -> Self::Output {
        impl_arithmetic!(self, rhs, *)
    }
}

impl Mul<&Series> for DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn mul(self, rhs: &Series) -> Self::Output {
        (&self).mul(rhs)
    }
}

impl Div<&Series> for &DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn div(self, rhs: &Series) -> Self::Output {
        impl_arithmetic!(self, rhs, /)
    }
}

impl Div<&Series> for DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn div(self, rhs: &Series) -> Self::Output {
        (&self).div(rhs)
    }
}

impl Rem<&Series> for &DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn rem(self, rhs: &Series) -> Self::Output {
        impl_arithmetic!(self, rhs, %)
    }
}

impl Rem<&Series> for DataFrame {
    type Output = PolarsResult<DataFrame>;

    fn rem(self, rhs: &Series) -> Self::Output {
        (&self).rem(rhs)
    }
}

impl DataFrame {
    fn binary_aligned(
        &self,
        other: &DataFrame,
        f: &(dyn Fn(&Series, &Series) -> PolarsResult<Series> + Sync + Send),
    ) -> PolarsResult<DataFrame> {
        let max_len = std::cmp::max(self.height(), other.height());
        let max_width = std::cmp::max(self.width(), other.width());
        let mut cols = self
            .get_columns()
            .par_iter()
            .zip(other.get_columns().par_iter())
            .map(|(l, r)| {
                let diff_l = max_len - l.len();
                let diff_r = max_len - r.len();

                let st = try_get_supertype(l.dtype(), r.dtype())?;
                let mut l = l.cast(&st)?;
                let mut r = r.cast(&st)?;

                if diff_l > 0 {
                    l = l.extend_constant(AnyValue::Null, diff_l)?;
                };
                if diff_r > 0 {
                    r = r.extend_constant(AnyValue::Null, diff_r)?;
                };

                f(&l, &r)
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let col_len = cols.len();
        if col_len < max_width {
            let df = if col_len < self.width() { self } else { other };

            for i in col_len..max_len {
                let s = &df.get_columns()[i];
                let name = s.name();
                let dtype = s.dtype();

                // trick to fill a series with nulls
                let vals: &[Option<i32>] = &[None];
                let s = Series::new(name, vals).cast(dtype)?;
                cols.push(s.new_from_index(0, max_len))
            }
        }
        DataFrame::new(cols)
    }
src/series/series_trait.rs (line 208)
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    fn bitand(&self, _other: &Series) -> PolarsResult<Series> {
        Err(PolarsError::InvalidOperation(
            format!(
                "bitwise 'AND' operation not supported for dtype {:?}",
                self.dtype()
            )
            .into(),
        ))
    }

    fn bitor(&self, _other: &Series) -> PolarsResult<Series> {
        Err(PolarsError::InvalidOperation(
            format!(
                "bitwise 'OR' operation not supported for dtype {:?}",
                self.dtype()
            )
            .into(),
        ))
    }

    fn bitxor(&self, _other: &Series) -> PolarsResult<Series> {
        Err(PolarsError::InvalidOperation(
            format!(
                "bitwise 'XOR' operation not supported for dtype {:?}",
                self.dtype()
            )
            .into(),
        ))
    }

    /// Get the lengths of the underlying chunks
    fn chunk_lengths(&self) -> ChunkIdIter {
        invalid_operation_panic!(self)
    }
    /// Name of series.
    fn name(&self) -> &str {
        invalid_operation_panic!(self)
    }

    /// Get field (used in schema)
    fn field(&self) -> Cow<Field> {
        self._field()
    }

    /// Get datatype of series.
    fn dtype(&self) -> &DataType {
        self._dtype()
    }

    /// Underlying chunks.
    fn chunks(&self) -> &Vec<ArrayRef>;

    /// Number of chunks in this Series
    fn n_chunks(&self) -> usize {
        self.chunks().len()
    }

    /// Shrink the capacity of this array to fit its length.
    fn shrink_to_fit(&mut self) {
        panic!("shrink to fit not supported for dtype {:?}", self.dtype())
    }

    /// Take `num_elements` from the top as a zero copy view.
    fn limit(&self, num_elements: usize) -> Series {
        self.slice(0, num_elements)
    }

    /// Get a zero copy view of the data.
    ///
    /// When offset is negative the offset is counted from the
    /// end of the array
    fn slice(&self, _offset: i64, _length: usize) -> Series {
        invalid_operation_panic!(self)
    }

    #[doc(hidden)]
    fn append(&mut self, _other: &Series) -> PolarsResult<()> {
        invalid_operation_panic!(self)
    }

    #[doc(hidden)]
    fn extend(&mut self, _other: &Series) -> PolarsResult<()> {
        invalid_operation_panic!(self)
    }

    /// Filter by boolean mask. This operation clones data.
    fn filter(&self, _filter: &BooleanChunked) -> PolarsResult<Series> {
        invalid_operation_panic!(self)
    }

    #[doc(hidden)]
    #[cfg(feature = "chunked_ids")]
    unsafe fn _take_chunked_unchecked(&self, by: &[ChunkId], sorted: IsSorted) -> Series;

    #[doc(hidden)]
    #[cfg(feature = "chunked_ids")]
    unsafe fn _take_opt_chunked_unchecked(&self, by: &[Option<ChunkId>]) -> Series;

    /// Take by index from an iterator. This operation clones the data.
    fn take_iter(&self, _iter: &mut dyn TakeIterator) -> PolarsResult<Series>;

    /// Take by index from an iterator. This operation clones the data.
    ///
    /// # Safety
    ///
    /// - This doesn't check any bounds.
    /// - Iterator must be TrustedLen
    unsafe fn take_iter_unchecked(&self, _iter: &mut dyn TakeIterator) -> Series;

    /// Take by index if ChunkedArray contains a single chunk.
    ///
    /// # Safety
    /// This doesn't check any bounds.
    unsafe fn take_unchecked(&self, _idx: &IdxCa) -> PolarsResult<Series>;

    /// Take by index from an iterator. This operation clones the data.
    ///
    /// # Safety
    ///
    /// - This doesn't check any bounds.
    /// - Iterator must be TrustedLen
    unsafe fn take_opt_iter_unchecked(&self, _iter: &mut dyn TakeIteratorNulls) -> Series;

    /// Take by index from an iterator. This operation clones the data.
    /// todo! remove?
    #[cfg(feature = "take_opt_iter")]
    #[cfg_attr(docsrs, doc(cfg(feature = "take_opt_iter")))]
    fn take_opt_iter(&self, _iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
        invalid_operation_panic!(self)
    }

    /// Take by index. This operation is clone.
    fn take(&self, _indices: &IdxCa) -> PolarsResult<Series>;

    /// Get length of series.
    fn len(&self) -> usize;

    /// Check if Series is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Aggregate all chunks to a contiguous array of memory.
    fn rechunk(&self) -> Series {
        invalid_operation_panic!(self)
    }

    /// Take every nth value as a new Series
    fn take_every(&self, n: usize) -> Series;

    /// Drop all null values and return a new Series.
    fn drop_nulls(&self) -> Series {
        if self.null_count() == 0 {
            Series(self.clone_inner())
        } else {
            self.filter(&self.is_not_null()).unwrap()
        }
    }

    /// Returns the mean value in the array
    /// Returns an option because the array is nullable.
    fn mean(&self) -> Option<f64> {
        None
    }

    /// Returns the median value in the array
    /// Returns an option because the array is nullable.
    fn median(&self) -> Option<f64> {
        None
    }

    /// Create a new Series filled with values from the given index.
    ///
    /// # Example
    ///
    /// ```rust
    /// use polars_core::prelude::*;
    /// let s = Series::new("a", [0i32, 1, 8]);
    /// let s2 = s.new_from_index(2, 4);
    /// assert_eq!(Vec::from(s2.i32().unwrap()), &[Some(8), Some(8), Some(8), Some(8)])
    /// ```
    fn new_from_index(&self, _index: usize, _length: usize) -> Series {
        invalid_operation_panic!(self)
    }

    fn cast(&self, _data_type: &DataType) -> PolarsResult<Series> {
        invalid_operation_panic!(self)
    }

    /// Get a single value by index. Don't use this operation for loops as a runtime cast is
    /// needed for every iteration.
    fn get(&self, _index: usize) -> PolarsResult<AnyValue> {
        invalid_operation_panic!(self)
    }

    /// Get a single value by index. Don't use this operation for loops as a runtime cast is
    /// needed for every iteration.
    ///
    /// This may refer to physical types
    ///
    /// # Safety
    /// Does not do any bounds checking
    #[cfg(feature = "private")]
    unsafe fn get_unchecked(&self, _index: usize) -> AnyValue {
        invalid_operation_panic!(self)
    }

    fn sort_with(&self, _options: SortOptions) -> Series {
        invalid_operation_panic!(self)
    }

    /// Retrieve the indexes needed for a sort.
    #[allow(unused)]
    fn argsort(&self, options: SortOptions) -> IdxCa {
        invalid_operation_panic!(self)
    }

    /// Count the null values.
    fn null_count(&self) -> usize {
        invalid_operation_panic!(self)
    }

    /// Return if any the chunks in this `[ChunkedArray]` have a validity bitmap.
    /// no bitmap means no null values.
    fn has_validity(&self) -> bool;

    /// Get unique values in the Series.
    fn unique(&self) -> PolarsResult<Series> {
        invalid_operation!(self)
    }

    /// Get unique values in the Series.
    fn n_unique(&self) -> PolarsResult<usize> {
        invalid_operation_panic!(self)
    }

    /// Get first indexes of unique values.
    fn arg_unique(&self) -> PolarsResult<IdxCa> {
        invalid_operation_panic!(self)
    }

    /// Get min index
    fn arg_min(&self) -> Option<usize> {
        None
    }

    /// Get max index
    fn arg_max(&self) -> Option<usize> {
        None
    }

    /// Get a mask of the null values.
    fn is_null(&self) -> BooleanChunked {
        invalid_operation_panic!(self)
    }

    /// Get a mask of the non-null values.
    fn is_not_null(&self) -> BooleanChunked {
        invalid_operation_panic!(self)
    }

    /// Get a mask of all the unique values.
    fn is_unique(&self) -> PolarsResult<BooleanChunked> {
        invalid_operation_panic!(self)
    }

    /// Get a mask of all the duplicated values.
    fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
        invalid_operation_panic!(self)
    }

    /// return a Series in reversed order
    fn reverse(&self) -> Series {
        invalid_operation_panic!(self)
    }

    /// Rechunk and return a pointer to the start of the Series.
    /// Only implemented for numeric types
    fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        Err(PolarsError::InvalidOperation(
            "operation 'as_single_ptr' not supported".into(),
        ))
    }

    /// Shift the values by a given period and fill the parts that will be empty due to this operation
    /// with `Nones`.
    ///
    /// *NOTE: If you want to fill the Nones with a value use the
    /// [`shift` operation on `ChunkedArray<T>`](../chunked_array/ops/trait.ChunkShift.html).*
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example() -> PolarsResult<()> {
    ///     let s = Series::new("series", &[1, 2, 3]);
    ///
    ///     let shifted = s.shift(1);
    ///     assert_eq!(Vec::from(shifted.i32()?), &[None, Some(1), Some(2)]);
    ///
    ///     let shifted = s.shift(-1);
    ///     assert_eq!(Vec::from(shifted.i32()?), &[Some(2), Some(3), None]);
    ///
    ///     let shifted = s.shift(2);
    ///     assert_eq!(Vec::from(shifted.i32()?), &[None, None, Some(1)]);
    ///
    ///     Ok(())
    /// }
    /// example();
    /// ```
    fn shift(&self, _periods: i64) -> Series {
        invalid_operation_panic!(self)
    }

    /// Replace None values with one of the following strategies:
    /// * Forward fill (replace None with the previous value)
    /// * Backward fill (replace None with the next value)
    /// * Mean fill (replace None with the mean of the whole array)
    /// * Min fill (replace None with the minimum of the whole array)
    /// * Max fill (replace None with the maximum of the whole array)
    ///
    /// *NOTE: If you want to fill the Nones with a value use the
    /// [`fill_null` operation on `ChunkedArray<T>`](../chunked_array/ops/trait.ChunkFillNull.html)*.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// fn example() -> PolarsResult<()> {
    ///     let s = Series::new("some_missing", &[Some(1), None, Some(2)]);
    ///
    ///     let filled = s.fill_null(FillNullStrategy::Forward(None))?;
    ///     assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(1), Some(2)]);
    ///
    ///     let filled = s.fill_null(FillNullStrategy::Backward(None))?;
    ///     assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(2), Some(2)]);
    ///
    ///     let filled = s.fill_null(FillNullStrategy::Min)?;
    ///     assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(1), Some(2)]);
    ///
    ///     let filled = s.fill_null(FillNullStrategy::Max)?;
    ///     assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(2), Some(2)]);
    ///
    ///     let filled = s.fill_null(FillNullStrategy::Mean)?;
    ///     assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(1), Some(2)]);
    ///
    ///     Ok(())
    /// }
    /// example();
    /// ```
    fn fill_null(&self, _strategy: FillNullStrategy) -> PolarsResult<Series> {
        invalid_operation_panic!(self)
    }

    /// Get the sum of the Series as a new Series of length 1.
    ///
    /// If the [`DataType`] is one of `{Int8, UInt8, Int16, UInt16}` the `Series` is
    /// first cast to `Int64` to prevent overflow issues.
    fn _sum_as_series(&self) -> Series {
        invalid_operation_panic!(self)
    }
    /// Get the max of the Series as a new Series of length 1.
    fn max_as_series(&self) -> Series {
        invalid_operation_panic!(self)
    }
    /// Get the min of the Series as a new Series of length 1.
    fn min_as_series(&self) -> Series {
        invalid_operation_panic!(self)
    }
    /// Get the median of the Series as a new Series of length 1.
    fn median_as_series(&self) -> Series {
        Series::full_null(self.name(), 1, self.dtype())
    }
    /// Get the variance of the Series as a new Series of length 1.
    fn var_as_series(&self, _ddof: u8) -> Series {
        Series::full_null(self.name(), 1, self.dtype())
    }
    /// Get the standard deviation of the Series as a new Series of length 1.
    fn std_as_series(&self, _ddof: u8) -> Series {
        Series::full_null(self.name(), 1, self.dtype())
    }
    /// Get the quantile of the ChunkedArray as a new Series of length 1.
    fn quantile_as_series(
        &self,
        _quantile: f64,
        _interpol: QuantileInterpolOptions,
    ) -> PolarsResult<Series> {
        Ok(Series::full_null(self.name(), 1, self.dtype()))
    }

    fn fmt_list(&self) -> String {
        "fmt implemented".into()
    }

    /// Clone inner ChunkedArray and wrap in a new Arc
    fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
        invalid_operation_panic!(self)
    }

    #[cfg(feature = "object")]
    #[cfg_attr(docsrs, doc(cfg(feature = "object")))]
    /// Get the value at this index as a downcastable Any trait ref.
    fn get_object(&self, _index: usize) -> Option<&dyn PolarsObjectSafe> {
        invalid_operation_panic!(self)
    }

    /// Get a hold to self as `Any` trait reference.
    /// Only implemented for ObjectType
    fn as_any(&self) -> &dyn Any {
        invalid_operation_panic!(self)
    }

    /// Get a hold to self as `Any` trait reference.
    /// Only implemented for ObjectType
    fn as_any_mut(&mut self) -> &mut dyn Any {
        invalid_operation_panic!(self)
    }

    /// Get a boolean mask of the local maximum peaks.
    fn peak_max(&self) -> BooleanChunked {
        invalid_operation_panic!(self)
    }

    /// Get a boolean mask of the local minimum peaks.
    fn peak_min(&self) -> BooleanChunked {
        invalid_operation_panic!(self)
    }

    /// Check if elements of this Series are in the right Series, or List values of the right Series.
    #[cfg(feature = "is_in")]
    #[cfg_attr(docsrs, doc(cfg(feature = "is_in")))]
    fn is_in(&self, _other: &Series) -> PolarsResult<BooleanChunked> {
        invalid_operation_panic!(self)
    }
    #[cfg(feature = "repeat_by")]
    #[cfg_attr(docsrs, doc(cfg(feature = "repeat_by")))]
    fn repeat_by(&self, _by: &IdxCa) -> ListChunked {
        invalid_operation_panic!(self)
    }
    #[cfg(feature = "checked_arithmetic")]
    #[cfg_attr(docsrs, doc(cfg(feature = "checked_arithmetic")))]
    fn checked_div(&self, _rhs: &Series) -> PolarsResult<Series> {
        invalid_operation_panic!(self)
    }

    #[cfg(feature = "is_first")]
    #[cfg_attr(docsrs, doc(cfg(feature = "is_first")))]
    /// Get a mask of the first unique values.
    fn is_first(&self) -> PolarsResult<BooleanChunked> {
        invalid_operation_panic!(self)
    }

    #[cfg(feature = "mode")]
    #[cfg_attr(docsrs, doc(cfg(feature = "mode")))]
    /// Compute the most occurring element in the array.
    fn mode(&self) -> PolarsResult<Series> {
        invalid_operation_panic!(self)
    }

    #[cfg(feature = "rolling_window")]
    #[cfg_attr(docsrs, doc(cfg(feature = "rolling_window")))]
    /// Apply a custom function over a rolling/ moving window of the array.
    /// This has quite some dynamic dispatch, so prefer rolling_min, max, mean, sum over this.
    fn rolling_apply(
        &self,
        _f: &dyn Fn(&Series) -> Series,
        _options: RollingOptionsFixedWindow,
    ) -> PolarsResult<Series> {
        panic!("rolling apply not implemented for this dtype. Only implemented for numeric data.")
    }
    #[cfg(feature = "concat_str")]
    #[cfg_attr(docsrs, doc(cfg(feature = "concat_str")))]
    /// Concat the values into a string array.
    /// # Arguments
    ///
    /// * `delimiter` - A string that will act as delimiter between values.
    fn str_concat(&self, _delimiter: &str) -> Utf8Chunked {
        invalid_operation_panic!(self)
    }
}

impl<'a> (dyn SeriesTrait + 'a) {
    pub fn unpack<N: 'static>(&self) -> PolarsResult<&ChunkedArray<N>>
    where
        N: PolarsDataType,
    {
        if &N::get_dtype() == self.dtype() {
            Ok(self.as_ref())
        } else {
            Err(PolarsError::SchemaMisMatch(
                "cannot unpack Series; data types don't match".into(),
            ))
        }
    }
src/chunked_array/ops/full.rs (line 92)
90
91
92
93
94
95
96
97
    fn full(name: &str, value: &Series, length: usize) -> ListChunked {
        let mut builder =
            get_list_builder(value.dtype(), value.len() * length, length, name).unwrap();
        for _ in 0..length {
            builder.append_series(value)
        }
        builder.finish()
    }

Number of chunks in this Series

Examples found in repository?
src/frame/mod.rs (line 433)
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    pub fn as_single_chunk_par(&mut self) -> &mut Self {
        if self.columns.iter().any(|s| s.n_chunks() > 1) {
            self.columns = self.apply_columns_par(&|s| s.rechunk());
        }
        self
    }

    /// Estimates of the DataFrames columns consist of the same chunk sizes
    pub fn should_rechunk(&self) -> bool {
        let hb = RandomState::default();
        let hb2 = RandomState::with_seeds(392498, 98132457, 0, 412059);
        !self
            .columns
            .iter()
            // The idea is that we create a hash of the chunk lengths.
            // Consisting of the combined hash + the sum (assuming collision probability is nihil)
            // if not, we can add more hashes or at worst case we do an extra rechunk.
            // the old solution to this was clone all lengths to a vec and compare the vecs
            .map(|s| {
                s.chunk_lengths().map(|i| i as u64).fold(
                    (0u64, 0u64, s.n_chunks()),
                    |(lhash, lh2, n), rval| {
                        let mut h = hb.build_hasher();
                        rval.hash(&mut h);
                        let rhash = h.finish();
                        let mut h = hb2.build_hasher();
                        rval.hash(&mut h);
                        let rh2 = h.finish();
                        (
                            _boost_hash_combine(lhash, rhash),
                            _boost_hash_combine(lh2, rh2),
                            n,
                        )
                    },
                )
            })
            .all_equal()
    }

    /// Ensure all the chunks in the DataFrame are aligned.
    pub fn rechunk(&mut self) -> &mut Self {
        if self.should_rechunk() {
            self.as_single_chunk_par()
        } else {
            self
        }
    }

    /// Get the `DataFrame` schema.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Thing" => &["Observable universe", "Human stupidity"],
    ///                         "Diameter (m)" => &[8.8e26, f64::INFINITY])?;
    ///
    /// let f1: Field = Field::new("Thing", DataType::Utf8);
    /// let f2: Field = Field::new("Diameter (m)", DataType::Float64);
    /// let sc: Schema = Schema::from(vec![f1, f2].into_iter());
    ///
    /// assert_eq!(df.schema(), sc);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn schema(&self) -> Schema {
        Schema::from(self.iter().map(|s| s.field().into_owned()))
    }

    /// Get a reference to the `DataFrame` columns.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Adenine", "Cytosine", "Guanine", "Thymine"],
    ///                         "Symbol" => &["A", "C", "G", "T"])?;
    /// let columns: &Vec<Series> = df.get_columns();
    ///
    /// assert_eq!(columns[0].name(), "Name");
    /// assert_eq!(columns[1].name(), "Symbol");
    /// # Ok::<(), PolarsError>(())
    /// ```
    #[inline]
    pub fn get_columns(&self) -> &Vec<Series> {
        &self.columns
    }

    #[cfg(feature = "private")]
    #[inline]
    pub fn get_columns_mut(&mut self) -> &mut Vec<Series> {
        &mut self.columns
    }

    /// Iterator over the columns as `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Name", &["Pythagoras' theorem", "Shannon entropy"]);
    /// let s2: Series = Series::new("Formula", &["a²+b²=c²", "H=-Σ[P(x)log|P(x)|]"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2.clone()])?;
    ///
    /// let mut iterator = df.iter();
    ///
    /// assert_eq!(iterator.next(), Some(&s1));
    /// assert_eq!(iterator.next(), Some(&s2));
    /// assert_eq!(iterator.next(), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn iter(&self) -> std::slice::Iter<'_, Series> {
        self.columns.iter()
    }

    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Language" => &["Rust", "Python"],
    ///                         "Designer" => &["Graydon Hoare", "Guido van Rossum"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Language", "Designer"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn get_column_names(&self) -> Vec<&str> {
        self.columns.iter().map(|s| s.name()).collect()
    }

    /// Get the `Vec<String>` representing the column names.
    pub fn get_column_names_owned(&self) -> Vec<String> {
        self.columns.iter().map(|s| s.name().to_string()).collect()
    }

    /// Set the column names.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Mathematical set" => &["ℕ", "ℤ", "𝔻", "ℚ", "ℝ", "ℂ"])?;
    /// df.set_column_names(&["Set"])?;
    ///
    /// assert_eq!(df.get_column_names(), &["Set"]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn set_column_names<S: AsRef<str>>(&mut self, names: &[S]) -> PolarsResult<()> {
        if names.len() != self.columns.len() {
            return Err(PolarsError::ShapeMisMatch("the provided slice with column names has not the same size as the DataFrame's width".into()));
        }
        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(names.iter().map(|name| name.as_ref()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }

        let columns = mem::take(&mut self.columns);
        self.columns = columns
            .into_iter()
            .zip(names)
            .map(|(s, name)| {
                let mut s = s;
                s.rename(name.as_ref());
                s
            })
            .collect();
        Ok(())
    }

    /// Get the data types of the columns in the DataFrame.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let venus_air: DataFrame = df!("Element" => &["Carbon dioxide", "Nitrogen"],
    ///                                "Fraction" => &[0.965, 0.035])?;
    ///
    /// assert_eq!(venus_air.dtypes(), &[DataType::Utf8, DataType::Float64]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn dtypes(&self) -> Vec<DataType> {
        self.columns.iter().map(|s| s.dtype().clone()).collect()
    }

    /// The number of chunks per column
    pub fn n_chunks(&self) -> usize {
        match self.columns.get(0) {
            None => 0,
            Some(s) => s.n_chunks(),
        }
    }

Shrink the capacity of this array to fit its length.

Examples found in repository?
src/series/mod.rs (line 198)
197
198
199
    pub fn shrink_to_fit(&mut self) {
        self._get_inner_mut().shrink_to_fit()
    }

Take num_elements from the top as a zero copy view.

Get a zero copy view of the data.

When offset is negative the offset is counted from the end of the array

Examples found in repository?
src/series/series_trait.rs (line 268)
267
268
269
    fn limit(&self, num_elements: usize) -> Series {
        self.slice(0, num_elements)
    }
More examples
Hide additional examples
src/frame/groupby/aggregations/dispatch.rs (line 6)
5
6
7
    fn slice_from_offsets(&self, first: IdxSize, len: IdxSize) -> Self {
        self.slice(first as i64, len as usize)
    }
src/series/mod.rs (line 839)
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    pub fn head(&self, length: Option<usize>) -> Series {
        match length {
            Some(len) => self.slice(0, std::cmp::min(len, self.len())),
            None => self.slice(0, std::cmp::min(10, self.len())),
        }
    }

    /// Get the tail of the Series.
    pub fn tail(&self, length: Option<usize>) -> Series {
        let len = match length {
            Some(len) => std::cmp::min(len, self.len()),
            None => std::cmp::min(10, self.len()),
        };
        self.slice(-(len as i64), len)
    }
src/series/ops/diff.rs (line 11)
6
7
8
9
10
11
12
13
14
    pub fn diff(&self, n: usize, null_behavior: NullBehavior) -> Series {
        match null_behavior {
            NullBehavior::Ignore => self - &self.shift(n as i64),
            NullBehavior::Drop => {
                let len = self.len() - n;
                &self.slice(n as i64, len) - &self.slice(0, len)
            }
        }
    }
src/utils/mod.rs (line 647)
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
pub fn parallel_op_series<F>(f: F, s: Series, n_threads: Option<usize>) -> PolarsResult<Series>
where
    F: Fn(Series) -> PolarsResult<Series> + Send + Sync,
{
    let n_threads = n_threads.unwrap_or_else(|| POOL.current_num_threads());
    let splits = _split_offsets(s.len(), n_threads);

    let chunks = POOL.install(|| {
        splits
            .into_par_iter()
            .map(|(offset, len)| {
                let s = s.slice(offset as i64, len);
                f(s)
            })
            .collect::<PolarsResult<Vec<_>>>()
    })?;

    let mut iter = chunks.into_iter();
    let first = iter.next().unwrap();
    let out = iter.fold(first, |mut acc, s| {
        acc.append(&s).unwrap();
        acc
    });

    f(out)
}
src/frame/mod.rs (line 1135)
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }

    /// Select column(s) from this `DataFrame` and return them into a `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Methane", "Ethane", "Propane"],
    ///                         "Carbon" => &[1, 2, 3],
    ///                         "Hydrogen" => &[4, 6, 8])?;
    /// let sv: Vec<Series> = df.select_series(&["Carbon", "Hydrogen"])?;
    ///
    /// assert_eq!(df["Carbon"], sv[0]);
    /// assert_eq!(df["Hydrogen"], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_series(&self, selection: impl IntoVec<String>) -> PolarsResult<Vec<Series>> {
        let cols = selection.into_vec();
        self.select_series_impl(&cols)
    }

    fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
        self.columns
            .iter()
            .enumerate()
            .map(|(i, s)| (s.name(), i))
            .collect()
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_physical_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            let name_to_idx = self._names_to_idx_map();
            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self
                        .select_at_idx(idx)
                        .unwrap()
                        .to_physical_repr()
                        .into_owned())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.to_physical_repr().into_owned()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            // we hash, because there are user that having millions of columns.
            // # https://github.com/pola-rs/polars/issues/1023
            let name_to_idx = self._names_to_idx_map();

            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self.select_at_idx(idx).unwrap().clone())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.clone()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// Select a mutable series by name.
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_mut(&mut self, name: &str) -> Option<&mut Series> {
        let opt_idx = self.find_idx_by_name(name);

        match opt_idx {
            Some(idx) => self.select_at_idx_mut(idx),
            None => None,
        }
    }

    /// Does a filter but splits thread chunks vertically instead of horizontally
    /// This yields a DataFrame with `n_chunks == n_threads`.
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` value by indexes from an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let iterator = (0..9).into_iter();
    ///     df.take_iter(iterator)
    /// }
    /// ```
    pub fn take_iter<I>(&self, iter: I) -> PolarsResult<Self>
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        let new_col = self.try_apply_columns_par(&|s| {
            let mut i = iter.clone();
            s.take_iter(&mut i)
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` values by indexes from an iterator.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking but checks null validity.
    #[must_use]
    pub unsafe fn take_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            return self.take_unchecked_vectical(&idx_ca.into_inner());
        }

        let n_chunks = self.n_chunks();
        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            let idx_ca = idx_ca.into_inner();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_iter_unchecked(&mut i)
            })
        };
        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` values by indexes from an iterator that may contain None values.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking. Out of bounds may access uninitialized memory.
    /// Null validity is checked
    #[must_use]
    pub unsafe fn take_opt_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = Option<usize>> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked_vectical(&idx_ca);
        }

        let n_chunks = self.n_chunks();

        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_opt_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_opt_iter_unchecked(&mut i)
            })
        };

        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` rows by index values.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let idx = IdxCa::new("idx", &[0, 1, 9]);
    ///     df.take(&idx)
    /// }
    /// ```
    pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        let new_col = POOL.install(|| {
            self.try_apply_columns_par(&|s| match s.dtype() {
                DataType::Utf8 => s.take_threaded(&indices, true),
                _ => s.take(&indices),
            })
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    pub(crate) unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
        self.take_unchecked_impl(idx, true)
    }

    unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
        let cols = if allow_threads {
            POOL.install(|| {
                self.apply_columns_par(&|s| match s.dtype() {
                    DataType::Utf8 => s.take_unchecked_threaded(idx, true).unwrap(),
                    _ => s.take_unchecked(idx).unwrap(),
                })
            })
        } else {
            self.columns
                .iter()
                .map(|s| s.take_unchecked(idx).unwrap())
                .collect()
        };
        DataFrame::new_no_checks(cols)
    }

    unsafe fn take_unchecked_vectical(&self, indices: &IdxCa) -> Self {
        let n_threads = POOL.current_num_threads();
        let idxs = split_ca(indices, n_threads).unwrap();

        let dfs: Vec<_> = POOL.install(|| {
            idxs.par_iter()
                .map(|idx| {
                    let cols = self
                        .columns
                        .iter()
                        .map(|s| s.take_unchecked(idx).unwrap())
                        .collect();
                    DataFrame::new_no_checks(cols)
                })
                .collect()
        });

        let mut iter = dfs.into_iter();
        let first = iter.next().unwrap();
        iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        })
    }

    /// Rename a column in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
    ///     let original_name = "foo";
    ///     let new_name = "bar";
    ///     df.rename(original_name, new_name)
    /// }
    /// ```
    pub fn rename(&mut self, column: &str, name: &str) -> PolarsResult<&mut Self> {
        self.select_mut(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))
            .map(|s| s.rename(name))?;

        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(self.columns.iter().map(|s| s.name()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }
        Ok(self)
    }

    /// Sort `DataFrame` in place by a column.
    pub fn sort_in_place(
        &mut self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<&mut Self> {
        // a lot of indirection in both sorting and take
        self.as_single_chunk_par();
        let by_column = self.select_series(by_column)?;
        let reverse = reverse.into_vec();
        self.columns = self.sort_impl(by_column, reverse, false, None)?.columns;
        Ok(self)
    }

    /// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
    #[cfg(feature = "private")]
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

    /// Return a sorted clone of this `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn sort_example(df: &DataFrame, reverse: bool) -> PolarsResult<DataFrame> {
    ///     df.sort(["a"], reverse)
    /// }
    ///
    /// fn sort_by_multiple_columns_example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.sort(&["a", "b"], vec![false, true])
    /// }
    /// ```
    pub fn sort(
        &self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.sort_in_place(by_column, reverse)?;
        Ok(df)
    }

    /// Sort the `DataFrame` by a single column with extra options.
    pub fn sort_with_options(&self, by_column: &str, options: SortOptions) -> PolarsResult<Self> {
        let mut df = self.clone();
        // a lot of indirection in both sorting and take
        df.as_single_chunk_par();
        let by_column = vec![df.column(by_column)?.clone()];
        let reverse = vec![options.descending];
        df.columns = df
            .sort_impl(by_column, reverse, options.nulls_last, None)?
            .columns;
        Ok(df)
    }

    /// Replace a column with a `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Country" => &["United States", "China"],
    ///                         "Area (km²)" => &[9_833_520, 9_596_961])?;
    /// let s: Series = Series::new("Country", &["USA", "PRC"]);
    ///
    /// assert!(df.replace("Nation", s.clone()).is_err());
    /// assert!(df.replace("Country", s).is_ok());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
        self.apply(column, |_| new_col.into_series())
    }

    /// Replace or update a column. The difference between this method and [DataFrame::with_column]
    /// is that now the value of `column: &str` determines the name of the column and not the name
    /// of the `Series` passed to this method.
    pub fn replace_or_add<S: IntoSeries>(
        &mut self,
        column: &str,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_col = new_col.into_series();
        new_col.rename(column);
        self.with_column(new_col)
    }

    /// Replace column at index `idx` with a `Series`.
    ///
    /// # Example
    ///
    /// ```ignored
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.replace_at_idx(1, df.select_at_idx(1).unwrap() + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace_at_idx<S: IntoSeries>(
        &mut self,
        idx: usize,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_column = new_col.into_series();
        if new_column.len() != self.height() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Cannot replace Series at index {}. The shape of Series {} does not match that of the DataFrame {}",
                idx, new_column.len(), self.height()
                ).into()));
        };
        if idx >= self.width() {
            return Err(PolarsError::ComputeError(
                format!(
                    "Column index: {} outside of DataFrame with {} columns",
                    idx,
                    self.width()
                )
                .into(),
            ));
        }
        let old_col = &mut self.columns[idx];
        mem::swap(old_col, &mut new_column);
        Ok(self)
    }

    /// Apply a closure to a column. This is the recommended way to do in place modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("names", &["Jean", "Claude", "van"]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// fn str_to_len(str_val: &Series) -> Series {
    ///     str_val.utf8()
    ///         .unwrap()
    ///         .into_iter()
    ///         .map(|opt_name: Option<&str>| {
    ///             opt_name.map(|name: &str| name.len() as u32)
    ///          })
    ///         .collect::<UInt32Chunked>()
    ///         .into_series()
    /// }
    ///
    /// // Replace the names column by the length of the names.
    /// df.apply("names", str_to_len);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    |       |
    /// | ---    | names |
    /// | str    | u32   |
    /// +========+=======+
    /// | "ham"  | 4     |
    /// +--------+-------+
    /// | "spam" | 6     |
    /// +--------+-------+
    /// | "egg"  | 3     |
    /// +--------+-------+
    /// ```
    pub fn apply<F, S>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let idx = self.check_name_to_idx(name)?;
        self.apply_at_idx(idx, f)
    }

    /// Apply a closure to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.apply_at_idx(1, |s| s + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    | ascii |
    /// | ---    | ---   |
    /// | str    | i32   |
    /// +========+=======+
    /// | "ham"  | 102   |
    /// +--------+-------+
    /// | "spam" | 111   |
    /// +--------+-------+
    /// | "egg"  | 111   |
    /// +--------+-------+
    /// ```
    pub fn apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let df_height = self.height();
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();
        let new_col = f(col).into_series();
        match new_col.len() {
            1 => {
                let new_col = new_col.new_from_index(0, df_height);
                let _ = mem::replace(col, new_col);
            }
            len if (len == df_height) => {
                let _ = mem::replace(col, new_col);
            }
            len => {
                return Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Result Series has shape {} where the DataFrame has height {}",
                        len,
                        self.height()
                    )
                    .into(),
                ));
            }
        }

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given range of indexes.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// let idx = vec![0, 1, 4];
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set_at_idx_with(idx, |opt_val| opt_val.map(|string| format!("{}-is-modified", string)))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "ham-is-modified"   | 1      |
    /// +---------------------+--------+
    /// | "spam-is-modified"  | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "quack-is-modified" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();

        let _ = mem::replace(col, f(col).map(|s| s.into_series())?);

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given a boolean mask.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // create a mask
    /// let values = df.column("values")?;
    /// let mask = values.lt_eq(1)? | values.gt_eq(5_i32)?;
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set(&mask, Some("not_within_bounds"))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "not_within_bounds" | 1      |
    /// +---------------------+--------+
    /// | "spam"              | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "not_within_bounds" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply<F, S>(&mut self, column: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let idx = self
            .find_idx_by_name(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))?;
        self.try_apply_at_idx(idx, f)
    }

    /// Slice the `DataFrame` along the rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Fruit" => &["Apple", "Grape", "Grape", "Fig", "Fig"],
    ///                         "Color" => &["Green", "Red", "White", "White", "Red"])?;
    /// let sl: DataFrame = df.slice(2, 3);
    ///
    /// assert_eq!(sl.shape(), (3, 2));
    /// println!("{}", sl);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Output:
    /// ```text
    /// shape: (3, 2)
    /// +-------+-------+
    /// | Fruit | Color |
    /// | ---   | ---   |
    /// | str   | str   |
    /// +=======+=======+
    /// | Grape | White |
    /// +-------+-------+
    /// | Fig   | White |
    /// +-------+-------+
    /// | Fig   | Red   |
    /// +-------+-------+
    /// ```
    #[must_use]
    pub fn slice(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        let col = self
            .columns
            .iter()
            .map(|s| s.slice(offset, length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    #[must_use]
    pub fn slice_par(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns_par(&|s| s.slice(offset, length)))
    }

    #[must_use]
    pub fn _slice_and_realloc(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns(&|s| {
            let mut out = s.slice(offset, length);
            out.shrink_to_fit();
            out
        }))
    }

Filter by boolean mask. This operation clones data.

Examples found in repository?
src/series/series_trait.rs (line 359)
355
356
357
358
359
360
361
    fn drop_nulls(&self) -> Series {
        if self.null_count() == 0 {
            Series(self.clone_inner())
        } else {
            self.filter(&self.is_not_null()).unwrap()
        }
    }
More examples
Hide additional examples
src/series/mod.rs (line 491)
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    pub fn filter_threaded(&self, filter: &BooleanChunked, rechunk: bool) -> PolarsResult<Series> {
        // this would fail if there is a broadcasting filter.
        // because we cannot split that filter over threads
        // besides they are a no-op, so we do the standard filter.
        if filter.len() == 1 {
            return self.filter(filter);
        }
        let n_threads = POOL.current_num_threads();
        let filters = split_ca(filter, n_threads).unwrap();
        let series = split_series(self, n_threads).unwrap();

        let series: PolarsResult<Vec<_>> = POOL.install(|| {
            filters
                .par_iter()
                .zip(series)
                .map(|(filter, s)| s.filter(filter))
                .collect()
        });

        Ok(self.finish_take_threaded(series?, rechunk))
    }
src/frame/mod.rs (line 1555)
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

Check if Series is empty.

Examples found in repository?
src/series/mod.rs (line 521)
519
520
521
522
523
524
525
526
527
528
529
530
531
    pub fn sum_as_series(&self) -> Series {
        use DataType::*;
        if self.is_empty() && self.dtype().is_numeric() {
            return Series::new("", [0])
                .cast(self.dtype())
                .unwrap()
                .sum_as_series();
        }
        match self.dtype() {
            Int8 | UInt8 | Int16 | UInt16 => self.cast(&Int64).unwrap().sum_as_series(),
            _ => self._sum_as_series(),
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/apply.rs (line 678)
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    fn apply<F>(&'a self, f: F) -> Self
    where
        F: Fn(Series) -> Series + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let mut function = |s: Series| {
            let out = f(s);
            if out.is_empty() {
                fast_explode = false;
            }
            out
        };
        let mut ca: ListChunked = apply!(self, &mut function);
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }

    fn try_apply<F>(&'a self, f: F) -> PolarsResult<Self>
    where
        F: Fn(Series) -> PolarsResult<Series> + Copy,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }

        let mut fast_explode = true;
        let mut function = |s: Series| {
            let out = f(s);
            if let Ok(out) = &out {
                if out.is_empty() {
                    fast_explode = false;
                }
            }
            out
        };
        let ca: PolarsResult<ListChunked> = try_apply!(self, &mut function);
        let mut ca = ca?;
        if fast_explode {
            ca.set_fast_explode()
        }
        Ok(ca)
    }

    fn apply_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn(Option<Series>) -> Option<Series> + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        self.into_iter().map(f).collect_trusted()
    }

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Series)) -> Series + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let mut function = |(idx, s)| {
            let out = f((idx, s));
            if out.is_empty() {
                fast_explode = false;
            }
            out
        };
        let mut ca: ListChunked = apply_enumerate!(self, function);
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }

    /// Apply a closure elementwise. The closure gets the index of the element as first argument.
    fn apply_with_idx_on_opt<F>(&'a self, f: F) -> Self
    where
        F: Fn((usize, Option<Series>)) -> Option<Series> + Copy,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = true;
        let function = |(idx, s)| {
            let out = f((idx, s));
            if let Some(out) = &out {
                if out.is_empty() {
                    fast_explode = false;
                }
            }
            out
        };
        let mut ca: ListChunked = self.into_iter().enumerate().map(function).collect_trusted();
        if fast_explode {
            ca.set_fast_explode()
        }
        ca
    }
src/chunked_array/list/iterator.rs (line 138)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    pub fn apply_amortized<'a, F>(&'a self, mut f: F) -> Self
    where
        F: FnMut(UnstableSeries<'a>) -> Series,
    {
        if self.is_empty() {
            return self.clone();
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v.map(|v| {
                    let out = f(v);
                    if out.is_empty() {
                        fast_explode = false;
                    }
                    out
                })
            })
            .collect_trusted();

        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        ca
    }

    pub fn try_apply_amortized<'a, F>(&'a self, mut f: F) -> PolarsResult<Self>
    where
        F: FnMut(UnstableSeries<'a>) -> PolarsResult<Series>,
    {
        if self.is_empty() {
            return Ok(self.clone());
        }
        let mut fast_explode = self.null_count() == 0;
        let mut ca: ListChunked = self
            .amortized_iter()
            .map(|opt_v| {
                opt_v
                    .map(|v| {
                        let out = f(v);
                        if let Ok(out) = &out {
                            if out.is_empty() {
                                fast_explode = false
                            }
                        };
                        out
                    })
                    .transpose()
            })
            .collect::<PolarsResult<_>>()?;
        ca.rename(self.name());
        if fast_explode {
            ca.set_fast_explode();
        }
        Ok(ca)
    }
src/chunked_array/builder/list.rs (line 156)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.fast_explode = false;
        }
        let physical = s.to_physical_repr();
        let ca = physical.unpack::<T>().unwrap();
        let values = self.builder.mut_values();

        ca.downcast_iter().for_each(|arr| {
            if !arr.has_validity() {
                values.extend_from_slice(arr.values().as_slice())
            } else {
                // Safety:
                // Arrow arrays are trusted length iterators.
                unsafe { values.extend_trusted_len_unchecked(arr.into_iter()) }
            }
        });
        // overflow of i64 is far beyond polars capable lengths.
        unsafe { self.builder.try_push_valid().unwrap_unchecked() };
    }

    fn finish(&mut self) -> ListChunked {
        finish_list_builder!(self)
    }
}

type LargePrimitiveBuilder<T> = MutableListArray<i64, MutablePrimitiveArray<T>>;
type LargeListUtf8Builder = MutableListArray<i64, MutableUtf8Array<i64>>;
#[cfg(feature = "dtype-binary")]
type LargeListBinaryBuilder = MutableListArray<i64, MutableBinaryArray<i64>>;
type LargeListBooleanBuilder = MutableListArray<i64, MutableBooleanArray>;

pub struct ListUtf8ChunkedBuilder {
    builder: LargeListUtf8Builder,
    field: Field,
    fast_explode: bool,
}

impl ListUtf8ChunkedBuilder {
    pub fn new(name: &str, capacity: usize, values_capacity: usize) -> Self {
        let values = MutableUtf8Array::<i64>::with_capacity(values_capacity);
        let builder = LargeListUtf8Builder::new_with_capacity(values, capacity);
        let field = Field::new(name, DataType::List(Box::new(DataType::Utf8)));

        ListUtf8ChunkedBuilder {
            builder,
            field,
            fast_explode: true,
        }
    }

    pub fn append_trusted_len_iter<'a, I: Iterator<Item = Option<&'a str>> + TrustedLen>(
        &mut self,
        iter: I,
    ) {
        let values = self.builder.mut_values();

        if iter.size_hint().0 == 0 {
            self.fast_explode = false;
        }
        // Safety
        // trusted len, trust the type system
        unsafe { values.extend_trusted_len_unchecked(iter) };
        self.builder.try_push_valid().unwrap();
    }

    pub fn append_values_iter<'a, I: Iterator<Item = &'a str>>(&mut self, iter: I) {
        let values = self.builder.mut_values();

        if iter.size_hint().0 == 0 {
            self.fast_explode = false;
        }
        values.extend_values(iter);
        self.builder.try_push_valid().unwrap();
    }

    pub(crate) fn append(&mut self, ca: &Utf8Chunked) {
        let value_builder = self.builder.mut_values();
        value_builder.try_extend(ca).unwrap();
        self.builder.try_push_valid().unwrap();
    }
}

impl ListBuilderTrait for ListUtf8ChunkedBuilder {
    fn append_opt_series(&mut self, opt_s: Option<&Series>) {
        match opt_s {
            Some(s) => self.append_series(s),
            None => {
                self.append_null();
            }
        }
    }

    #[inline]
    fn append_null(&mut self) {
        self.fast_explode = false;
        self.builder.push_null();
    }

    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.fast_explode = false;
        }
        let ca = s.utf8().unwrap();
        self.append(ca)
    }

    fn finish(&mut self) -> ListChunked {
        finish_list_builder!(self)
    }
}

#[cfg(feature = "dtype-binary")]
pub struct ListBinaryChunkedBuilder {
    builder: LargeListBinaryBuilder,
    field: Field,
    fast_explode: bool,
}

#[cfg(feature = "dtype-binary")]
impl ListBinaryChunkedBuilder {
    pub fn new(name: &str, capacity: usize, values_capacity: usize) -> Self {
        let values = MutableBinaryArray::<i64>::with_capacity(values_capacity);
        let builder = LargeListBinaryBuilder::new_with_capacity(values, capacity);
        let field = Field::new(name, DataType::List(Box::new(DataType::Binary)));

        ListBinaryChunkedBuilder {
            builder,
            field,
            fast_explode: true,
        }
    }

    pub fn append_trusted_len_iter<'a, I: Iterator<Item = Option<&'a [u8]>> + TrustedLen>(
        &mut self,
        iter: I,
    ) {
        let values = self.builder.mut_values();

        if iter.size_hint().0 == 0 {
            self.fast_explode = false;
        }
        // Safety
        // trusted len, trust the type system
        unsafe { values.extend_trusted_len_unchecked(iter) };
        self.builder.try_push_valid().unwrap();
    }

    pub fn append_values_iter<'a, I: Iterator<Item = &'a [u8]>>(&mut self, iter: I) {
        let values = self.builder.mut_values();

        if iter.size_hint().0 == 0 {
            self.fast_explode = false;
        }
        values.extend_values(iter);
        self.builder.try_push_valid().unwrap();
    }

    pub(crate) fn append(&mut self, ca: &BinaryChunked) {
        let value_builder = self.builder.mut_values();
        value_builder.try_extend(ca).unwrap();
        self.builder.try_push_valid().unwrap();
    }
}

#[cfg(feature = "dtype-binary")]
impl ListBuilderTrait for ListBinaryChunkedBuilder {
    fn append_opt_series(&mut self, opt_s: Option<&Series>) {
        match opt_s {
            Some(s) => self.append_series(s),
            None => {
                self.append_null();
            }
        }
    }

    #[inline]
    fn append_null(&mut self) {
        self.fast_explode = false;
        self.builder.push_null();
    }

    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.fast_explode = false;
        }
        let ca = s.binary().unwrap();
        self.append(ca)
    }

    fn finish(&mut self) -> ListChunked {
        finish_list_builder!(self)
    }
}

pub struct ListBooleanChunkedBuilder {
    builder: LargeListBooleanBuilder,
    field: Field,
    fast_explode: bool,
}

impl ListBooleanChunkedBuilder {
    pub fn new(name: &str, capacity: usize, values_capacity: usize) -> Self {
        let values = MutableBooleanArray::with_capacity(values_capacity);
        let builder = LargeListBooleanBuilder::new_with_capacity(values, capacity);
        let field = Field::new(name, DataType::List(Box::new(DataType::Boolean)));

        Self {
            builder,
            field,
            fast_explode: true,
        }
    }

    #[inline]
    pub fn append_iter<I: Iterator<Item = Option<bool>> + TrustedLen>(&mut self, iter: I) {
        let values = self.builder.mut_values();

        if iter.size_hint().0 == 0 {
            self.fast_explode = false;
        }
        // Safety
        // trusted len, trust the type system
        unsafe { values.extend_trusted_len_unchecked(iter) };
        self.builder.try_push_valid().unwrap();
    }

    #[inline]
    pub(crate) fn append(&mut self, ca: &BooleanChunked) {
        if ca.is_empty() {
            self.fast_explode = false;
        }
        let value_builder = self.builder.mut_values();
        value_builder.extend(ca);
        self.builder.try_push_valid().unwrap();
    }
}

impl ListBuilderTrait for ListBooleanChunkedBuilder {
    fn append_opt_series(&mut self, opt_s: Option<&Series>) {
        match opt_s {
            Some(s) => self.append_series(s),
            None => {
                self.append_null();
            }
        }
    }

    #[inline]
    fn append_null(&mut self) {
        self.fast_explode = false;
        self.builder.push_null();
    }

    #[inline]
    fn append_series(&mut self, s: &Series) {
        let ca = s.bool().unwrap();
        self.append(ca)
    }

    fn finish(&mut self) -> ListChunked {
        finish_list_builder!(self)
    }
}

pub fn get_list_builder(
    dt: &DataType,
    value_capacity: usize,
    list_capacity: usize,
    name: &str,
) -> PolarsResult<Box<dyn ListBuilderTrait>> {
    let physical_type = dt.to_physical();

    let _err = || -> PolarsResult<Box<dyn ListBuilderTrait>> {
        Err(PolarsError::ComputeError(
            format!(
                "list builder not supported for this dtype: {}",
                &physical_type
            )
            .into(),
        ))
    };

    match &physical_type {
        #[cfg(feature = "object")]
        DataType::Object(_) => _err(),
        #[cfg(feature = "dtype-struct")]
        DataType::Struct(_) => Ok(Box::new(AnonymousOwnedListBuilder::new(
            name,
            list_capacity,
            Some(physical_type),
        ))),
        DataType::List(_) => Ok(Box::new(AnonymousOwnedListBuilder::new(
            name,
            list_capacity,
            Some(physical_type),
        ))),
        _ => {
            macro_rules! get_primitive_builder {
                ($type:ty) => {{
                    let builder = ListPrimitiveChunkedBuilder::<$type>::new(
                        name,
                        list_capacity,
                        value_capacity,
                        dt.clone(),
                    );
                    Box::new(builder)
                }};
            }
            macro_rules! get_bool_builder {
                () => {{
                    let builder =
                        ListBooleanChunkedBuilder::new(&name, list_capacity, value_capacity);
                    Box::new(builder)
                }};
            }
            macro_rules! get_utf8_builder {
                () => {{
                    let builder =
                        ListUtf8ChunkedBuilder::new(&name, list_capacity, 5 * value_capacity);
                    Box::new(builder)
                }};
            }
            #[cfg(feature = "dtype-binary")]
            macro_rules! get_binary_builder {
                () => {{
                    let builder =
                        ListBinaryChunkedBuilder::new(&name, list_capacity, 5 * value_capacity);
                    Box::new(builder)
                }};
            }
            Ok(match_dtype_to_logical_apply_macro!(
                physical_type,
                get_primitive_builder,
                get_utf8_builder,
                get_binary_builder,
                get_bool_builder
            ))
        }
    }
}

pub struct AnonymousListBuilder<'a> {
    name: String,
    builder: AnonymousBuilder<'a>,
    fast_explode: bool,
    pub dtype: Option<DataType>,
}

impl Default for AnonymousListBuilder<'_> {
    fn default() -> Self {
        Self::new("", 0, None)
    }
}

impl<'a> AnonymousListBuilder<'a> {
    pub fn new(name: &str, capacity: usize, inner_dtype: Option<DataType>) -> Self {
        Self {
            name: name.into(),
            builder: AnonymousBuilder::new(capacity),
            fast_explode: true,
            dtype: inner_dtype,
        }
    }

    pub fn append_opt_series(&mut self, opt_s: Option<&'a Series>) {
        match opt_s {
            Some(s) => self.append_series(s),
            None => {
                self.append_null();
            }
        }
    }

    pub fn append_opt_array(&mut self, opt_s: Option<&'a dyn Array>) {
        match opt_s {
            Some(s) => self.append_array(s),
            None => {
                self.append_null();
            }
        }
    }

    pub fn append_array(&mut self, arr: &'a dyn Array) {
        self.builder.push(arr)
    }

    #[inline]
    pub fn append_null(&mut self) {
        self.builder.push_null();
    }

    #[inline]
    pub fn append_empty(&mut self) {
        self.fast_explode = false;
        self.builder.push_empty()
    }

    pub fn append_series(&mut self, s: &'a Series) {
        // empty arrays tend to be null type and thus differ
        // if we would push it the concat would fail.
        if s.is_empty() && matches!(s.dtype(), DataType::Null) {
            self.append_empty();
        } else {
            match s.dtype() {
                #[cfg(feature = "dtype-struct")]
                DataType::Struct(_) => {
                    let arr = &**s.array_ref(0);
                    self.builder.push(arr)
                }
                _ => {
                    self.builder.push_multiple(s.chunks());
                }
            }
        }
    }

    pub fn finish(&mut self) -> ListChunked {
        let slf = std::mem::take(self);
        if slf.builder.is_empty() {
            ListChunked::full_null_with_dtype(&slf.name, 0, &slf.dtype.unwrap_or(DataType::Null))
        } else {
            let dtype = slf.dtype.map(|dt| dt.to_physical().to_arrow());
            let arr = slf.builder.finish(dtype.as_ref()).unwrap();
            let dtype = DataType::from(arr.data_type());
            let mut ca = ListChunked::from_chunks("", vec![Box::new(arr)]);

            if self.fast_explode {
                ca.set_fast_explode();
            }

            ca.field = Arc::new(Field::new(&slf.name, dtype));
            ca
        }
    }
}

pub struct AnonymousOwnedListBuilder {
    name: String,
    builder: AnonymousBuilder<'static>,
    owned: Vec<Series>,
    inner_dtype: Option<DataType>,
    fast_explode: bool,
}

impl Default for AnonymousOwnedListBuilder {
    fn default() -> Self {
        Self::new("", 0, None)
    }
}

impl ListBuilderTrait for AnonymousOwnedListBuilder {
    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.append_empty();
        } else {
            // Safety
            // we deref a raw pointer with a lifetime that is not static
            // it is safe because we also clone Series (Arc +=1) and therefore the &dyn Arrays
            // will not be dropped until the owned series are dropped
            unsafe {
                match s.dtype() {
                    #[cfg(feature = "dtype-struct")]
                    DataType::Struct(_) => {
                        self.builder.push(&*(&**s.array_ref(0) as *const dyn Array))
                    }
                    _ => {
                        self.builder
                            .push_multiple(&*(s.chunks().as_ref() as *const [ArrayRef]));
                    }
                }
            }
            // this make sure that the underlying ArrayRef's are not dropped
            self.owned.push(s.clone());
        }
    }
src/frame/row.rs (line 98)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    pub fn from_rows_iter_and_schema<'a, I>(mut rows: I, schema: &Schema) -> PolarsResult<Self>
    where
        I: Iterator<Item = &'a Row<'a>>,
    {
        let capacity = rows.size_hint().0;

        let mut buffers: Vec<_> = schema
            .iter_dtypes()
            .map(|dtype| {
                let buf: AnyValueBuffer = (dtype, capacity).into();
                buf
            })
            .collect();

        let mut expected_len = 0;
        rows.try_for_each::<_, PolarsResult<()>>(|row| {
            expected_len += 1;
            for (value, buf) in row.0.iter().zip(&mut buffers) {
                buf.add_fallible(value)?
            }
            Ok(())
        })?;
        let v = buffers
            .into_iter()
            .zip(schema.iter_names())
            .map(|(b, name)| {
                let mut s = b.into_series();
                // if the schema adds a column not in the rows, we
                // fill it with nulls
                if s.is_empty() {
                    Series::full_null(name, expected_len, s.dtype())
                } else {
                    s.rename(name);
                    s
                }
            })
            .collect();
        DataFrame::new(v)
    }
src/functions.rs (line 146)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
pub fn concat_str(s: &[Series], delimiter: &str) -> PolarsResult<Utf8Chunked> {
    if s.is_empty() {
        return Err(PolarsError::NoData(
            "expected multiple series in concat_str function".into(),
        ));
    }
    if s.iter().any(|s| s.is_empty()) {
        return Ok(Utf8Chunked::full_null(s[0].name(), 0));
    }

    let len = s.iter().map(|s| s.len()).max().unwrap();

    let cas = s
        .iter()
        .map(|s| {
            let s = s.cast(&DataType::Utf8)?;
            let mut ca = s.utf8()?.clone();
            // broadcast
            if ca.len() == 1 && len > 1 {
                ca = ca.new_from_index(0, len)
            }

            Ok(ca)
        })
        .collect::<PolarsResult<Vec<_>>>()?;

    if !s.iter().all(|s| s.len() == 1 || s.len() == len) {
        return Err(PolarsError::ComputeError(
            "All series in concat_str function should have equal length or unit length".into(),
        ));
    }
    let mut iters = cas
        .iter()
        .map(|ca| match ca.len() {
            1 => IterBroadCast::Value(ca.get(0)),
            _ => IterBroadCast::Column(ca.into_iter()),
        })
        .collect::<Vec<_>>();

    let bytes_cap = cas.iter().map(|ca| ca.get_values_size()).sum();
    let mut builder = Utf8ChunkedBuilder::new(s[0].name(), len, bytes_cap);

    // use a string buffer, to amortize alloc
    let mut buf = String::with_capacity(128);

    for _ in 0..len {
        let mut has_null = false;

        iters.iter_mut().enumerate().for_each(|(i, it)| {
            if i > 0 {
                buf.push_str(delimiter);
            }

            match it.next() {
                Some(Some(s)) => buf.push_str(s),
                Some(None) => has_null = true,
                None => {
                    // should not happen as the out loop counts to length
                    unreachable!()
                }
            }
        });

        if has_null {
            builder.append_null();
        } else {
            builder.append_value(&buf)
        }
        buf.truncate(0)
    }
    Ok(builder.finish())
}

Aggregate all chunks to a contiguous array of memory.

Examples found in repository?
src/frame/mod.rs (line 408)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    pub fn agg_chunks(&self) -> Self {
        // Don't parallelize this. Memory overhead
        let f = |s: &Series| s.rechunk();
        let cols = self.columns.iter().map(f).collect();
        DataFrame::new_no_checks(cols)
    }

    /// Shrink the capacity of this DataFrame to fit its length.
    pub fn shrink_to_fit(&mut self) {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            s.shrink_to_fit();
        }
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk.
    pub fn as_single_chunk(&mut self) -> &mut Self {
        // Don't parallelize this. Memory overhead
        for s in &mut self.columns {
            *s = s.rechunk();
        }
        self
    }

    /// Aggregate all the chunks in the DataFrame to a single chunk in parallel.
    /// This may lead to more peak memory consumption.
    pub fn as_single_chunk_par(&mut self) -> &mut Self {
        if self.columns.iter().any(|s| s.n_chunks() > 1) {
            self.columns = self.apply_columns_par(&|s| s.rechunk());
        }
        self
    }
More examples
Hide additional examples
src/series/mod.rs (line 402)
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    fn finish_take_threaded(&self, s: Vec<Series>, rechunk: bool) -> Series {
        let s = s
            .into_iter()
            .reduce(|mut s, s1| {
                s.append(&s1).unwrap();
                s
            })
            .unwrap();
        if rechunk {
            s.rechunk()
        } else {
            s
        }
    }
src/utils/mod.rs (line 945)
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
pub fn coalesce_nulls_series(a: &Series, b: &Series) -> (Series, Series) {
    if a.null_count() > 0 || b.null_count() > 0 {
        let mut a = a.rechunk();
        let mut b = b.rechunk();
        for (arr_a, arr_b) in unsafe { a.chunks_mut().iter_mut().zip(b.chunks_mut()) } {
            let validity = match (arr_a.validity(), arr_b.validity()) {
                (None, Some(b)) => Some(b.clone()),
                (Some(a), Some(b)) => Some(a & b),
                (Some(a), None) => Some(a.clone()),
                (None, None) => None,
            };
            *arr_a = arr_a.with_validity(validity.clone());
            *arr_b = arr_b.with_validity(validity);
        }
        (a, b)
    } else {
        (a.clone(), b.clone())
    }
}
src/series/ops/to_list.rs (line 33)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    pub fn to_list(&self) -> PolarsResult<ListChunked> {
        let s = self.rechunk();
        let values = s.array_ref(0);

        let offsets = vec![0i64, values.len() as i64];
        let inner_type = self.dtype();

        let data_type = ListArray::<i64>::default_datatype(inner_type.to_physical().to_arrow());

        // Safety:
        // offsets are correct;
        let arr = unsafe {
            ListArray::new(
                data_type,
                Offsets::new_unchecked(offsets).into(),
                values.clone(),
                None,
            )
        };
        let name = self.name();

        let mut ca = ListChunked::from_chunks(name, vec![Box::new(arr)]);
        if self.dtype() != &self.dtype().to_physical() {
            ca.to_logical(inner_type.clone())
        }
        ca.set_fast_explode();

        Ok(ca)
    }
src/frame/hash_join/mod.rs (line 474)
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    pub fn _left_join_from_series(
        &self,
        other: &DataFrame,
        s_left: &Series,
        s_right: &Series,
        suffix: Option<String>,
        slice: Option<(i64, usize)>,
        verbose: bool,
    ) -> PolarsResult<DataFrame> {
        #[cfg(feature = "dtype-categorical")]
        _check_categorical_src(s_left.dtype(), s_right.dtype())?;

        // ensure that the chunks are aligned otherwise we go OOB
        let mut left = self.clone();
        let mut s_left = s_left.clone();
        let mut right = other.clone();
        let mut s_right = s_right.clone();
        if left.should_rechunk() {
            left.as_single_chunk_par();
            s_left = s_left.rechunk();
        }
        if right.should_rechunk() {
            right.as_single_chunk_par();
            s_right = s_right.rechunk();
        }
        let ids = sort_or_hash_left(&s_left, &s_right, verbose);
        left._finish_left_join(ids, &right.drop(s_right.name()).unwrap(), suffix, slice)
    }
src/chunked_array/ops/sort/mod.rs (line 694)
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
pub(crate) fn prepare_argsort(
    columns: Vec<Series>,
    mut reverse: Vec<bool>,
) -> PolarsResult<(Series, Vec<Series>, Vec<bool>)> {
    let n_cols = columns.len();

    let mut columns = columns
        .iter()
        .map(|s| {
            use DataType::*;
            match s.dtype() {
                Float32 | Float64 | Int32 | Int64 | Utf8 | UInt32 | UInt64 => s.clone(),
                #[cfg(feature = "dtype-categorical")]
                Categorical(_) => s.rechunk(),
                _ => {
                    // small integers i8, u8 etc are casted to reduce compiler bloat
                    // not that we don't expect any logical types at this point
                    if s.bit_repr_is_large() {
                        s.cast(&DataType::Int64).unwrap()
                    } else {
                        s.cast(&DataType::Int32).unwrap()
                    }
                }
            }
        })
        .collect::<Vec<_>>();

    let first = columns.remove(0);

    // broadcast ordering
    if n_cols > reverse.len() && reverse.len() == 1 {
        while n_cols != reverse.len() {
            reverse.push(reverse[0]);
        }
    }
    Ok((first, columns, reverse))
}

Drop all null values and return a new Series.

Returns the mean value in the array Returns an option because the array is nullable.

Examples found in repository?
src/series/mod.rs (line 856)
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
    pub fn mean_as_series(&self) -> Series {
        match self.dtype() {
            DataType::Float32 => {
                let val = &[self.mean().map(|m| m as f32)];
                Series::new(self.name(), val)
            }
            dt if dt.is_numeric() || matches!(dt, DataType::Boolean) => {
                let val = &[self.mean()];
                Series::new(self.name(), val)
            }
            dt @ DataType::Duration(_) => {
                Series::new(self.name(), &[self.mean().map(|v| v as i64)])
                    .cast(dt)
                    .unwrap()
            }
            _ => return Series::full_null(self.name(), 1, self.dtype()),
        }
    }
More examples
Hide additional examples
src/series/ops/moment.rs (line 35)
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
fn moment_precomputed_mean(s: &Series, moment: usize, mean: f64) -> PolarsResult<Option<f64>> {
    // see: https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/stats/stats.py#L922
    let out = match moment {
        0 => Some(1.0),
        1 => Some(0.0),
        _ => {
            let mut n_list = vec![moment];
            let mut current_n = moment;
            while current_n > 2 {
                if current_n % 2 == 1 {
                    current_n = (current_n - 1) / 2
                } else {
                    current_n /= 2
                }
                n_list.push(current_n)
            }

            let a_zero_mean = s.cast(&DataType::Float64)? - mean;

            let mut s = if n_list.pop().unwrap() == 1 {
                a_zero_mean.clone()
            } else {
                &a_zero_mean * &a_zero_mean
            };

            for n in n_list.iter().rev() {
                s = &s * &s;
                if n % 2 == 1 {
                    s = &s * &a_zero_mean;
                }
            }
            s.mean()
        }
    };
    Ok(out)
}

impl Series {
    /// Compute the sample skewness of a data set.
    ///
    /// For normally distributed data, the skewness should be about zero. For
    /// uni-modal continuous distributions, a skewness value greater than zero means
    /// that there is more weight in the right tail of the distribution. The
    /// function `skewtest` can be used to determine if the skewness value
    /// is close enough to zero, statistically speaking.
    ///
    /// see: https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/stats/stats.py#L1024
    #[cfg_attr(docsrs, doc(cfg(feature = "moment")))]
    pub fn skew(&self, bias: bool) -> PolarsResult<Option<f64>> {
        let mean = match self.mean() {
            Some(mean) => mean,
            None => return Ok(None),
        };
        // we can unwrap because if it were None, we already return None above
        let m2 = moment_precomputed_mean(self, 2, mean)?.unwrap();
        let m3 = moment_precomputed_mean(self, 3, mean)?.unwrap();

        let out = m3 / m2.powf(1.5);

        if !bias {
            let n = (self.len() - self.null_count()) as f64;
            Ok(Some(((n - 1.0) * n).sqrt() / (n - 2.0) * out))
        } else {
            Ok(Some(out))
        }
    }

    /// Compute the kurtosis (Fisher or Pearson) of a dataset.
    ///
    /// Kurtosis is the fourth central moment divided by the square of the
    /// variance. If Fisher's definition is used, then 3.0 is subtracted from
    /// the result to give 0.0 for a normal distribution.
    /// If bias is `false` then the kurtosis is calculated using k statistics to
    /// eliminate bias coming from biased moment estimators
    ///
    /// see: https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/stats/stats.py#L1027
    #[cfg_attr(docsrs, doc(cfg(feature = "moment")))]
    pub fn kurtosis(&self, fisher: bool, bias: bool) -> PolarsResult<Option<f64>> {
        let mean = match self.mean() {
            Some(mean) => mean,
            None => return Ok(None),
        };
        // we can unwrap because if it were None, we already return None above
        let m2 = moment_precomputed_mean(self, 2, mean)?.unwrap();
        let m4 = moment_precomputed_mean(self, 4, mean)?.unwrap();

        let out = if !bias {
            let n = (self.len() - self.null_count()) as f64;
            3.0 + 1.0 / (n - 2.0) / (n - 3.0)
                * ((n.powf(2.0) - 1.0) * m4 / m2.powf(2.0) - 3.0 * (n - 1.0).powf(2.0))
        } else {
            m4 / m2.powf(2.0)
        };
        if fisher {
            Ok(Some(out - 3.0))
        } else {
            Ok(Some(out))
        }
    }

Returns the median value in the array Returns an option because the array is nullable.

Create a new Series filled with values from the given index.

Example
use polars_core::prelude::*;
let s = Series::new("a", [0i32, 1, 8]);
let s2 = s.new_from_index(2, 4);
assert_eq!(Vec::from(s2.i32().unwrap()), &[Some(8), Some(8), Some(8), Some(8)])
Examples found in repository?
src/series/ops/extend.rs (line 20)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
    pub fn extend_constant(&self, value: AnyValue, n: usize) -> PolarsResult<Self> {
        use AnyValue::*;
        let s = match value {
            Float32(v) => Series::new("", vec![v]),
            Float64(v) => Series::new("", vec![v]),
            UInt32(v) => Series::new("", vec![v]),
            UInt64(v) => Series::new("", vec![v]),
            Int32(v) => Series::new("", vec![v]),
            Int64(v) => Series::new("", vec![v]),
            Utf8(v) => Series::new("", vec![v]),
            Boolean(v) => Series::new("", vec![v]),
            Null => BooleanChunked::full_null("", 1).into_series(),
            dt => panic!("{dt:?} not supported"),
        };
        let s = s.cast(self.dtype())?;
        let to_append = s.new_from_index(0, n);

        let mut out = self.clone();
        out.append(&to_append)?;
        Ok(out)
    }
More examples
Hide additional examples
src/frame/mod.rs (line 1126)
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }

    /// Select column(s) from this `DataFrame` and return them into a `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Methane", "Ethane", "Propane"],
    ///                         "Carbon" => &[1, 2, 3],
    ///                         "Hydrogen" => &[4, 6, 8])?;
    /// let sv: Vec<Series> = df.select_series(&["Carbon", "Hydrogen"])?;
    ///
    /// assert_eq!(df["Carbon"], sv[0]);
    /// assert_eq!(df["Hydrogen"], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_series(&self, selection: impl IntoVec<String>) -> PolarsResult<Vec<Series>> {
        let cols = selection.into_vec();
        self.select_series_impl(&cols)
    }

    fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
        self.columns
            .iter()
            .enumerate()
            .map(|(i, s)| (s.name(), i))
            .collect()
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_physical_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            let name_to_idx = self._names_to_idx_map();
            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self
                        .select_at_idx(idx)
                        .unwrap()
                        .to_physical_repr()
                        .into_owned())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.to_physical_repr().into_owned()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            // we hash, because there are user that having millions of columns.
            // # https://github.com/pola-rs/polars/issues/1023
            let name_to_idx = self._names_to_idx_map();

            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self.select_at_idx(idx).unwrap().clone())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.clone()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// Select a mutable series by name.
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_mut(&mut self, name: &str) -> Option<&mut Series> {
        let opt_idx = self.find_idx_by_name(name);

        match opt_idx {
            Some(idx) => self.select_at_idx_mut(idx),
            None => None,
        }
    }

    /// Does a filter but splits thread chunks vertically instead of horizontally
    /// This yields a DataFrame with `n_chunks == n_threads`.
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` value by indexes from an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let iterator = (0..9).into_iter();
    ///     df.take_iter(iterator)
    /// }
    /// ```
    pub fn take_iter<I>(&self, iter: I) -> PolarsResult<Self>
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        let new_col = self.try_apply_columns_par(&|s| {
            let mut i = iter.clone();
            s.take_iter(&mut i)
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` values by indexes from an iterator.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking but checks null validity.
    #[must_use]
    pub unsafe fn take_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            return self.take_unchecked_vectical(&idx_ca.into_inner());
        }

        let n_chunks = self.n_chunks();
        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            let idx_ca = idx_ca.into_inner();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_iter_unchecked(&mut i)
            })
        };
        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` values by indexes from an iterator that may contain None values.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking. Out of bounds may access uninitialized memory.
    /// Null validity is checked
    #[must_use]
    pub unsafe fn take_opt_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = Option<usize>> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked_vectical(&idx_ca);
        }

        let n_chunks = self.n_chunks();

        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_opt_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_opt_iter_unchecked(&mut i)
            })
        };

        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` rows by index values.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let idx = IdxCa::new("idx", &[0, 1, 9]);
    ///     df.take(&idx)
    /// }
    /// ```
    pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        let new_col = POOL.install(|| {
            self.try_apply_columns_par(&|s| match s.dtype() {
                DataType::Utf8 => s.take_threaded(&indices, true),
                _ => s.take(&indices),
            })
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    pub(crate) unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
        self.take_unchecked_impl(idx, true)
    }

    unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
        let cols = if allow_threads {
            POOL.install(|| {
                self.apply_columns_par(&|s| match s.dtype() {
                    DataType::Utf8 => s.take_unchecked_threaded(idx, true).unwrap(),
                    _ => s.take_unchecked(idx).unwrap(),
                })
            })
        } else {
            self.columns
                .iter()
                .map(|s| s.take_unchecked(idx).unwrap())
                .collect()
        };
        DataFrame::new_no_checks(cols)
    }

    unsafe fn take_unchecked_vectical(&self, indices: &IdxCa) -> Self {
        let n_threads = POOL.current_num_threads();
        let idxs = split_ca(indices, n_threads).unwrap();

        let dfs: Vec<_> = POOL.install(|| {
            idxs.par_iter()
                .map(|idx| {
                    let cols = self
                        .columns
                        .iter()
                        .map(|s| s.take_unchecked(idx).unwrap())
                        .collect();
                    DataFrame::new_no_checks(cols)
                })
                .collect()
        });

        let mut iter = dfs.into_iter();
        let first = iter.next().unwrap();
        iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        })
    }

    /// Rename a column in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
    ///     let original_name = "foo";
    ///     let new_name = "bar";
    ///     df.rename(original_name, new_name)
    /// }
    /// ```
    pub fn rename(&mut self, column: &str, name: &str) -> PolarsResult<&mut Self> {
        self.select_mut(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))
            .map(|s| s.rename(name))?;

        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(self.columns.iter().map(|s| s.name()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }
        Ok(self)
    }

    /// Sort `DataFrame` in place by a column.
    pub fn sort_in_place(
        &mut self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<&mut Self> {
        // a lot of indirection in both sorting and take
        self.as_single_chunk_par();
        let by_column = self.select_series(by_column)?;
        let reverse = reverse.into_vec();
        self.columns = self.sort_impl(by_column, reverse, false, None)?.columns;
        Ok(self)
    }

    /// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
    #[cfg(feature = "private")]
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

    /// Return a sorted clone of this `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn sort_example(df: &DataFrame, reverse: bool) -> PolarsResult<DataFrame> {
    ///     df.sort(["a"], reverse)
    /// }
    ///
    /// fn sort_by_multiple_columns_example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.sort(&["a", "b"], vec![false, true])
    /// }
    /// ```
    pub fn sort(
        &self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.sort_in_place(by_column, reverse)?;
        Ok(df)
    }

    /// Sort the `DataFrame` by a single column with extra options.
    pub fn sort_with_options(&self, by_column: &str, options: SortOptions) -> PolarsResult<Self> {
        let mut df = self.clone();
        // a lot of indirection in both sorting and take
        df.as_single_chunk_par();
        let by_column = vec![df.column(by_column)?.clone()];
        let reverse = vec![options.descending];
        df.columns = df
            .sort_impl(by_column, reverse, options.nulls_last, None)?
            .columns;
        Ok(df)
    }

    /// Replace a column with a `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Country" => &["United States", "China"],
    ///                         "Area (km²)" => &[9_833_520, 9_596_961])?;
    /// let s: Series = Series::new("Country", &["USA", "PRC"]);
    ///
    /// assert!(df.replace("Nation", s.clone()).is_err());
    /// assert!(df.replace("Country", s).is_ok());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
        self.apply(column, |_| new_col.into_series())
    }

    /// Replace or update a column. The difference between this method and [DataFrame::with_column]
    /// is that now the value of `column: &str` determines the name of the column and not the name
    /// of the `Series` passed to this method.
    pub fn replace_or_add<S: IntoSeries>(
        &mut self,
        column: &str,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_col = new_col.into_series();
        new_col.rename(column);
        self.with_column(new_col)
    }

    /// Replace column at index `idx` with a `Series`.
    ///
    /// # Example
    ///
    /// ```ignored
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.replace_at_idx(1, df.select_at_idx(1).unwrap() + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace_at_idx<S: IntoSeries>(
        &mut self,
        idx: usize,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_column = new_col.into_series();
        if new_column.len() != self.height() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Cannot replace Series at index {}. The shape of Series {} does not match that of the DataFrame {}",
                idx, new_column.len(), self.height()
                ).into()));
        };
        if idx >= self.width() {
            return Err(PolarsError::ComputeError(
                format!(
                    "Column index: {} outside of DataFrame with {} columns",
                    idx,
                    self.width()
                )
                .into(),
            ));
        }
        let old_col = &mut self.columns[idx];
        mem::swap(old_col, &mut new_column);
        Ok(self)
    }

    /// Apply a closure to a column. This is the recommended way to do in place modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("names", &["Jean", "Claude", "van"]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// fn str_to_len(str_val: &Series) -> Series {
    ///     str_val.utf8()
    ///         .unwrap()
    ///         .into_iter()
    ///         .map(|opt_name: Option<&str>| {
    ///             opt_name.map(|name: &str| name.len() as u32)
    ///          })
    ///         .collect::<UInt32Chunked>()
    ///         .into_series()
    /// }
    ///
    /// // Replace the names column by the length of the names.
    /// df.apply("names", str_to_len);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    |       |
    /// | ---    | names |
    /// | str    | u32   |
    /// +========+=======+
    /// | "ham"  | 4     |
    /// +--------+-------+
    /// | "spam" | 6     |
    /// +--------+-------+
    /// | "egg"  | 3     |
    /// +--------+-------+
    /// ```
    pub fn apply<F, S>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let idx = self.check_name_to_idx(name)?;
        self.apply_at_idx(idx, f)
    }

    /// Apply a closure to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.apply_at_idx(1, |s| s + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    | ascii |
    /// | ---    | ---   |
    /// | str    | i32   |
    /// +========+=======+
    /// | "ham"  | 102   |
    /// +--------+-------+
    /// | "spam" | 111   |
    /// +--------+-------+
    /// | "egg"  | 111   |
    /// +--------+-------+
    /// ```
    pub fn apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let df_height = self.height();
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();
        let new_col = f(col).into_series();
        match new_col.len() {
            1 => {
                let new_col = new_col.new_from_index(0, df_height);
                let _ = mem::replace(col, new_col);
            }
            len if (len == df_height) => {
                let _ = mem::replace(col, new_col);
            }
            len => {
                return Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Result Series has shape {} where the DataFrame has height {}",
                        len,
                        self.height()
                    )
                    .into(),
                ));
            }
        }

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }
src/frame/arithmetic.rs (line 153)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    fn binary_aligned(
        &self,
        other: &DataFrame,
        f: &(dyn Fn(&Series, &Series) -> PolarsResult<Series> + Sync + Send),
    ) -> PolarsResult<DataFrame> {
        let max_len = std::cmp::max(self.height(), other.height());
        let max_width = std::cmp::max(self.width(), other.width());
        let mut cols = self
            .get_columns()
            .par_iter()
            .zip(other.get_columns().par_iter())
            .map(|(l, r)| {
                let diff_l = max_len - l.len();
                let diff_r = max_len - r.len();

                let st = try_get_supertype(l.dtype(), r.dtype())?;
                let mut l = l.cast(&st)?;
                let mut r = r.cast(&st)?;

                if diff_l > 0 {
                    l = l.extend_constant(AnyValue::Null, diff_l)?;
                };
                if diff_r > 0 {
                    r = r.extend_constant(AnyValue::Null, diff_r)?;
                };

                f(&l, &r)
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let col_len = cols.len();
        if col_len < max_width {
            let df = if col_len < self.width() { self } else { other };

            for i in col_len..max_len {
                let s = &df.get_columns()[i];
                let name = s.name();
                let dtype = s.dtype();

                // trick to fill a series with nulls
                let vals: &[Option<i32>] = &[None];
                let s = Series::new(name, vals).cast(dtype)?;
                cols.push(s.new_from_index(0, max_len))
            }
        }
        DataFrame::new(cols)
    }
src/frame/groupby/mod.rs (line 101)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    pub fn groupby_with_series(
        &self,
        mut by: Vec<Series>,
        multithreaded: bool,
        sorted: bool,
    ) -> PolarsResult<GroupBy> {
        if by.is_empty() {
            return Err(PolarsError::ComputeError(
                "expected keys in groupby operation, got nothing".into(),
            ));
        }

        macro_rules! finish_packed_bit_path {
            ($ca0:expr, $ca1:expr, $pack_fn:expr) => {{
                let n_partitions = _set_partition_size();

                // we split so that we can prepare the data over multiple threads.
                // pack the bit values together and add a final byte that will be 0
                // when there are no null values.
                // otherwise we use two bits of this byte to represent null values.
                let splits = _split_offsets($ca0.len(), n_partitions);

                let keys = POOL.install(|| {
                    splits
                        .into_par_iter()
                        .map(|(offset, len)| {
                            let ca0 = $ca0.slice(offset as i64, len);
                            let ca1 = $ca1.slice(offset as i64, len);
                            ca0.into_iter()
                                .zip(ca1.into_iter())
                                .map(|(l, r)| $pack_fn(l, r))
                                .collect_trusted::<Vec<_>>()
                        })
                        .collect::<Vec<_>>()
                });

                return Ok(GroupBy::new(
                    self,
                    by,
                    groupby_threaded_num(keys, 0, n_partitions as u64, sorted),
                    None,
                ));
            }};
        }

        let by_len = by[0].len();

        // we only throw this error if self.width > 0
        // so that we can still call this on a dummy dataframe where we provide the keys
        if (by_len != self.height()) && (self.width() > 0) {
            if by_len == 1 {
                by[0] = by[0].new_from_index(0, self.height())
            } else {
                return Err(PolarsError::ShapeMisMatch(
                    "the Series used as keys should have the same length as the DataFrame".into(),
                ));
            }
        };

        let n_partitions = _set_partition_size();

        let groups = match by.len() {
            1 => {
                let series = &by[0];
                series.group_tuples(multithreaded, sorted)
            }
            2 => {
                // multiple keys is always multi-threaded
                // reduce code paths
                let keys_df = prepare_dataframe_unsorted(&by);

                let s0 = &keys_df.get_columns()[0];
                let s1 = &keys_df.get_columns()[1];

                // fast path for numeric data
                // uses the bit values to tightly pack those into arrays.
                if s0.dtype().is_numeric() && s1.dtype().is_numeric() {
                    match (s0.bit_repr_is_large(), s1.bit_repr_is_large()) {
                        (false, false) => {
                            let ca0 = s0.bit_repr_small();
                            let ca1 = s1.bit_repr_small();
                            finish_packed_bit_path!(ca0, ca1, pack_u32_tuples)
                        }
                        (true, true) => {
                            let ca0 = s0.bit_repr_large();
                            let ca1 = s1.bit_repr_large();
                            finish_packed_bit_path!(ca0, ca1, pack_u64_tuples)
                        }
                        (true, false) => {
                            let ca0 = s0.bit_repr_large();
                            let ca1 = s1.bit_repr_small();
                            // small first
                            finish_packed_bit_path!(ca1, ca0, pack_u32_u64_tuples)
                        }
                        (false, true) => {
                            let ca0 = s0.bit_repr_small();
                            let ca1 = s1.bit_repr_large();
                            // small first
                            finish_packed_bit_path!(ca0, ca1, pack_u32_u64_tuples)
                        }
                    }
                } else if matches!((s0.dtype(), s1.dtype()), (DataType::Utf8, DataType::Utf8)) {
                    let lhs = s0.utf8().unwrap();
                    let rhs = s1.utf8().unwrap();

                    // arbitrarily chosen bound, if avg no of bytes to encode is larger than this
                    // value we fall back to default groupby
                    if (lhs.get_values_size() + rhs.get_values_size()) / (lhs.len() + 1) < 128 {
                        Ok(pack_utf8_columns(lhs, rhs, n_partitions, sorted))
                    } else {
                        groupby_threaded_multiple_keys_flat(keys_df, n_partitions, sorted)
                    }
                } else {
                    groupby_threaded_multiple_keys_flat(keys_df, n_partitions, sorted)
                }
            }
            _ => {
                let keys_df = prepare_dataframe_unsorted(&by);
                groupby_threaded_multiple_keys_flat(keys_df, n_partitions, sorted)
            }
        };
        Ok(GroupBy::new(self, by, groups?, None))
    }
Examples found in repository?
src/series/mod.rs (line 231)
230
231
232
    pub fn cast(&self, dtype: &DataType) -> PolarsResult<Self> {
        self.0.cast(dtype)
    }

Get a single value by index. Don’t use this operation for loops as a runtime cast is needed for every iteration.

Examples found in repository?
src/frame/row.rs (line 26)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    pub fn get_row(&self, idx: usize) -> PolarsResult<Row> {
        let values = self
            .columns
            .iter()
            .map(|s| s.get(idx))
            .collect::<PolarsResult<Vec<_>>>()?;
        Ok(Row(values))
    }

    /// Amortize allocations by reusing a row.
    /// The caller is responsible to make sure that the row has at least the capacity for the number
    /// of columns in the DataFrame
    #[cfg_attr(docsrs, doc(cfg(feature = "rows")))]
    pub fn get_row_amortized<'a>(&'a self, idx: usize, row: &mut Row<'a>) -> PolarsResult<()> {
        for (s, any_val) in self.columns.iter().zip(&mut row.0) {
            *any_val = s.get(idx)?;
        }
        Ok(())
    }
More examples
Hide additional examples
src/series/mod.rs (line 827)
826
827
828
829
830
831
832
833
834
835
    pub fn str_value(&self, index: usize) -> PolarsResult<Cow<str>> {
        let out = match self.0.get(index)? {
            AnyValue::Utf8(s) => Cow::Borrowed(s),
            AnyValue::Null => Cow::Borrowed("null"),
            #[cfg(feature = "dtype-categorical")]
            AnyValue::Categorical(idx, rev) => Cow::Borrowed(rev.get(idx)),
            av => Cow::Owned(format!("{av}")),
        };
        Ok(out)
    }

Get a single value by index. Don’t use this operation for loops as a runtime cast is needed for every iteration.

This may refer to physical types

Safety

Does not do any bounds checking

Examples found in repository?
src/frame/row.rs (line 55)
50
51
52
53
54
55
56
57
    pub unsafe fn get_row_amortized_unchecked<'a>(&'a self, idx: usize, row: &mut Row<'a>) {
        self.columns
            .iter()
            .zip(&mut row.0)
            .for_each(|(s, any_val)| {
                *any_val = s.get_unchecked(idx);
            });
    }
More examples
Hide additional examples
src/frame/hash_join/multiple_keys.rs (line 24)
17
18
19
20
21
22
23
24
25
26
27
28
29
pub(crate) unsafe fn compare_df_rows2(
    left: &DataFrame,
    right: &DataFrame,
    left_idx: usize,
    right_idx: usize,
) -> bool {
    for (l, r) in left.get_columns().iter().zip(right.get_columns()) {
        if !(l.get_unchecked(left_idx) == r.get_unchecked(right_idx)) {
            return false;
        }
    }
    true
}
src/frame/mod.rs (line 1237)
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }
Examples found in repository?
src/series/mod.rs (lines 218-221)
217
218
219
220
221
222
    pub fn sort(&self, reverse: bool) -> Self {
        self.sort_with(SortOptions {
            descending: reverse,
            ..Default::default()
        })
    }
More examples
Hide additional examples
src/frame/mod.rs (line 1852)
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

Retrieve the indexes needed for a sort.

Examples found in repository?
src/frame/mod.rs (line 1859)
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }
More examples
Hide additional examples
src/chunked_array/ops/unique/rank.rs (lines 80-83)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
pub(crate) fn rank(s: &Series, method: RankMethod, reverse: bool) -> Series {
    match s.len() {
        1 => {
            return match method {
                Average => Series::new(s.name(), &[1.0f32]),
                _ => Series::new(s.name(), &[1 as IdxSize]),
            };
        }
        0 => {
            return match method {
                Average => Float32Chunked::from_slice(s.name(), &[]).into_series(),
                _ => IdxCa::from_slice(s.name(), &[]).into_series(),
            };
        }
        _ => {}
    }

    if s.null_count() > 0 {
        let nulls = s.is_not_null().rechunk();
        let arr = nulls.downcast_iter().next().unwrap();
        let validity = arr.values();
        // Currently, nulls tie with the minimum or maximum bound for a type, depending on reverse.
        // TODO: Need to expose nulls_last in argsort to prevent this.
        // Fill using MaxBound/MinBound to give nulls last rank.
        // we will replace them later.
        let null_strategy = if reverse {
            FillNullStrategy::MinBound
        } else {
            FillNullStrategy::MaxBound
        };
        let s = s.fill_null(null_strategy).unwrap();

        let mut out = rank(&s, method, reverse);
        unsafe {
            let arr = &mut out.chunks_mut()[0];
            *arr = arr.with_validity(Some(validity.clone()))
        }
        return out;
    }

    // See: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L8631-L8737

    let len = s.len();
    let null_count = s.null_count();
    let sort_idx_ca = s.argsort(SortOptions {
        descending: reverse,
        ..Default::default()
    });
    let sort_idx = sort_idx_ca.downcast_iter().next().unwrap().values();

    let mut inv: Vec<IdxSize> = Vec::with_capacity(len);
    // Safety:
    // Values will be filled next and there is only primitive data
    #[allow(clippy::uninit_vec)]
    unsafe {
        inv.set_len(len)
    }
    let inv_values = inv.as_mut_slice();

    #[cfg(feature = "random")]
    let mut count = if let RankMethod::Ordinal | RankMethod::Random = method {
        1 as IdxSize
    } else {
        0
    };

    #[cfg(not(feature = "random"))]
    let mut count = if let RankMethod::Ordinal = method {
        1 as IdxSize
    } else {
        0
    };

    // Safety:
    // we are in bounds
    unsafe {
        sort_idx.iter().for_each(|&i| {
            *inv_values.get_unchecked_mut(i as usize) = count;
            count += 1;
        });
    }

    use RankMethod::*;
    match method {
        Ordinal => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        #[cfg(feature = "random")]
        Random => {
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            let obs = not_consecutive_same.downcast_iter().next().unwrap();

            // Collect slice indices for sort_idx which point to ties in the original series.
            let mut ties_indices = Vec::with_capacity(len + 1);
            let mut ties_index: usize = 0;

            ties_indices.push(ties_index);
            obs.iter().for_each(|b| {
                if let Some(b) = b {
                    ties_index += 1;
                    if b {
                        ties_indices.push(ties_index)
                    }
                }
            });
            // Close last slice (if there where nulls in the original series, they will always be in the last slice).
            ties_indices.push(len);

            let mut sort_idx = sort_idx.to_vec();

            let mut thread_rng = thread_rng();
            let rng = &mut SmallRng::from_rng(&mut thread_rng).unwrap();

            // Shuffle sort_idx positions which point to ties in the original series.
            for i in 0..(ties_indices.len() - 1) {
                let ties_index_start = ties_indices[i];
                let ties_index_end = ties_indices[i + 1];
                if ties_index_end - ties_index_start > 1 {
                    sort_idx[ties_index_start..ties_index_end].shuffle(rng);
                }
            }

            // Recreate inv_ca (where ties are randomly shuffled compared with Ordinal).
            let mut count = 1 as IdxSize;
            unsafe {
                sort_idx.iter().for_each(|&i| {
                    *inv_values.get_unchecked_mut(i as usize) = count;
                    count += 1;
                });
            }

            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        _ => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let validity = arr.chunks()[0].validity().cloned();
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            // this obs is shorter than that of scipy stats, because we can just start the cumsum by 1
            // instead of 0
            let obs = not_consecutive_same.downcast_iter().next().unwrap();
            let mut dense = Vec::with_capacity(len);

            // this offset save an offset on the whole column, what scipy does in:
            //
            // ```python
            //     if method == 'min':
            //         return count[dense - 1] + 1
            // ```
            // INVALID LINT REMOVE LATER
            #[allow(clippy::bool_to_int_with_if)]
            let mut cumsum: IdxSize = if let RankMethod::Min = method {
                0
            } else {
                // nulls will be first, rank, but we will replace them (with null)
                // so this ensures the second rank will be 1
                if matches!(method, RankMethod::Dense) && s.null_count() > 0 {
                    0
                } else {
                    1
                }
            };

            dense.push(cumsum);
            obs.values_iter().for_each(|b| {
                if b {
                    cumsum += 1;
                }
                dense.push(cumsum)
            });
            let arr = IdxArr::from_data_default(dense.into(), validity);
            let dense: IdxCa = (s.name(), arr).into();
            // Safety:
            // in bounds
            let dense = unsafe { dense.take_unchecked((&inv_ca).into()) };

            if let RankMethod::Dense = method {
                return if s.null_count() == 0 {
                    dense.into_series()
                } else {
                    // null will be the first rank
                    // we restore original nulls and shift all ranks by one
                    let validity = s.is_null().rechunk();
                    let validity = validity.downcast_iter().next().unwrap();
                    let validity = validity.values().clone();

                    let arr = dense.downcast_iter().next().unwrap();
                    let arr = arr.with_validity(Some(validity));
                    let dtype = arr.data_type().clone();

                    // Safety:
                    // given dtype is correct
                    unsafe {
                        Series::try_from_arrow_unchecked(s.name(), vec![arr], &dtype).unwrap()
                    }
                };
            }

            let bitmap = obs.values();
            let cap = bitmap.len() - bitmap.unset_bits();
            let mut count = Vec::with_capacity(cap + 1);
            let mut cnt: IdxSize = 0;
            count.push(cnt);

            if null_count > 0 {
                obs.iter().for_each(|b| {
                    if let Some(b) = b {
                        cnt += 1;
                        if b {
                            count.push(cnt)
                        }
                    }
                });
            } else {
                obs.values_iter().for_each(|b| {
                    cnt += 1;
                    if b {
                        count.push(cnt)
                    }
                });
            }

            count.push((len - null_count) as IdxSize);
            let count = IdxCa::from_vec(s.name(), count);

            match method {
                Max => {
                    // Safety:
                    // within bounds
                    unsafe { count.take_unchecked((&dense).into()).into_series() }
                }
                Min => {
                    // Safety:
                    // within bounds
                    unsafe { (count.take_unchecked((&dense).into()) + 1).into_series() }
                }
                Average => {
                    // Safety:
                    // in bounds
                    let a = unsafe { count.take_unchecked((&dense).into()) }
                        .cast(&DataType::Float32)
                        .unwrap();
                    let b = unsafe { count.take_unchecked((&(dense - 1)).into()) }
                        .cast(&DataType::Float32)
                        .unwrap()
                        + 1.0;
                    (&a + &b) * 0.5
                }
                #[cfg(feature = "random")]
                Dense | Ordinal | Random => unimplemented!(),
                #[cfg(not(feature = "random"))]
                Dense | Ordinal => unimplemented!(),
            }
        }
    }
}

Count the null values.

Examples found in repository?
src/series/series_trait.rs (line 356)
355
356
357
358
359
360
361
    fn drop_nulls(&self) -> Series {
        if self.null_count() == 0 {
            Series(self.clone_inner())
        } else {
            self.filter(&self.is_not_null()).unwrap()
        }
    }
More examples
Hide additional examples
src/frame/mod.rs (line 3168)
3164
3165
3166
3167
3168
3169
3170
3171
    pub fn null_count(&self) -> Self {
        let cols = self
            .columns
            .iter()
            .map(|s| Series::new(s.name(), &[s.null_count() as IdxSize]))
            .collect();
        Self::new_no_checks(cols)
    }
src/testing.rs (line 9)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    pub fn series_equal(&self, other: &Series) -> bool {
        if self.null_count() > 0 || other.null_count() > 0 || self.dtype() != other.dtype() {
            false
        } else {
            self.series_equal_missing(other)
        }
    }

    /// Check if all values in series are equal where `None == None` evaluates to `true`.
    /// Two `Datetime` series are *not* equal if their timezones are different, regardless
    /// if they represent the same UTC time or not.
    pub fn series_equal_missing(&self, other: &Series) -> bool {
        // TODO! remove this? Default behavior already includes equal missing
        #[cfg(feature = "timezones")]
        {
            use crate::datatypes::DataType::Datetime;

            if let Datetime(_, tz_lhs) = self.dtype() {
                if let Datetime(_, tz_rhs) = other.dtype() {
                    if tz_lhs != tz_rhs {
                        return false;
                    }
                } else {
                    return false;
                }
            }
        }

        // differences from Partial::eq in that numerical dtype may be different
        self.len() == other.len()
            && self.name() == other.name()
            && self.null_count() == other.null_count()
            && {
                let eq = self.equal(other);
                match eq {
                    Ok(b) => b.sum().map(|s| s as usize).unwrap_or(0) == self.len(),
                    Err(_) => false,
                }
            }
    }

    /// Get a pointer to the underlying data of this Series.
    /// Can be useful for fast comparisons.
    pub fn get_data_ptr(&self) -> usize {
        let object = self.0.deref();

        // Safety:
        // A fat pointer consists of a data ptr and a ptr to the vtable.
        // we specifically check that we only transmute &dyn SeriesTrait e.g.
        // a trait object, therefore this is sound.
        #[allow(clippy::transmute_undefined_repr)]
        let (data_ptr, _vtable_ptr) =
            unsafe { std::mem::transmute::<&dyn SeriesTrait, (usize, usize)>(object) };
        data_ptr
    }
}

impl PartialEq for Series {
    fn eq(&self, other: &Self) -> bool {
        self.len() == other.len()
            && self.field() == other.field()
            && self.null_count() == other.null_count()
            && self
                .equal(other)
                .unwrap()
                .sum()
                .map(|s| s as usize)
                .unwrap_or(0)
                == self.len()
    }
src/frame/row.rs (line 257)
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
fn is_nested_null(av: &AnyValue) -> bool {
    match av {
        AnyValue::Null => true,
        AnyValue::List(s) => s.null_count() == s.len(),
        #[cfg(feature = "dtype-struct")]
        AnyValue::Struct(_, _, _) => av._iter_struct_av().all(|av| is_nested_null(&av)),
        _ => false,
    }
}

// nested dtypes that are all null, will be set as null leave dtype
fn infer_dtype_dynamic(av: &AnyValue) -> DataType {
    match av {
        AnyValue::List(s) if s.null_count() == s.len() => DataType::List(Box::new(DataType::Null)),
        #[cfg(feature = "dtype-struct")]
        AnyValue::Struct(_, _, _) => DataType::Struct(
            av._iter_struct_av()
                .map(|av| {
                    let dtype = infer_dtype_dynamic(&av);
                    Field::new("", dtype)
                })
                .collect(),
        ),
        av => av.into(),
    }
}

pub fn any_values_to_dtype(column: &[AnyValue]) -> PolarsResult<DataType> {
    // we need an index-map as the order of dtypes influences how the
    // struct fields are constructed.
    let mut types_set = PlIndexSet::new();
    for val in column.iter() {
        let dtype = infer_dtype_dynamic(val);
        types_set.insert(dtype);
    }
    types_set_to_dtype(types_set)
}

fn types_set_to_dtype(types_set: PlIndexSet<DataType>) -> PolarsResult<DataType> {
    types_set
        .into_iter()
        .map(Ok)
        .fold_first_(|a, b| try_get_supertype(&a?, &b?))
        .unwrap()
}

/// Infer schema from rows and set the supertypes of the columns as column data type.
pub fn rows_to_schema_supertypes(
    rows: &[Row],
    infer_schema_length: Option<usize>,
) -> PolarsResult<Schema> {
    // no of rows to use to infer dtype
    let max_infer = infer_schema_length.unwrap_or(rows.len());

    let mut dtypes: Vec<PlIndexSet<DataType>> = vec![PlIndexSet::new(); rows[0].0.len()];

    for row in rows.iter().take(max_infer) {
        for (val, types_set) in row.0.iter().zip(dtypes.iter_mut()) {
            let dtype = infer_dtype_dynamic(val);
            types_set.insert(dtype);
        }
    }

    dtypes
        .into_iter()
        .enumerate()
        .map(|(i, types_set)| {
            let dtype = types_set_to_dtype(types_set)?;
            Ok(Field::new(format!("column_{i}").as_ref(), dtype))
        })
        .collect::<PolarsResult<_>>()
}

/// Infer schema from rows and set the first no null type as column data type.
pub fn rows_to_schema_first_non_null(rows: &[Row], infer_schema_length: Option<usize>) -> Schema {
    // no of rows to use to infer dtype
    let max_infer = infer_schema_length.unwrap_or(rows.len());
    let mut schema: Schema = (&rows[0]).into();

    // the first row that has no nulls will be used to infer the schema.
    // if there is a null, we check the next row and see if we can update the schema

    for row in rows.iter().take(max_infer).skip(1) {
        // for i in 1..max_infer {
        let nulls: Vec<_> = schema
            .iter_dtypes()
            .enumerate()
            .filter_map(|(i, dtype)| {
                // double check struct and list types types
                // nested null values can be wrongly inferred by front ends
                match dtype {
                    DataType::Null | DataType::List(_) => Some(i),
                    #[cfg(feature = "dtype-struct")]
                    DataType::Struct(_) => Some(i),
                    _ => None,
                }
            })
            .collect();
        if nulls.is_empty() {
            break;
        } else {
            for i in nulls {
                let val = &row.0[i];

                if !is_nested_null(val) {
                    let dtype = val.into();
                    schema.coerce_by_index(i, dtype).unwrap();
                }
            }
        }
    }
    schema
}

impl<'a> From<&AnyValue<'a>> for Field {
    fn from(val: &AnyValue<'a>) -> Self {
        Field::new("", val.into())
    }
}

impl From<&Row<'_>> for Schema {
    fn from(row: &Row) -> Self {
        let fields = row.0.iter().enumerate().map(|(i, av)| {
            let dtype = av.into();
            Field::new(format!("column_{i}").as_ref(), dtype)
        });

        Schema::from(fields)
    }
}

pub enum AnyValueBuffer<'a> {
    Boolean(BooleanChunkedBuilder),
    Int32(PrimitiveChunkedBuilder<Int32Type>),
    Int64(PrimitiveChunkedBuilder<Int64Type>),
    UInt32(PrimitiveChunkedBuilder<UInt32Type>),
    UInt64(PrimitiveChunkedBuilder<UInt64Type>),
    #[cfg(feature = "dtype-date")]
    Date(PrimitiveChunkedBuilder<Int32Type>),
    #[cfg(feature = "dtype-datetime")]
    Datetime(
        PrimitiveChunkedBuilder<Int64Type>,
        TimeUnit,
        Option<TimeZone>,
    ),
    #[cfg(feature = "dtype-duration")]
    Duration(PrimitiveChunkedBuilder<Int64Type>, TimeUnit),
    #[cfg(feature = "dtype-time")]
    Time(PrimitiveChunkedBuilder<Int64Type>),
    Float32(PrimitiveChunkedBuilder<Float32Type>),
    Float64(PrimitiveChunkedBuilder<Float64Type>),
    Utf8(Utf8ChunkedBuilder),
    All(DataType, Vec<AnyValue<'a>>),
}

impl<'a> AnyValueBuffer<'a> {
    #[inline]
    pub fn add(&mut self, val: AnyValue<'a>) -> Option<()> {
        use AnyValueBuffer::*;
        match (self, val) {
            (Boolean(builder), AnyValue::Null) => builder.append_null(),
            (Boolean(builder), AnyValue::Boolean(v)) => builder.append_value(v),
            (Boolean(builder), val) => {
                let v = val.extract::<u8>()?;
                builder.append_value(v == 1)
            }
            (Int32(builder), AnyValue::Null) => builder.append_null(),
            (Int32(builder), val) => builder.append_value(val.extract()?),
            (Int64(builder), AnyValue::Null) => builder.append_null(),
            (Int64(builder), val) => builder.append_value(val.extract()?),
            (UInt32(builder), AnyValue::Null) => builder.append_null(),
            (UInt32(builder), val) => builder.append_value(val.extract()?),
            (UInt64(builder), AnyValue::Null) => builder.append_null(),
            (UInt64(builder), val) => builder.append_value(val.extract()?),
            #[cfg(feature = "dtype-date")]
            (Date(builder), AnyValue::Null) => builder.append_null(),
            #[cfg(feature = "dtype-date")]
            (Date(builder), AnyValue::Date(v)) => builder.append_value(v),
            #[cfg(feature = "dtype-datetime")]
            (Datetime(builder, _, _), AnyValue::Null) => builder.append_null(),
            #[cfg(feature = "dtype-datetime")]
            (Datetime(builder, tu_l, _), AnyValue::Datetime(v, tu_r, _)) => {
                // we convert right tu to left tu
                // so we swap.
                let v = convert_time_units(v, tu_r, *tu_l);
                builder.append_value(v)
            }
            #[cfg(feature = "dtype-duration")]
            (Duration(builder, _), AnyValue::Null) => builder.append_null(),
            #[cfg(feature = "dtype-duration")]
            (Duration(builder, tu_l), AnyValue::Duration(v, tu_r)) => {
                let v = convert_time_units(v, tu_r, *tu_l);
                builder.append_value(v)
            }
            #[cfg(feature = "dtype-time")]
            (Time(builder), AnyValue::Time(v)) => builder.append_value(v),
            #[cfg(feature = "dtype-time")]
            (Time(builder), AnyValue::Null) => builder.append_null(),
            (Float32(builder), AnyValue::Null) => builder.append_null(),
            (Float64(builder), AnyValue::Null) => builder.append_null(),
            (Float32(builder), val) => builder.append_value(val.extract()?),
            (Float64(builder), val) => builder.append_value(val.extract()?),
            (Utf8(builder), AnyValue::Utf8(v)) => builder.append_value(v),
            (Utf8(builder), AnyValue::Utf8Owned(v)) => builder.append_value(v),
            (Utf8(builder), AnyValue::Null) => builder.append_null(),
            // Struct and List can be recursive so use anyvalues for that
            (All(_, vals), v) => vals.push(v),

            // dynamic types
            (Utf8(builder), av) => match av {
                AnyValue::Int64(v) => builder.append_value(&format!("{v}")),
                AnyValue::Float64(v) => builder.append_value(&format!("{v}")),
                AnyValue::Boolean(true) => builder.append_value("true"),
                AnyValue::Boolean(false) => builder.append_value("false"),
                _ => return None,
            },
            _ => return None,
        };
        Some(())
    }

    pub(crate) fn add_fallible(&mut self, val: &AnyValue<'a>) -> PolarsResult<()> {
        self.add(val.clone()).ok_or_else(|| {
            PolarsError::ComputeError(format!("Could not append {val:?} to builder; make sure that all rows have the same schema.\n\
            Or consider increasing the the 'schema_inference_length' argument.").into())
        })
    }

    pub fn into_series(self) -> Series {
        use AnyValueBuffer::*;
        match self {
            Boolean(b) => b.finish().into_series(),
            Int32(b) => b.finish().into_series(),
            Int64(b) => b.finish().into_series(),
            UInt32(b) => b.finish().into_series(),
            UInt64(b) => b.finish().into_series(),
            #[cfg(feature = "dtype-date")]
            Date(b) => b.finish().into_date().into_series(),
            #[cfg(feature = "dtype-datetime")]
            Datetime(b, tu, tz) => b.finish().into_datetime(tu, tz).into_series(),
            #[cfg(feature = "dtype-duration")]
            Duration(b, tu) => b.finish().into_duration(tu).into_series(),
            #[cfg(feature = "dtype-time")]
            Time(b) => b.finish().into_time().into_series(),
            Float32(b) => b.finish().into_series(),
            Float64(b) => b.finish().into_series(),
            Utf8(b) => b.finish().into_series(),
            All(dtype, vals) => Series::from_any_values_and_dtype("", &vals, &dtype).unwrap(),
        }
    }

    pub fn new(dtype: &DataType, capacity: usize) -> AnyValueBuffer<'a> {
        (dtype, capacity).into()
    }
}

// datatype and length
impl From<(&DataType, usize)> for AnyValueBuffer<'_> {
    fn from(a: (&DataType, usize)) -> Self {
        let (dt, len) = a;
        use DataType::*;
        match dt {
            Boolean => AnyValueBuffer::Boolean(BooleanChunkedBuilder::new("", len)),
            Int32 => AnyValueBuffer::Int32(PrimitiveChunkedBuilder::new("", len)),
            Int64 => AnyValueBuffer::Int64(PrimitiveChunkedBuilder::new("", len)),
            UInt32 => AnyValueBuffer::UInt32(PrimitiveChunkedBuilder::new("", len)),
            UInt64 => AnyValueBuffer::UInt64(PrimitiveChunkedBuilder::new("", len)),
            #[cfg(feature = "dtype-date")]
            Date => AnyValueBuffer::Date(PrimitiveChunkedBuilder::new("", len)),
            #[cfg(feature = "dtype-datetime")]
            Datetime(tu, tz) => {
                AnyValueBuffer::Datetime(PrimitiveChunkedBuilder::new("", len), *tu, tz.clone())
            }
            #[cfg(feature = "dtype-duration")]
            Duration(tu) => AnyValueBuffer::Duration(PrimitiveChunkedBuilder::new("", len), *tu),
            #[cfg(feature = "dtype-time")]
            Time => AnyValueBuffer::Time(PrimitiveChunkedBuilder::new("", len)),
            Float32 => AnyValueBuffer::Float32(PrimitiveChunkedBuilder::new("", len)),
            Float64 => AnyValueBuffer::Float64(PrimitiveChunkedBuilder::new("", len)),
            Utf8 => AnyValueBuffer::Utf8(Utf8ChunkedBuilder::new("", len, len * 5)),
            // Struct and List can be recursive so use anyvalues for that
            dt => AnyValueBuffer::All(dt.clone(), Vec::with_capacity(len)),
        }
    }
}

#[inline]
unsafe fn add_value<T: NumericNative>(
    values_buf_ptr: usize,
    col_idx: usize,
    row_idx: usize,
    value: T,
) {
    let column = (*(values_buf_ptr as *mut Vec<Vec<T>>)).get_unchecked_mut(col_idx);
    let el_ptr = column.as_mut_ptr();
    *el_ptr.add(row_idx) = value;
}

fn numeric_transpose<T>(cols: &[Series]) -> PolarsResult<DataFrame>
where
    T: PolarsNumericType,
    ChunkedArray<T>: IntoSeries,
{
    let new_width = cols[0].len();
    let new_height = cols.len();

    let has_nulls = cols.iter().any(|s| s.null_count() > 0);

    let mut values_buf: Vec<Vec<T::Native>> = (0..new_width)
        .map(|_| Vec::with_capacity(new_height))
        .collect();
    let mut validity_buf: Vec<_> = if has_nulls {
        // we first use bools instead of bits, because we can access these in parallel without aliasing
        (0..new_width).map(|_| vec![true; new_height]).collect()
    } else {
        (0..new_width).map(|_| vec![]).collect()
    };

    // work with *mut pointers because we it is UB write to &refs.
    let values_buf_ptr = &mut values_buf as *mut Vec<Vec<T::Native>> as usize;
    let validity_buf_ptr = &mut validity_buf as *mut Vec<Vec<bool>> as usize;

    POOL.install(|| {
        cols.iter().enumerate().for_each(|(row_idx, s)| {
            let s = s.cast(&T::get_dtype()).unwrap();
            let ca = s.unpack::<T>().unwrap();

            // Safety
            // we access in parallel, but every access is unique, so we don't break aliasing rules
            // we also ensured we allocated enough memory, so we never reallocate and thus
            // the pointers remain valid.
            if has_nulls {
                for (col_idx, opt_v) in ca.into_iter().enumerate() {
                    match opt_v {
                        None => unsafe {
                            let column = (*(validity_buf_ptr as *mut Vec<Vec<bool>>))
                                .get_unchecked_mut(col_idx);
                            let el_ptr = column.as_mut_ptr();
                            *el_ptr.add(row_idx) = false;
                            // we must initialize this memory otherwise downstream code
                            // might access uninitialized memory when the masked out values
                            // are changed.
                            add_value(values_buf_ptr, col_idx, row_idx, T::Native::default());
                        },
                        Some(v) => unsafe {
                            add_value(values_buf_ptr, col_idx, row_idx, v);
                        },
                    }
                }
            } else {
                for (col_idx, v) in ca.into_no_null_iter().enumerate() {
                    unsafe {
                        let column = (*(values_buf_ptr as *mut Vec<Vec<T::Native>>))
                            .get_unchecked_mut(col_idx);
                        let el_ptr = column.as_mut_ptr();
                        *el_ptr.add(row_idx) = v;
                    }
                }
            }
        })
    });

    let series = POOL.install(|| {
        values_buf
            .into_par_iter()
            .zip(validity_buf)
            .enumerate()
            .map(|(i, (mut values, validity))| {
                // Safety:
                // all values are written we can now set len
                unsafe {
                    values.set_len(new_height);
                }

                let validity = if has_nulls {
                    let validity = Bitmap::from_trusted_len_iter(validity.iter().copied());
                    if validity.unset_bits() > 0 {
                        Some(validity)
                    } else {
                        None
                    }
                } else {
                    None
                };

                let arr = PrimitiveArray::<T::Native>::new(
                    T::get_dtype().to_arrow(),
                    values.into(),
                    validity,
                );
                let name = format!("column_{i}");
                ChunkedArray::<T>::from_chunks(&name, vec![Box::new(arr) as ArrayRef]).into_series()
            })
            .collect()
    });

    Ok(DataFrame::new_no_checks(series))
}
src/frame/asof_join/mod.rs (line 40)
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
fn check_asof_columns(a: &Series, b: &Series) -> PolarsResult<()> {
    if a.dtype() != b.dtype() {
        Err(PolarsError::ComputeError(
            format!(
                "keys used in asof-join must have equal dtypes. We got: left: {:?}\tright: {:?}",
                a.dtype(),
                b.dtype()
            )
            .into(),
        ))
    } else if a.null_count() > 0 || b.null_count() > 0 {
        Err(PolarsError::ComputeError(
            "asof join must not have null values in 'on' arguments".into(),
        ))
    } else {
        Ok(())
    }
}
src/series/ops/moment.rs (line 64)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    pub fn skew(&self, bias: bool) -> PolarsResult<Option<f64>> {
        let mean = match self.mean() {
            Some(mean) => mean,
            None => return Ok(None),
        };
        // we can unwrap because if it were None, we already return None above
        let m2 = moment_precomputed_mean(self, 2, mean)?.unwrap();
        let m3 = moment_precomputed_mean(self, 3, mean)?.unwrap();

        let out = m3 / m2.powf(1.5);

        if !bias {
            let n = (self.len() - self.null_count()) as f64;
            Ok(Some(((n - 1.0) * n).sqrt() / (n - 2.0) * out))
        } else {
            Ok(Some(out))
        }
    }

    /// Compute the kurtosis (Fisher or Pearson) of a dataset.
    ///
    /// Kurtosis is the fourth central moment divided by the square of the
    /// variance. If Fisher's definition is used, then 3.0 is subtracted from
    /// the result to give 0.0 for a normal distribution.
    /// If bias is `false` then the kurtosis is calculated using k statistics to
    /// eliminate bias coming from biased moment estimators
    ///
    /// see: https://github.com/scipy/scipy/blob/47bb6febaa10658c72962b9615d5d5aa2513fa3a/scipy/stats/stats.py#L1027
    #[cfg_attr(docsrs, doc(cfg(feature = "moment")))]
    pub fn kurtosis(&self, fisher: bool, bias: bool) -> PolarsResult<Option<f64>> {
        let mean = match self.mean() {
            Some(mean) => mean,
            None => return Ok(None),
        };
        // we can unwrap because if it were None, we already return None above
        let m2 = moment_precomputed_mean(self, 2, mean)?.unwrap();
        let m4 = moment_precomputed_mean(self, 4, mean)?.unwrap();

        let out = if !bias {
            let n = (self.len() - self.null_count()) as f64;
            3.0 + 1.0 / (n - 2.0) / (n - 3.0)
                * ((n.powf(2.0) - 1.0) * m4 / m2.powf(2.0) - 3.0 * (n - 1.0).powf(2.0))
        } else {
            m4 / m2.powf(2.0)
        };
        if fisher {
            Ok(Some(out - 3.0))
        } else {
            Ok(Some(out))
        }
    }

Get unique values in the Series.

Examples found in repository?
src/series/mod.rs (line 696)
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    pub fn strict_cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        let s = self.cast(data_type)?;
        if self.null_count() != s.null_count() {
            let failure_mask = !self.is_null() & s.is_null();
            let failures = self.filter_threaded(&failure_mask, false)?.unique()?;
            Err(PolarsError::ComputeError(
                format!(
                    "Strict conversion from {:?} to {:?} failed for values {}. \
                    If you were trying to cast Utf8 to Date, Time, or Datetime, \
                    consider using `strptime`.",
                    self.dtype(),
                    data_type,
                    failures.fmt_list(),
                )
                .into(),
            ))
        } else {
            Ok(s)
        }
    }

Get unique values in the Series.

Examples found in repository?
src/frame/groupby/aggregations/dispatch.rs (line 91)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    pub unsafe fn agg_n_unique(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<IdxType, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    None
                } else {
                    let take = self.take_iter_unchecked(&mut idx.iter().map(|i| *i as usize));
                    take.n_unique().ok().map(|v| v as IdxSize)
                }
            }),
            GroupsProxy::Slice { groups, .. } => {
                _agg_helper_slice::<IdxType, _>(groups, |[first, len]| {
                    debug_assert!(len <= self.len() as IdxSize);
                    if len == 0 {
                        None
                    } else {
                        let take = self.slice_from_offsets(first, len);
                        take.n_unique().ok().map(|v| v as IdxSize)
                    }
                })
            }
        }
    }

Get first indexes of unique values.

Examples found in repository?
src/series/mod.rs (line 875)
874
875
876
877
878
879
    pub fn unique_stable(&self) -> PolarsResult<Series> {
        let idx = self.arg_unique()?;
        // Safety:
        // Indices are in bounds.
        unsafe { self.take_unchecked(&idx) }
    }

Get min index

Get max index

Get a mask of the null values.

Examples found in repository?
src/series/comparison.rs (line 97)
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
fn compare_cat_to_str_series<Compare>(
    cat: &Series,
    string: &Series,
    name: &str,
    compare: Compare,
    fill_value: bool,
) -> PolarsResult<BooleanChunked>
where
    Compare: Fn(&Series, u32) -> PolarsResult<BooleanChunked>,
{
    match string.utf8()?.get(0) {
        None => Ok(cat.is_null()),
        Some(value) => compare_cat_to_str_value(cat, value, name, compare, fill_value),
    }
}
More examples
Hide additional examples
src/series/mod.rs (line 695)
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    pub fn strict_cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        let s = self.cast(data_type)?;
        if self.null_count() != s.null_count() {
            let failure_mask = !self.is_null() & s.is_null();
            let failures = self.filter_threaded(&failure_mask, false)?.unique()?;
            Err(PolarsError::ComputeError(
                format!(
                    "Strict conversion from {:?} to {:?} failed for values {}. \
                    If you were trying to cast Utf8 to Date, Time, or Datetime, \
                    consider using `strptime`.",
                    self.dtype(),
                    data_type,
                    failures.fmt_list(),
                )
                .into(),
            ))
        } else {
            Ok(s)
        }
    }
src/frame/mod.rs (line 2806)
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
    pub fn hmin(&self) -> PolarsResult<Option<Series>> {
        let min_fn = |acc: &Series, s: &Series| {
            let mask = acc.lt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their max values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmax(&self) -> PolarsResult<Option<Series>> {
        let max_fn = |acc: &Series, s: &Series| {
            let mask = acc.gt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their sum values.
    pub fn hsum(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        let sum_fn =
            |acc: &Series, s: &Series, none_strategy: NullStrategy| -> PolarsResult<Series> {
                let mut acc = acc.clone();
                let mut s = s.clone();
                if let NullStrategy::Ignore = none_strategy {
                    // if has nulls
                    if acc.has_validity() {
                        acc = acc.fill_null(FillNullStrategy::Zero)?;
                    }
                    if s.has_validity() {
                        s = s.fill_null(FillNullStrategy::Zero)?;
                    }
                }
                Ok(&acc + &s)
            };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => sum_fn(&self.columns[0], &self.columns[1], none_strategy).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| sum_fn(&l, &r, none_strategy).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their mean values.
    pub fn hmean(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            _ => {
                let columns = self
                    .columns
                    .iter()
                    .cloned()
                    .filter(|s| {
                        let dtype = s.dtype();
                        dtype.is_numeric() || matches!(dtype, DataType::Boolean)
                    })
                    .collect();
                let numeric_df = DataFrame::new_no_checks(columns);

                let sum = || numeric_df.hsum(none_strategy);

                let null_count = || {
                    numeric_df
                        .columns
                        .par_iter()
                        .map(|s| s.is_null().cast(&DataType::UInt32).unwrap())
                        .reduce_with(|l, r| &l + &r)
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 2 columns
                        .unwrap()
                };

                let (sum, null_count) = POOL.install(|| rayon::join(sum, null_count));
                let sum = sum?;

                // value lengths: len - null_count
                let value_length: UInt32Chunked =
                    (numeric_df.width().sub(&null_count)).u32().unwrap().clone();

                // make sure that we do not divide by zero
                // by replacing with None
                let value_length = value_length
                    .set(&value_length.equal(0), None)?
                    .into_series()
                    .cast(&DataType::Float64)?;

                Ok(sum.map(|sum| &sum / &value_length))
            }
        }
    }
src/chunked_array/ops/unique/rank.rs (line 233)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
pub(crate) fn rank(s: &Series, method: RankMethod, reverse: bool) -> Series {
    match s.len() {
        1 => {
            return match method {
                Average => Series::new(s.name(), &[1.0f32]),
                _ => Series::new(s.name(), &[1 as IdxSize]),
            };
        }
        0 => {
            return match method {
                Average => Float32Chunked::from_slice(s.name(), &[]).into_series(),
                _ => IdxCa::from_slice(s.name(), &[]).into_series(),
            };
        }
        _ => {}
    }

    if s.null_count() > 0 {
        let nulls = s.is_not_null().rechunk();
        let arr = nulls.downcast_iter().next().unwrap();
        let validity = arr.values();
        // Currently, nulls tie with the minimum or maximum bound for a type, depending on reverse.
        // TODO: Need to expose nulls_last in argsort to prevent this.
        // Fill using MaxBound/MinBound to give nulls last rank.
        // we will replace them later.
        let null_strategy = if reverse {
            FillNullStrategy::MinBound
        } else {
            FillNullStrategy::MaxBound
        };
        let s = s.fill_null(null_strategy).unwrap();

        let mut out = rank(&s, method, reverse);
        unsafe {
            let arr = &mut out.chunks_mut()[0];
            *arr = arr.with_validity(Some(validity.clone()))
        }
        return out;
    }

    // See: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L8631-L8737

    let len = s.len();
    let null_count = s.null_count();
    let sort_idx_ca = s.argsort(SortOptions {
        descending: reverse,
        ..Default::default()
    });
    let sort_idx = sort_idx_ca.downcast_iter().next().unwrap().values();

    let mut inv: Vec<IdxSize> = Vec::with_capacity(len);
    // Safety:
    // Values will be filled next and there is only primitive data
    #[allow(clippy::uninit_vec)]
    unsafe {
        inv.set_len(len)
    }
    let inv_values = inv.as_mut_slice();

    #[cfg(feature = "random")]
    let mut count = if let RankMethod::Ordinal | RankMethod::Random = method {
        1 as IdxSize
    } else {
        0
    };

    #[cfg(not(feature = "random"))]
    let mut count = if let RankMethod::Ordinal = method {
        1 as IdxSize
    } else {
        0
    };

    // Safety:
    // we are in bounds
    unsafe {
        sort_idx.iter().for_each(|&i| {
            *inv_values.get_unchecked_mut(i as usize) = count;
            count += 1;
        });
    }

    use RankMethod::*;
    match method {
        Ordinal => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        #[cfg(feature = "random")]
        Random => {
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            let obs = not_consecutive_same.downcast_iter().next().unwrap();

            // Collect slice indices for sort_idx which point to ties in the original series.
            let mut ties_indices = Vec::with_capacity(len + 1);
            let mut ties_index: usize = 0;

            ties_indices.push(ties_index);
            obs.iter().for_each(|b| {
                if let Some(b) = b {
                    ties_index += 1;
                    if b {
                        ties_indices.push(ties_index)
                    }
                }
            });
            // Close last slice (if there where nulls in the original series, they will always be in the last slice).
            ties_indices.push(len);

            let mut sort_idx = sort_idx.to_vec();

            let mut thread_rng = thread_rng();
            let rng = &mut SmallRng::from_rng(&mut thread_rng).unwrap();

            // Shuffle sort_idx positions which point to ties in the original series.
            for i in 0..(ties_indices.len() - 1) {
                let ties_index_start = ties_indices[i];
                let ties_index_end = ties_indices[i + 1];
                if ties_index_end - ties_index_start > 1 {
                    sort_idx[ties_index_start..ties_index_end].shuffle(rng);
                }
            }

            // Recreate inv_ca (where ties are randomly shuffled compared with Ordinal).
            let mut count = 1 as IdxSize;
            unsafe {
                sort_idx.iter().for_each(|&i| {
                    *inv_values.get_unchecked_mut(i as usize) = count;
                    count += 1;
                });
            }

            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        _ => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let validity = arr.chunks()[0].validity().cloned();
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            // this obs is shorter than that of scipy stats, because we can just start the cumsum by 1
            // instead of 0
            let obs = not_consecutive_same.downcast_iter().next().unwrap();
            let mut dense = Vec::with_capacity(len);

            // this offset save an offset on the whole column, what scipy does in:
            //
            // ```python
            //     if method == 'min':
            //         return count[dense - 1] + 1
            // ```
            // INVALID LINT REMOVE LATER
            #[allow(clippy::bool_to_int_with_if)]
            let mut cumsum: IdxSize = if let RankMethod::Min = method {
                0
            } else {
                // nulls will be first, rank, but we will replace them (with null)
                // so this ensures the second rank will be 1
                if matches!(method, RankMethod::Dense) && s.null_count() > 0 {
                    0
                } else {
                    1
                }
            };

            dense.push(cumsum);
            obs.values_iter().for_each(|b| {
                if b {
                    cumsum += 1;
                }
                dense.push(cumsum)
            });
            let arr = IdxArr::from_data_default(dense.into(), validity);
            let dense: IdxCa = (s.name(), arr).into();
            // Safety:
            // in bounds
            let dense = unsafe { dense.take_unchecked((&inv_ca).into()) };

            if let RankMethod::Dense = method {
                return if s.null_count() == 0 {
                    dense.into_series()
                } else {
                    // null will be the first rank
                    // we restore original nulls and shift all ranks by one
                    let validity = s.is_null().rechunk();
                    let validity = validity.downcast_iter().next().unwrap();
                    let validity = validity.values().clone();

                    let arr = dense.downcast_iter().next().unwrap();
                    let arr = arr.with_validity(Some(validity));
                    let dtype = arr.data_type().clone();

                    // Safety:
                    // given dtype is correct
                    unsafe {
                        Series::try_from_arrow_unchecked(s.name(), vec![arr], &dtype).unwrap()
                    }
                };
            }

            let bitmap = obs.values();
            let cap = bitmap.len() - bitmap.unset_bits();
            let mut count = Vec::with_capacity(cap + 1);
            let mut cnt: IdxSize = 0;
            count.push(cnt);

            if null_count > 0 {
                obs.iter().for_each(|b| {
                    if let Some(b) = b {
                        cnt += 1;
                        if b {
                            count.push(cnt)
                        }
                    }
                });
            } else {
                obs.values_iter().for_each(|b| {
                    cnt += 1;
                    if b {
                        count.push(cnt)
                    }
                });
            }

            count.push((len - null_count) as IdxSize);
            let count = IdxCa::from_vec(s.name(), count);

            match method {
                Max => {
                    // Safety:
                    // within bounds
                    unsafe { count.take_unchecked((&dense).into()).into_series() }
                }
                Min => {
                    // Safety:
                    // within bounds
                    unsafe { (count.take_unchecked((&dense).into()) + 1).into_series() }
                }
                Average => {
                    // Safety:
                    // in bounds
                    let a = unsafe { count.take_unchecked((&dense).into()) }
                        .cast(&DataType::Float32)
                        .unwrap();
                    let b = unsafe { count.take_unchecked((&(dense - 1)).into()) }
                        .cast(&DataType::Float32)
                        .unwrap()
                        + 1.0;
                    (&a + &b) * 0.5
                }
                #[cfg(feature = "random")]
                Dense | Ordinal | Random => unimplemented!(),
                #[cfg(not(feature = "random"))]
                Dense | Ordinal => unimplemented!(),
            }
        }
    }
}

Get a mask of the non-null values.

Examples found in repository?
src/series/series_trait.rs (line 359)
355
356
357
358
359
360
361
    fn drop_nulls(&self) -> Series {
        if self.null_count() == 0 {
            Series(self.clone_inner())
        } else {
            self.filter(&self.is_not_null()).unwrap()
        }
    }
More examples
Hide additional examples
src/frame/mod.rs (line 1031)
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
    pub fn drop_nulls(&self, subset: Option<&[String]>) -> PolarsResult<Self> {
        let selected_series;

        let mut iter = match subset {
            Some(cols) => {
                selected_series = self.select_series(cols)?;
                selected_series.iter()
            }
            None => self.columns.iter(),
        };

        // fast path for no nulls in df
        if iter.clone().all(|s| !s.has_validity()) {
            return Ok(self.clone());
        }

        let mask = iter
            .next()
            .ok_or_else(|| PolarsError::NoData("No data to drop nulls from".into()))?;
        let mut mask = mask.is_not_null();

        for s in iter {
            mask = mask & s.is_not_null();
        }
        self.filter(&mask)
    }

    /// Drop a column by name.
    /// This is a pure method and will return a new `DataFrame` instead of modifying
    /// the current one in place.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Ray type" => &["α", "β", "X", "γ"])?;
    /// let df2: DataFrame = df1.drop("Ray type")?;
    ///
    /// assert!(df2.is_empty());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn drop(&self, name: &str) -> PolarsResult<Self> {
        let idx = self.check_name_to_idx(name)?;
        let mut new_cols = Vec::with_capacity(self.columns.len() - 1);

        self.columns.iter().enumerate().for_each(|(i, s)| {
            if i != idx {
                new_cols.push(s.clone())
            }
        });

        Ok(DataFrame::new_no_checks(new_cols))
    }

    pub fn drop_many<S: AsRef<str>>(&self, names: &[S]) -> Self {
        let names = names.iter().map(|s| s.as_ref()).collect();
        fn inner(df: &DataFrame, names: Vec<&str>) -> DataFrame {
            let mut new_cols = Vec::with_capacity(df.columns.len() - names.len());
            df.columns.iter().for_each(|s| {
                if !names.contains(&s.name()) {
                    new_cols.push(s.clone())
                }
            });

            DataFrame::new_no_checks(new_cols)
        }
        inner(self, names)
    }

    fn insert_at_idx_no_name_check(
        &mut self,
        index: usize,
        series: Series,
    ) -> PolarsResult<&mut Self> {
        if series.len() == self.height() {
            self.columns.insert(index, series);
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                .into(),
            ))
        }
    }

    /// Insert a new column at a given index.
    pub fn insert_at_idx<S: IntoSeries>(
        &mut self,
        index: usize,
        column: S,
    ) -> PolarsResult<&mut Self> {
        let series = column.into_series();
        self.check_already_present(series.name())?;
        self.insert_at_idx_no_name_check(index, series)
    }

    fn add_column_by_search(&mut self, series: Series) -> PolarsResult<()> {
        if let Some(idx) = self.find_idx_by_name(series.name()) {
            self.replace_at_idx(idx, series)?;
        } else {
            self.columns.push(series);
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    pub fn with_column<S: IntoSeries>(&mut self, column: S) -> PolarsResult<&mut Self> {
        fn inner(df: &mut DataFrame, mut series: Series) -> PolarsResult<&mut DataFrame> {
            let height = df.height();
            if series.len() == 1 && height > 1 {
                series = series.new_from_index(0, height);
            }

            if series.len() == height || df.is_empty() {
                df.add_column_by_search(series)?;
                Ok(df)
            }
            // special case for literals
            else if height == 0 && series.len() == 1 {
                let s = series.slice(0, 0);
                df.add_column_by_search(s)?;
                Ok(df)
            } else {
                Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Could not add column. The Series length {} differs from the DataFrame height: {}",
                        series.len(),
                        df.height()
                    )
                        .into(),
                ))
            }
        }
        let series = column.into_series();
        inner(self, series)
    }

    fn add_column_by_schema(&mut self, s: Series, schema: &Schema) -> PolarsResult<()> {
        let name = s.name();
        if let Some((idx, _, _)) = schema.get_full(name) {
            // schema is incorrect fallback to search
            if self.columns.get(idx).map(|s| s.name()) != Some(name) {
                self.add_column_by_search(s)?;
            } else {
                self.replace_at_idx(idx, s)?;
            }
        } else {
            self.columns.push(s);
        }
        Ok(())
    }

    pub fn _add_columns(&mut self, columns: Vec<Series>, schema: &Schema) -> PolarsResult<()> {
        for (i, s) in columns.into_iter().enumerate() {
            // we need to branch here
            // because users can add multiple columns with the same name
            if i == 0 || schema.get(s.name()).is_some() {
                self.with_column_and_schema(s, schema)?;
            } else {
                self.with_column(s.clone())?;
            }
        }
        Ok(())
    }

    /// Add a new column to this `DataFrame` or replace an existing one.
    /// Uses an existing schema to amortize lookups.
    /// If the schema is incorrect, we will fallback to linear search.
    pub fn with_column_and_schema<S: IntoSeries>(
        &mut self,
        column: S,
        schema: &Schema,
    ) -> PolarsResult<&mut Self> {
        let mut series = column.into_series();

        let height = self.height();
        if series.len() == 1 && height > 1 {
            series = series.new_from_index(0, height);
        }

        if series.len() == height || self.is_empty() {
            self.add_column_by_schema(series, schema)?;
            Ok(self)
        }
        // special case for literals
        else if height == 0 && series.len() == 1 {
            let s = series.slice(0, 0);
            self.add_column_by_schema(s, schema)?;
            Ok(self)
        } else {
            Err(PolarsError::ShapeMisMatch(
                format!(
                    "Could not add column. The Series length {} differs from the DataFrame height: {}",
                    series.len(),
                    self.height()
                )
                    .into(),
            ))
        }
    }

    /// Get a row in the `DataFrame`. Beware this is slow.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame, idx: usize) -> Option<Vec<AnyValue>> {
    ///     df.get(idx)
    /// }
    /// ```
    pub fn get(&self, idx: usize) -> Option<Vec<AnyValue>> {
        match self.columns.get(0) {
            Some(s) => {
                if s.len() <= idx {
                    return None;
                }
            }
            None => return None,
        }
        // safety: we just checked bounds
        unsafe { Some(self.columns.iter().map(|s| s.get_unchecked(idx)).collect()) }
    }

    /// Select a `Series` by index.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Star" => &["Sun", "Betelgeuse", "Sirius A", "Sirius B"],
    ///                         "Absolute magnitude" => &[4.83, -5.85, 1.42, 11.18])?;
    ///
    /// let s1: Option<&Series> = df.select_at_idx(0);
    /// let s2: Series = Series::new("Star", &["Sun", "Betelgeuse", "Sirius A", "Sirius B"]);
    ///
    /// assert_eq!(s1, Some(&s2));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_at_idx(&self, idx: usize) -> Option<&Series> {
        self.columns.get(idx)
    }

    /// Select a mutable series by index.
    ///
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_at_idx_mut(&mut self, idx: usize) -> Option<&mut Series> {
        self.columns.get_mut(idx)
    }

    /// Select column(s) from this `DataFrame` by range and return a new DataFrame
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df = df! {
    ///     "0" => &[0, 0, 0],
    ///     "1" => &[1, 1, 1],
    ///     "2" => &[2, 2, 2]
    /// }?;
    ///
    /// assert!(df.select(&["0", "1"])?.frame_equal(&df.select_by_range(0..=1)?));
    /// assert!(df.frame_equal(&df.select_by_range(..)?));
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_by_range<R>(&self, range: R) -> PolarsResult<Self>
    where
        R: ops::RangeBounds<usize>,
    {
        // This function is copied from std::slice::range (https://doc.rust-lang.org/std/slice/fn.range.html)
        // because it is the nightly feature. We should change here if this function were stable.
        fn get_range<R>(range: R, bounds: ops::RangeTo<usize>) -> ops::Range<usize>
        where
            R: ops::RangeBounds<usize>,
        {
            let len = bounds.end;

            let start: ops::Bound<&usize> = range.start_bound();
            let start = match start {
                ops::Bound::Included(&start) => start,
                ops::Bound::Excluded(start) => start.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice from after maximum usize");
                }),
                ops::Bound::Unbounded => 0,
            };

            let end: ops::Bound<&usize> = range.end_bound();
            let end = match end {
                ops::Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| {
                    panic!("attempted to index slice up to maximum usize");
                }),
                ops::Bound::Excluded(&end) => end,
                ops::Bound::Unbounded => len,
            };

            if start > end {
                panic!("slice index starts at {start} but ends at {end}");
            }
            if end > len {
                panic!("range end index {end} out of range for slice of length {len}",);
            }

            ops::Range { start, end }
        }

        let colnames = self.get_column_names_owned();
        let range = get_range(range, ..colnames.len());

        self.select_impl(&colnames[range])
    }

    /// Get column index of a `Series` by name.
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Player 1", "Player 2", "Player 3"],
    ///                         "Health" => &[100, 200, 500],
    ///                         "Mana" => &[250, 100, 0],
    ///                         "Strength" => &[30, 150, 300])?;
    ///
    /// assert_eq!(df.find_idx_by_name("Name"), Some(0));
    /// assert_eq!(df.find_idx_by_name("Health"), Some(1));
    /// assert_eq!(df.find_idx_by_name("Mana"), Some(2));
    /// assert_eq!(df.find_idx_by_name("Strength"), Some(3));
    /// assert_eq!(df.find_idx_by_name("Haste"), None);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn find_idx_by_name(&self, name: &str) -> Option<usize> {
        self.columns.iter().position(|s| s.name() == name)
    }

    /// Select a single column by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s1: Series = Series::new("Password", &["123456", "[]B$u$g$s$B#u#n#n#y[]{}"]);
    /// let s2: Series = Series::new("Robustness", &["Weak", "Strong"]);
    /// let df: DataFrame = DataFrame::new(vec![s1.clone(), s2])?;
    ///
    /// assert_eq!(df.column("Password")?, &s1);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn column(&self, name: &str) -> PolarsResult<&Series> {
        let idx = self
            .find_idx_by_name(name)
            .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
        Ok(self.select_at_idx(idx).unwrap())
    }

    /// Selected multiple columns by name.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Latin name" => &["Oncorhynchus kisutch", "Salmo salar"],
    ///                         "Max weight (kg)" => &[16.0, 35.89])?;
    /// let sv: Vec<&Series> = df.columns(&["Latin name", "Max weight (kg)"])?;
    ///
    /// assert_eq!(&df[0], sv[0]);
    /// assert_eq!(&df[1], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn columns<I, S>(&self, names: I) -> PolarsResult<Vec<&Series>>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        names
            .into_iter()
            .map(|name| self.column(name.as_ref()))
            .collect()
    }

    /// Select column(s) from this `DataFrame` and return a new `DataFrame`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.select(["foo", "bar"])
    /// }
    /// ```
    pub fn select<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_impl(&cols)
    }

    fn select_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    pub fn select_physical<I, S>(&self, selection: I) -> PolarsResult<Self>
    where
        I: IntoIterator<Item = S>,
        S: AsRef<str>,
    {
        let cols = selection
            .into_iter()
            .map(|s| s.as_ref().to_string())
            .collect::<Vec<_>>();
        self.select_physical_impl(&cols)
    }

    fn select_physical_impl(&self, cols: &[String]) -> PolarsResult<Self> {
        self.select_check_duplicates(cols)?;
        let selected = self.select_series_physical_impl(cols)?;
        Ok(DataFrame::new_no_checks(selected))
    }

    fn select_check_duplicates(&self, cols: &[String]) -> PolarsResult<()> {
        let mut names = PlHashSet::with_capacity(cols.len());
        for name in cols {
            if !names.insert(name.as_str()) {
                _duplicate_err(name)?
            }
        }
        Ok(())
    }

    /// Select column(s) from this `DataFrame` and return them into a `Vec`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Name" => &["Methane", "Ethane", "Propane"],
    ///                         "Carbon" => &[1, 2, 3],
    ///                         "Hydrogen" => &[4, 6, 8])?;
    /// let sv: Vec<Series> = df.select_series(&["Carbon", "Hydrogen"])?;
    ///
    /// assert_eq!(df["Carbon"], sv[0]);
    /// assert_eq!(df["Hydrogen"], sv[1]);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn select_series(&self, selection: impl IntoVec<String>) -> PolarsResult<Vec<Series>> {
        let cols = selection.into_vec();
        self.select_series_impl(&cols)
    }

    fn _names_to_idx_map(&self) -> PlHashMap<&str, usize> {
        self.columns
            .iter()
            .enumerate()
            .map(|(i, s)| (s.name(), i))
            .collect()
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_physical_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            let name_to_idx = self._names_to_idx_map();
            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self
                        .select_at_idx(idx)
                        .unwrap()
                        .to_physical_repr()
                        .into_owned())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.to_physical_repr().into_owned()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// A non generic implementation to reduce compiler bloat.
    fn select_series_impl(&self, cols: &[String]) -> PolarsResult<Vec<Series>> {
        let selected = if cols.len() > 1 && self.columns.len() > 10 {
            // we hash, because there are user that having millions of columns.
            // # https://github.com/pola-rs/polars/issues/1023
            let name_to_idx = self._names_to_idx_map();

            cols.iter()
                .map(|name| {
                    let idx = *name_to_idx
                        .get(name.as_str())
                        .ok_or_else(|| PolarsError::NotFound(name.to_string().into()))?;
                    Ok(self.select_at_idx(idx).unwrap().clone())
                })
                .collect::<PolarsResult<Vec<_>>>()?
        } else {
            cols.iter()
                .map(|c| self.column(c).map(|s| s.clone()))
                .collect::<PolarsResult<Vec<_>>>()?
        };

        Ok(selected)
    }

    /// Select a mutable series by name.
    /// *Note: the length of the Series should remain the same otherwise the DataFrame is invalid.*
    /// For this reason the method is not public
    fn select_mut(&mut self, name: &str) -> Option<&mut Series> {
        let opt_idx = self.find_idx_by_name(name);

        match opt_idx {
            Some(idx) => self.select_at_idx_mut(idx),
            None => None,
        }
    }

    /// Does a filter but splits thread chunks vertically instead of horizontally
    /// This yields a DataFrame with `n_chunks == n_threads`.
    fn filter_vertical(&mut self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let n_threads = POOL.current_num_threads();

        let masks = split_ca(mask, n_threads).unwrap();
        let dfs = split_df(self, n_threads).unwrap();
        let dfs: PolarsResult<Vec<_>> = POOL.install(|| {
            masks
                .par_iter()
                .zip(dfs)
                .map(|(mask, df)| {
                    let cols = df
                        .columns
                        .iter()
                        .map(|s| s.filter(mask))
                        .collect::<PolarsResult<_>>()?;
                    Ok(DataFrame::new_no_checks(cols))
                })
                .collect()
        });

        let mut iter = dfs?.into_iter();
        let first = iter.next().unwrap();
        Ok(iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        }))
    }

    /// Take the `DataFrame` rows by a boolean mask.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let mask = df.column("sepal.width")?.is_not_null();
    ///     df.filter(&mask)
    /// }
    /// ```
    pub fn filter(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            return self.clone().filter_vertical(mask);
        }
        let new_col = self.try_apply_columns_par(&|s| match s.dtype() {
            DataType::Utf8 => s.filter_threaded(mask, true),
            _ => s.filter(mask),
        })?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Same as `filter` but does not parallelize.
    pub fn _filter_seq(&self, mask: &BooleanChunked) -> PolarsResult<Self> {
        let new_col = self.try_apply_columns(&|s| s.filter(mask))?;
        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` value by indexes from an iterator.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let iterator = (0..9).into_iter();
    ///     df.take_iter(iterator)
    /// }
    /// ```
    pub fn take_iter<I>(&self, iter: I) -> PolarsResult<Self>
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        let new_col = self.try_apply_columns_par(&|s| {
            let mut i = iter.clone();
            s.take_iter(&mut i)
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    /// Take `DataFrame` values by indexes from an iterator.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking but checks null validity.
    #[must_use]
    pub unsafe fn take_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = usize> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            return self.take_unchecked_vectical(&idx_ca.into_inner());
        }

        let n_chunks = self.n_chunks();
        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: NoNull<IdxCa> = iter.into_iter().map(|idx| idx as IdxSize).collect();
            let idx_ca = idx_ca.into_inner();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_iter_unchecked(&mut i)
            })
        };
        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` values by indexes from an iterator that may contain None values.
    ///
    /// # Safety
    ///
    /// This doesn't do any bound checking. Out of bounds may access uninitialized memory.
    /// Null validity is checked
    #[must_use]
    pub unsafe fn take_opt_iter_unchecked<I>(&self, mut iter: I) -> Self
    where
        I: Iterator<Item = Option<usize>> + Clone + Sync + TrustedLen,
    {
        if std::env::var("POLARS_VERT_PAR").is_ok() {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked_vectical(&idx_ca);
        }

        let n_chunks = self.n_chunks();

        let has_utf8 = self
            .columns
            .iter()
            .any(|s| matches!(s.dtype(), DataType::Utf8));

        if (n_chunks == 1 && self.width() > 1) || has_utf8 {
            let idx_ca: IdxCa = iter
                .into_iter()
                .map(|opt| opt.map(|v| v as IdxSize))
                .collect();
            return self.take_unchecked(&idx_ca);
        }

        let new_col = if self.width() == 1 {
            self.columns
                .iter()
                .map(|s| s.take_opt_iter_unchecked(&mut iter))
                .collect::<Vec<_>>()
        } else {
            self.apply_columns_par(&|s| {
                let mut i = iter.clone();
                s.take_opt_iter_unchecked(&mut i)
            })
        };

        DataFrame::new_no_checks(new_col)
    }

    /// Take `DataFrame` rows by index values.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     let idx = IdxCa::new("idx", &[0, 1, 9]);
    ///     df.take(&idx)
    /// }
    /// ```
    pub fn take(&self, indices: &IdxCa) -> PolarsResult<Self> {
        let indices = if indices.chunks.len() > 1 {
            Cow::Owned(indices.rechunk())
        } else {
            Cow::Borrowed(indices)
        };
        let new_col = POOL.install(|| {
            self.try_apply_columns_par(&|s| match s.dtype() {
                DataType::Utf8 => s.take_threaded(&indices, true),
                _ => s.take(&indices),
            })
        })?;

        Ok(DataFrame::new_no_checks(new_col))
    }

    pub(crate) unsafe fn take_unchecked(&self, idx: &IdxCa) -> Self {
        self.take_unchecked_impl(idx, true)
    }

    unsafe fn take_unchecked_impl(&self, idx: &IdxCa, allow_threads: bool) -> Self {
        let cols = if allow_threads {
            POOL.install(|| {
                self.apply_columns_par(&|s| match s.dtype() {
                    DataType::Utf8 => s.take_unchecked_threaded(idx, true).unwrap(),
                    _ => s.take_unchecked(idx).unwrap(),
                })
            })
        } else {
            self.columns
                .iter()
                .map(|s| s.take_unchecked(idx).unwrap())
                .collect()
        };
        DataFrame::new_no_checks(cols)
    }

    unsafe fn take_unchecked_vectical(&self, indices: &IdxCa) -> Self {
        let n_threads = POOL.current_num_threads();
        let idxs = split_ca(indices, n_threads).unwrap();

        let dfs: Vec<_> = POOL.install(|| {
            idxs.par_iter()
                .map(|idx| {
                    let cols = self
                        .columns
                        .iter()
                        .map(|s| s.take_unchecked(idx).unwrap())
                        .collect();
                    DataFrame::new_no_checks(cols)
                })
                .collect()
        });

        let mut iter = dfs.into_iter();
        let first = iter.next().unwrap();
        iter.fold(first, |mut acc, df| {
            acc.vstack_mut(&df).unwrap();
            acc
        })
    }

    /// Rename a column in the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn example(df: &mut DataFrame) -> PolarsResult<&mut DataFrame> {
    ///     let original_name = "foo";
    ///     let new_name = "bar";
    ///     df.rename(original_name, new_name)
    /// }
    /// ```
    pub fn rename(&mut self, column: &str, name: &str) -> PolarsResult<&mut Self> {
        self.select_mut(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))
            .map(|s| s.rename(name))?;

        let unique_names: AHashSet<&str, ahash::RandomState> =
            AHashSet::from_iter(self.columns.iter().map(|s| s.name()));
        if unique_names.len() != self.columns.len() {
            return Err(PolarsError::SchemaMisMatch(
                "duplicate column names found".into(),
            ));
        }
        Ok(self)
    }

    /// Sort `DataFrame` in place by a column.
    pub fn sort_in_place(
        &mut self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<&mut Self> {
        // a lot of indirection in both sorting and take
        self.as_single_chunk_par();
        let by_column = self.select_series(by_column)?;
        let reverse = reverse.into_vec();
        self.columns = self.sort_impl(by_column, reverse, false, None)?.columns;
        Ok(self)
    }

    /// This is the dispatch of Self::sort, and exists to reduce compile bloat by monomorphization.
    #[cfg(feature = "private")]
    pub fn sort_impl(
        &self,
        by_column: Vec<Series>,
        reverse: Vec<bool>,
        nulls_last: bool,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<Self> {
        // note that the by_column argument also contains evaluated expression from polars-lazy
        // that may not even be present in this dataframe.

        // therefore when we try to set the first columns as sorted, we ignore the error
        // as expressions are not present (they are renamed to _POLARS_SORT_COLUMN_i.
        let first_reverse = reverse[0];
        let first_by_column = by_column[0].name().to_string();
        let mut take = match by_column.len() {
            1 => {
                let s = &by_column[0];
                let options = SortOptions {
                    descending: reverse[0],
                    nulls_last,
                };
                // fast path for a frame with a single series
                // no need to compute the sort indices and then take by these indices
                // simply sort and return as frame
                if self.width() == 1 && self.check_name_to_idx(s.name()).is_ok() {
                    let mut out = s.sort_with(options);
                    if let Some((offset, len)) = slice {
                        out = out.slice(offset, len);
                    }

                    return Ok(out.into_frame());
                }
                s.argsort(options)
            }
            _ => {
                #[cfg(feature = "sort_multiple")]
                {
                    let (first, by_column, reverse) = prepare_argsort(by_column, reverse)?;
                    first.argsort_multiple(&by_column, &reverse)?
                }
                #[cfg(not(feature = "sort_multiple"))]
                {
                    panic!("activate `sort_multiple` feature gate to enable this functionality");
                }
            }
        };

        if let Some((offset, len)) = slice {
            take = take.slice(offset, len);
        }

        // Safety:
        // the created indices are in bounds
        let mut df = if std::env::var("POLARS_VERT_PAR").is_ok() {
            unsafe { self.take_unchecked_vectical(&take) }
        } else {
            unsafe { self.take_unchecked(&take) }
        };
        // Mark the first sort column as sorted
        // if the column did not exists it is ok, because we sorted by an expression
        // not present in the dataframe
        let _ = df.apply(&first_by_column, |s| {
            let mut s = s.clone();
            if first_reverse {
                s.set_sorted(IsSorted::Descending)
            } else {
                s.set_sorted(IsSorted::Ascending)
            }
            s
        });
        Ok(df)
    }

    /// Return a sorted clone of this `DataFrame`.
    ///
    /// # Example
    ///
    /// ```
    /// # use polars_core::prelude::*;
    /// fn sort_example(df: &DataFrame, reverse: bool) -> PolarsResult<DataFrame> {
    ///     df.sort(["a"], reverse)
    /// }
    ///
    /// fn sort_by_multiple_columns_example(df: &DataFrame) -> PolarsResult<DataFrame> {
    ///     df.sort(&["a", "b"], vec![false, true])
    /// }
    /// ```
    pub fn sort(
        &self,
        by_column: impl IntoVec<String>,
        reverse: impl IntoVec<bool>,
    ) -> PolarsResult<Self> {
        let mut df = self.clone();
        df.sort_in_place(by_column, reverse)?;
        Ok(df)
    }

    /// Sort the `DataFrame` by a single column with extra options.
    pub fn sort_with_options(&self, by_column: &str, options: SortOptions) -> PolarsResult<Self> {
        let mut df = self.clone();
        // a lot of indirection in both sorting and take
        df.as_single_chunk_par();
        let by_column = vec![df.column(by_column)?.clone()];
        let reverse = vec![options.descending];
        df.columns = df
            .sort_impl(by_column, reverse, options.nulls_last, None)?
            .columns;
        Ok(df)
    }

    /// Replace a column with a `Series`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let mut df: DataFrame = df!("Country" => &["United States", "China"],
    ///                         "Area (km²)" => &[9_833_520, 9_596_961])?;
    /// let s: Series = Series::new("Country", &["USA", "PRC"]);
    ///
    /// assert!(df.replace("Nation", s.clone()).is_err());
    /// assert!(df.replace("Country", s).is_ok());
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace<S: IntoSeries>(&mut self, column: &str, new_col: S) -> PolarsResult<&mut Self> {
        self.apply(column, |_| new_col.into_series())
    }

    /// Replace or update a column. The difference between this method and [DataFrame::with_column]
    /// is that now the value of `column: &str` determines the name of the column and not the name
    /// of the `Series` passed to this method.
    pub fn replace_or_add<S: IntoSeries>(
        &mut self,
        column: &str,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_col = new_col.into_series();
        new_col.rename(column);
        self.with_column(new_col)
    }

    /// Replace column at index `idx` with a `Series`.
    ///
    /// # Example
    ///
    /// ```ignored
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.replace_at_idx(1, df.select_at_idx(1).unwrap() + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    pub fn replace_at_idx<S: IntoSeries>(
        &mut self,
        idx: usize,
        new_col: S,
    ) -> PolarsResult<&mut Self> {
        let mut new_column = new_col.into_series();
        if new_column.len() != self.height() {
            return Err(PolarsError::ShapeMisMatch(
                format!("Cannot replace Series at index {}. The shape of Series {} does not match that of the DataFrame {}",
                idx, new_column.len(), self.height()
                ).into()));
        };
        if idx >= self.width() {
            return Err(PolarsError::ComputeError(
                format!(
                    "Column index: {} outside of DataFrame with {} columns",
                    idx,
                    self.width()
                )
                .into(),
            ));
        }
        let old_col = &mut self.columns[idx];
        mem::swap(old_col, &mut new_column);
        Ok(self)
    }

    /// Apply a closure to a column. This is the recommended way to do in place modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("names", &["Jean", "Claude", "van"]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// fn str_to_len(str_val: &Series) -> Series {
    ///     str_val.utf8()
    ///         .unwrap()
    ///         .into_iter()
    ///         .map(|opt_name: Option<&str>| {
    ///             opt_name.map(|name: &str| name.len() as u32)
    ///          })
    ///         .collect::<UInt32Chunked>()
    ///         .into_series()
    /// }
    ///
    /// // Replace the names column by the length of the names.
    /// df.apply("names", str_to_len);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    |       |
    /// | ---    | names |
    /// | str    | u32   |
    /// +========+=======+
    /// | "ham"  | 4     |
    /// +--------+-------+
    /// | "spam" | 6     |
    /// +--------+-------+
    /// | "egg"  | 3     |
    /// +--------+-------+
    /// ```
    pub fn apply<F, S>(&mut self, name: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let idx = self.check_name_to_idx(name)?;
        self.apply_at_idx(idx, f)
    }

    /// Apply a closure to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg"]);
    /// let s1 = Series::new("ascii", &[70, 79, 79]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // Add 32 to get lowercase ascii values
    /// df.apply_at_idx(1, |s| s + 32);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +--------+-------+
    /// | foo    | ascii |
    /// | ---    | ---   |
    /// | str    | i32   |
    /// +========+=======+
    /// | "ham"  | 102   |
    /// +--------+-------+
    /// | "spam" | 111   |
    /// +--------+-------+
    /// | "egg"  | 111   |
    /// +--------+-------+
    /// ```
    pub fn apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> S,
        S: IntoSeries,
    {
        let df_height = self.height();
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();
        let new_col = f(col).into_series();
        match new_col.len() {
            1 => {
                let new_col = new_col.new_from_index(0, df_height);
                let _ = mem::replace(col, new_col);
            }
            len if (len == df_height) => {
                let _ = mem::replace(col, new_col);
            }
            len => {
                return Err(PolarsError::ShapeMisMatch(
                    format!(
                        "Result Series has shape {} where the DataFrame has height {}",
                        len,
                        self.height()
                    )
                    .into(),
                ));
            }
        }

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column at index `idx`. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given range of indexes.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// let idx = vec![0, 1, 4];
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set_at_idx_with(idx, |opt_val| opt_val.map(|string| format!("{}-is-modified", string)))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "ham-is-modified"   | 1      |
    /// +---------------------+--------+
    /// | "spam-is-modified"  | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "quack-is-modified" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply_at_idx<F, S>(&mut self, idx: usize, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let width = self.width();
        let col = self.columns.get_mut(idx).ok_or_else(|| {
            PolarsError::ComputeError(
                format!("Column index: {idx} outside of DataFrame with {width} columns",).into(),
            )
        })?;
        let name = col.name().to_string();

        let _ = mem::replace(col, f(col).map(|s| s.into_series())?);

        // make sure the name remains the same after applying the closure
        unsafe {
            let col = self.columns.get_unchecked_mut(idx);
            col.rename(&name);
        }
        Ok(self)
    }

    /// Apply a closure that may fail to a column. This is the recommended way to do in place
    /// modification.
    ///
    /// # Example
    ///
    /// This is the idiomatic way to replace some values a column of a `DataFrame` given a boolean mask.
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let s0 = Series::new("foo", &["ham", "spam", "egg", "bacon", "quack"]);
    /// let s1 = Series::new("values", &[1, 2, 3, 4, 5]);
    /// let mut df = DataFrame::new(vec![s0, s1])?;
    ///
    /// // create a mask
    /// let values = df.column("values")?;
    /// let mask = values.lt_eq(1)? | values.gt_eq(5_i32)?;
    ///
    /// df.try_apply("foo", |s| {
    ///     s.utf8()?
    ///     .set(&mask, Some("not_within_bounds"))
    /// });
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Results in:
    ///
    /// ```text
    /// +---------------------+--------+
    /// | foo                 | values |
    /// | ---                 | ---    |
    /// | str                 | i32    |
    /// +=====================+========+
    /// | "not_within_bounds" | 1      |
    /// +---------------------+--------+
    /// | "spam"              | 2      |
    /// +---------------------+--------+
    /// | "egg"               | 3      |
    /// +---------------------+--------+
    /// | "bacon"             | 4      |
    /// +---------------------+--------+
    /// | "not_within_bounds" | 5      |
    /// +---------------------+--------+
    /// ```
    pub fn try_apply<F, S>(&mut self, column: &str, f: F) -> PolarsResult<&mut Self>
    where
        F: FnOnce(&Series) -> PolarsResult<S>,
        S: IntoSeries,
    {
        let idx = self
            .find_idx_by_name(column)
            .ok_or_else(|| PolarsError::NotFound(column.to_string().into()))?;
        self.try_apply_at_idx(idx, f)
    }

    /// Slice the `DataFrame` along the rows.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let df: DataFrame = df!("Fruit" => &["Apple", "Grape", "Grape", "Fig", "Fig"],
    ///                         "Color" => &["Green", "Red", "White", "White", "Red"])?;
    /// let sl: DataFrame = df.slice(2, 3);
    ///
    /// assert_eq!(sl.shape(), (3, 2));
    /// println!("{}", sl);
    /// # Ok::<(), PolarsError>(())
    /// ```
    /// Output:
    /// ```text
    /// shape: (3, 2)
    /// +-------+-------+
    /// | Fruit | Color |
    /// | ---   | ---   |
    /// | str   | str   |
    /// +=======+=======+
    /// | Grape | White |
    /// +-------+-------+
    /// | Fig   | White |
    /// +-------+-------+
    /// | Fig   | Red   |
    /// +-------+-------+
    /// ```
    #[must_use]
    pub fn slice(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        let col = self
            .columns
            .iter()
            .map(|s| s.slice(offset, length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    #[must_use]
    pub fn slice_par(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns_par(&|s| s.slice(offset, length)))
    }

    #[must_use]
    pub fn _slice_and_realloc(&self, offset: i64, length: usize) -> Self {
        if offset == 0 && length == self.height() {
            return self.clone();
        }
        DataFrame::new_no_checks(self.apply_columns(&|s| {
            let mut out = s.slice(offset, length);
            out.shrink_to_fit();
            out
        }))
    }

    /// Get the head of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank by GDP (2021)" => &[1, 2, 3, 4, 5],
    ///         "Continent" => &["North America", "Asia", "Asia", "Europe", "Europe"],
    ///         "Country" => &["United States", "China", "Japan", "Germany", "United Kingdom"],
    ///         "Capital" => &["Washington", "Beijing", "Tokyo", "Berlin", "London"])?;
    /// assert_eq!(countries.shape(), (5, 4));
    ///
    /// println!("{}", countries.head(Some(3)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (3, 4)
    /// +--------------------+---------------+---------------+------------+
    /// | Rank by GDP (2021) | Continent     | Country       | Capital    |
    /// | ---                | ---           | ---           | ---        |
    /// | i32                | str           | str           | str        |
    /// +====================+===============+===============+============+
    /// | 1                  | North America | United States | Washington |
    /// +--------------------+---------------+---------------+------------+
    /// | 2                  | Asia          | China         | Beijing    |
    /// +--------------------+---------------+---------------+------------+
    /// | 3                  | Asia          | Japan         | Tokyo      |
    /// +--------------------+---------------+---------------+------------+
    /// ```
    #[must_use]
    pub fn head(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.head(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Get the tail of the `DataFrame`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use polars_core::prelude::*;
    /// let countries: DataFrame =
    ///     df!("Rank (2021)" => &[105, 106, 107, 108, 109],
    ///         "Apple Price (€/kg)" => &[0.75, 0.70, 0.70, 0.65, 0.52],
    ///         "Country" => &["Kosovo", "Moldova", "North Macedonia", "Syria", "Turkey"])?;
    /// assert_eq!(countries.shape(), (5, 3));
    ///
    /// println!("{}", countries.tail(Some(2)));
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (2, 3)
    /// +-------------+--------------------+---------+
    /// | Rank (2021) | Apple Price (€/kg) | Country |
    /// | ---         | ---                | ---     |
    /// | i32         | f64                | str     |
    /// +=============+====================+=========+
    /// | 108         | 0.63               | Syria   |
    /// +-------------+--------------------+---------+
    /// | 109         | 0.63               | Turkey  |
    /// +-------------+--------------------+---------+
    /// ```
    #[must_use]
    pub fn tail(&self, length: Option<usize>) -> Self {
        let col = self
            .columns
            .iter()
            .map(|s| s.tail(length))
            .collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks(&self) -> RecordBatchIter {
        RecordBatchIter {
            columns: &self.columns,
            idx: 0,
            n_chunks: self.n_chunks(),
        }
    }

    /// Iterator over the rows in this `DataFrame` as Arrow RecordBatches as physical values.
    ///
    /// # Panics
    ///
    /// Panics if the `DataFrame` that is passed is not rechunked.
    ///
    /// This responsibility is left to the caller as we don't want to take mutable references here,
    /// but we also don't want to rechunk here, as this operation is costly and would benefit the caller
    /// as well.
    pub fn iter_chunks_physical(&self) -> PhysRecordBatchIter<'_> {
        PhysRecordBatchIter {
            iters: self.columns.iter().map(|s| s.chunks().iter()).collect(),
        }
    }

    /// Get a `DataFrame` with all the columns in reversed order.
    #[must_use]
    pub fn reverse(&self) -> Self {
        let col = self.columns.iter().map(|s| s.reverse()).collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

    /// Shift the values by a given period and fill the parts that will be empty due to this operation
    /// with `Nones`.
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.shift) for more info on the `shift` operation.
    #[must_use]
    pub fn shift(&self, periods: i64) -> Self {
        let col = self.apply_columns_par(&|s| s.shift(periods));

        DataFrame::new_no_checks(col)
    }

    /// Replace None values with one of the following strategies:
    /// * Forward fill (replace None with the previous value)
    /// * Backward fill (replace None with the next value)
    /// * Mean fill (replace None with the mean of the whole array)
    /// * Min fill (replace None with the minimum of the whole array)
    /// * Max fill (replace None with the maximum of the whole array)
    ///
    /// See the method on [Series](../series/trait.SeriesTrait.html#method.fill_null) for more info on the `fill_null` operation.
    pub fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
        let col = self.try_apply_columns_par(&|s| s.fill_null(strategy))?;

        Ok(DataFrame::new_no_checks(col))
    }

    /// Summary statistics for a DataFrame. Only summarizes numeric datatypes at the moment and returns nulls for non numeric datatypes.
    /// Try in keep output similar to pandas
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("categorical" => &["d","e","f"],
    ///                          "numeric" => &[1, 2, 3],
    ///                          "object" => &["a", "b", "c"])?;
    /// assert_eq!(df1.shape(), (3, 3));
    ///
    /// let df2: DataFrame = df1.describe(None);
    /// assert_eq!(df2.shape(), (8, 4));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (8, 4)
    /// ┌──────────┬─────────────┬─────────┬────────┐
    /// │ describe ┆ categorical ┆ numeric ┆ object │
    /// │ ---      ┆ ---         ┆ ---     ┆ ---    │
    /// │ str      ┆ f64         ┆ f64     ┆ f64    │
    /// ╞══════════╪═════════════╪═════════╪════════╡
    /// │ count    ┆ 3.0         ┆ 3.0     ┆ 3.0    │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ mean     ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ std      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ min      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 25%      ┆ null        ┆ 1.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 50%      ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 75%      ┆ null        ┆ 2.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ max      ┆ null        ┆ 3.0     ┆ null   │
    /// └──────────┴─────────────┴─────────┴────────┘
    /// ```
    #[must_use]
    #[cfg(feature = "describe")]
    pub fn describe(&self, percentiles: Option<&[f64]>) -> Self {
        fn describe_cast(df: &DataFrame) -> DataFrame {
            let mut columns: Vec<Series> = vec![];

            for s in df.columns.iter() {
                columns.push(s.cast(&DataType::Float64).expect("cast to float failed"));
            }

            DataFrame::new(columns).unwrap()
        }

        fn count(df: &DataFrame) -> DataFrame {
            let columns = df.apply_columns_par(&|s| Series::new(s.name(), [s.len() as IdxSize]));
            DataFrame::new_no_checks(columns)
        }

        let percentiles = percentiles.unwrap_or(&[0.25, 0.5, 0.75]);

        let mut headers: Vec<String> = vec![
            "count".to_string(),
            "mean".to_string(),
            "std".to_string(),
            "min".to_string(),
        ];

        let mut tmp: Vec<DataFrame> = vec![
            describe_cast(&count(self)),
            describe_cast(&self.mean()),
            describe_cast(&self.std(1)),
            describe_cast(&self.min()),
        ];

        for p in percentiles {
            tmp.push(describe_cast(
                &self
                    .quantile(*p, QuantileInterpolOptions::Linear)
                    .expect("quantile failed"),
            ));
            headers.push(format!("{}%", *p * 100.0));
        }

        // Keep order same as pandas
        tmp.push(describe_cast(&self.max()));
        headers.push("max".to_string());

        let mut summary = concat_df_unchecked(&tmp);

        summary
            .insert_at_idx(0, Series::new("describe", headers))
            .expect("insert of header failed");

        summary
    }

    /// Aggregate the columns to their maximum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.max();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 6       | 5       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn max(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.max_as_series());

        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their standard deviation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.std(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +-------------------+--------------------+
    /// | Die n°1           | Die n°2            |
    /// | ---               | ---                |
    /// | f64               | f64                |
    /// +===================+====================+
    /// | 2.280350850198276 | 1.0954451150103321 |
    /// +-------------------+--------------------+
    /// ```
    #[must_use]
    pub fn std(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.std_as_series(ddof));

        DataFrame::new_no_checks(columns)
    }
    /// Aggregate the columns to their variation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.var(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 5.2     | 1.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn var(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.var_as_series(ddof));
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their minimum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.min();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 1       | 2       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn min(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.min_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their sum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.sum();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 16      | 16      |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn sum(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.sum_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their mean values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.mean();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 3.2     | 3.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn mean(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.mean_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their median values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.median();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 3       | 3       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn median(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.median_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their quantile values.
    pub fn quantile(&self, quantile: f64, interpol: QuantileInterpolOptions) -> PolarsResult<Self> {
        let columns = self.try_apply_columns_par(&|s| s.quantile_as_series(quantile, interpol))?;

        Ok(DataFrame::new_no_checks(columns))
    }

    /// Aggregate the column horizontally to their min values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmin(&self) -> PolarsResult<Option<Series>> {
        let min_fn = |acc: &Series, s: &Series| {
            let mask = acc.lt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their max values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmax(&self) -> PolarsResult<Option<Series>> {
        let max_fn = |acc: &Series, s: &Series| {
            let mask = acc.gt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }
src/chunked_array/ops/unique/rank.rs (line 54)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
pub(crate) fn rank(s: &Series, method: RankMethod, reverse: bool) -> Series {
    match s.len() {
        1 => {
            return match method {
                Average => Series::new(s.name(), &[1.0f32]),
                _ => Series::new(s.name(), &[1 as IdxSize]),
            };
        }
        0 => {
            return match method {
                Average => Float32Chunked::from_slice(s.name(), &[]).into_series(),
                _ => IdxCa::from_slice(s.name(), &[]).into_series(),
            };
        }
        _ => {}
    }

    if s.null_count() > 0 {
        let nulls = s.is_not_null().rechunk();
        let arr = nulls.downcast_iter().next().unwrap();
        let validity = arr.values();
        // Currently, nulls tie with the minimum or maximum bound for a type, depending on reverse.
        // TODO: Need to expose nulls_last in argsort to prevent this.
        // Fill using MaxBound/MinBound to give nulls last rank.
        // we will replace them later.
        let null_strategy = if reverse {
            FillNullStrategy::MinBound
        } else {
            FillNullStrategy::MaxBound
        };
        let s = s.fill_null(null_strategy).unwrap();

        let mut out = rank(&s, method, reverse);
        unsafe {
            let arr = &mut out.chunks_mut()[0];
            *arr = arr.with_validity(Some(validity.clone()))
        }
        return out;
    }

    // See: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L8631-L8737

    let len = s.len();
    let null_count = s.null_count();
    let sort_idx_ca = s.argsort(SortOptions {
        descending: reverse,
        ..Default::default()
    });
    let sort_idx = sort_idx_ca.downcast_iter().next().unwrap().values();

    let mut inv: Vec<IdxSize> = Vec::with_capacity(len);
    // Safety:
    // Values will be filled next and there is only primitive data
    #[allow(clippy::uninit_vec)]
    unsafe {
        inv.set_len(len)
    }
    let inv_values = inv.as_mut_slice();

    #[cfg(feature = "random")]
    let mut count = if let RankMethod::Ordinal | RankMethod::Random = method {
        1 as IdxSize
    } else {
        0
    };

    #[cfg(not(feature = "random"))]
    let mut count = if let RankMethod::Ordinal = method {
        1 as IdxSize
    } else {
        0
    };

    // Safety:
    // we are in bounds
    unsafe {
        sort_idx.iter().for_each(|&i| {
            *inv_values.get_unchecked_mut(i as usize) = count;
            count += 1;
        });
    }

    use RankMethod::*;
    match method {
        Ordinal => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        #[cfg(feature = "random")]
        Random => {
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            let obs = not_consecutive_same.downcast_iter().next().unwrap();

            // Collect slice indices for sort_idx which point to ties in the original series.
            let mut ties_indices = Vec::with_capacity(len + 1);
            let mut ties_index: usize = 0;

            ties_indices.push(ties_index);
            obs.iter().for_each(|b| {
                if let Some(b) = b {
                    ties_index += 1;
                    if b {
                        ties_indices.push(ties_index)
                    }
                }
            });
            // Close last slice (if there where nulls in the original series, they will always be in the last slice).
            ties_indices.push(len);

            let mut sort_idx = sort_idx.to_vec();

            let mut thread_rng = thread_rng();
            let rng = &mut SmallRng::from_rng(&mut thread_rng).unwrap();

            // Shuffle sort_idx positions which point to ties in the original series.
            for i in 0..(ties_indices.len() - 1) {
                let ties_index_start = ties_indices[i];
                let ties_index_end = ties_indices[i + 1];
                if ties_index_end - ties_index_start > 1 {
                    sort_idx[ties_index_start..ties_index_end].shuffle(rng);
                }
            }

            // Recreate inv_ca (where ties are randomly shuffled compared with Ordinal).
            let mut count = 1 as IdxSize;
            unsafe {
                sort_idx.iter().for_each(|&i| {
                    *inv_values.get_unchecked_mut(i as usize) = count;
                    count += 1;
                });
            }

            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        _ => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let validity = arr.chunks()[0].validity().cloned();
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            // this obs is shorter than that of scipy stats, because we can just start the cumsum by 1
            // instead of 0
            let obs = not_consecutive_same.downcast_iter().next().unwrap();
            let mut dense = Vec::with_capacity(len);

            // this offset save an offset on the whole column, what scipy does in:
            //
            // ```python
            //     if method == 'min':
            //         return count[dense - 1] + 1
            // ```
            // INVALID LINT REMOVE LATER
            #[allow(clippy::bool_to_int_with_if)]
            let mut cumsum: IdxSize = if let RankMethod::Min = method {
                0
            } else {
                // nulls will be first, rank, but we will replace them (with null)
                // so this ensures the second rank will be 1
                if matches!(method, RankMethod::Dense) && s.null_count() > 0 {
                    0
                } else {
                    1
                }
            };

            dense.push(cumsum);
            obs.values_iter().for_each(|b| {
                if b {
                    cumsum += 1;
                }
                dense.push(cumsum)
            });
            let arr = IdxArr::from_data_default(dense.into(), validity);
            let dense: IdxCa = (s.name(), arr).into();
            // Safety:
            // in bounds
            let dense = unsafe { dense.take_unchecked((&inv_ca).into()) };

            if let RankMethod::Dense = method {
                return if s.null_count() == 0 {
                    dense.into_series()
                } else {
                    // null will be the first rank
                    // we restore original nulls and shift all ranks by one
                    let validity = s.is_null().rechunk();
                    let validity = validity.downcast_iter().next().unwrap();
                    let validity = validity.values().clone();

                    let arr = dense.downcast_iter().next().unwrap();
                    let arr = arr.with_validity(Some(validity));
                    let dtype = arr.data_type().clone();

                    // Safety:
                    // given dtype is correct
                    unsafe {
                        Series::try_from_arrow_unchecked(s.name(), vec![arr], &dtype).unwrap()
                    }
                };
            }

            let bitmap = obs.values();
            let cap = bitmap.len() - bitmap.unset_bits();
            let mut count = Vec::with_capacity(cap + 1);
            let mut cnt: IdxSize = 0;
            count.push(cnt);

            if null_count > 0 {
                obs.iter().for_each(|b| {
                    if let Some(b) = b {
                        cnt += 1;
                        if b {
                            count.push(cnt)
                        }
                    }
                });
            } else {
                obs.values_iter().for_each(|b| {
                    cnt += 1;
                    if b {
                        count.push(cnt)
                    }
                });
            }

            count.push((len - null_count) as IdxSize);
            let count = IdxCa::from_vec(s.name(), count);

            match method {
                Max => {
                    // Safety:
                    // within bounds
                    unsafe { count.take_unchecked((&dense).into()).into_series() }
                }
                Min => {
                    // Safety:
                    // within bounds
                    unsafe { (count.take_unchecked((&dense).into()) + 1).into_series() }
                }
                Average => {
                    // Safety:
                    // in bounds
                    let a = unsafe { count.take_unchecked((&dense).into()) }
                        .cast(&DataType::Float32)
                        .unwrap();
                    let b = unsafe { count.take_unchecked((&(dense - 1)).into()) }
                        .cast(&DataType::Float32)
                        .unwrap()
                        + 1.0;
                    (&a + &b) * 0.5
                }
                #[cfg(feature = "random")]
                Dense | Ordinal | Random => unimplemented!(),
                #[cfg(not(feature = "random"))]
                Dense | Ordinal => unimplemented!(),
            }
        }
    }
}

Get a mask of all the unique values.

Get a mask of all the duplicated values.

return a Series in reversed order

Examples found in repository?
src/frame/mod.rs (line 2426)
2425
2426
2427
2428
    pub fn reverse(&self) -> Self {
        let col = self.columns.iter().map(|s| s.reverse()).collect::<Vec<_>>();
        DataFrame::new_no_checks(col)
    }

Rechunk and return a pointer to the start of the Series. Only implemented for numeric types

Examples found in repository?
src/series/mod.rs (line 226)
225
226
227
    pub fn as_single_ptr(&mut self) -> PolarsResult<usize> {
        self._get_inner_mut().as_single_ptr()
    }

Shift the values by a given period and fill the parts that will be empty due to this operation with Nones.

NOTE: If you want to fill the Nones with a value use the shift operation on ChunkedArray<T>.

Example
fn example() -> PolarsResult<()> {
    let s = Series::new("series", &[1, 2, 3]);

    let shifted = s.shift(1);
    assert_eq!(Vec::from(shifted.i32()?), &[None, Some(1), Some(2)]);

    let shifted = s.shift(-1);
    assert_eq!(Vec::from(shifted.i32()?), &[Some(2), Some(3), None]);

    let shifted = s.shift(2);
    assert_eq!(Vec::from(shifted.i32()?), &[None, None, Some(1)]);

    Ok(())
}
example();
Examples found in repository?
src/frame/mod.rs (line 2436)
2435
2436
2437
2438
2439
    pub fn shift(&self, periods: i64) -> Self {
        let col = self.apply_columns_par(&|s| s.shift(periods));

        DataFrame::new_no_checks(col)
    }
More examples
Hide additional examples
src/series/ops/diff.rs (line 8)
6
7
8
9
10
11
12
13
14
    pub fn diff(&self, n: usize, null_behavior: NullBehavior) -> Series {
        match null_behavior {
            NullBehavior::Ignore => self - &self.shift(n as i64),
            NullBehavior::Drop => {
                let len = self.len() - n;
                &self.slice(n as i64, len) - &self.slice(0, len)
            }
        }
    }

Replace None values with one of the following strategies:

  • Forward fill (replace None with the previous value)
  • Backward fill (replace None with the next value)
  • Mean fill (replace None with the mean of the whole array)
  • Min fill (replace None with the minimum of the whole array)
  • Max fill (replace None with the maximum of the whole array)

NOTE: If you want to fill the Nones with a value use the fill_null operation on ChunkedArray<T>.

Example
fn example() -> PolarsResult<()> {
    let s = Series::new("some_missing", &[Some(1), None, Some(2)]);

    let filled = s.fill_null(FillNullStrategy::Forward(None))?;
    assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(1), Some(2)]);

    let filled = s.fill_null(FillNullStrategy::Backward(None))?;
    assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(2), Some(2)]);

    let filled = s.fill_null(FillNullStrategy::Min)?;
    assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(1), Some(2)]);

    let filled = s.fill_null(FillNullStrategy::Max)?;
    assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(2), Some(2)]);

    let filled = s.fill_null(FillNullStrategy::Mean)?;
    assert_eq!(Vec::from(filled.i32()?), &[Some(1), Some(1), Some(2)]);

    Ok(())
}
example();
Examples found in repository?
src/frame/mod.rs (line 2450)
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
    pub fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Self> {
        let col = self.try_apply_columns_par(&|s| s.fill_null(strategy))?;

        Ok(DataFrame::new_no_checks(col))
    }

    /// Summary statistics for a DataFrame. Only summarizes numeric datatypes at the moment and returns nulls for non numeric datatypes.
    /// Try in keep output similar to pandas
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("categorical" => &["d","e","f"],
    ///                          "numeric" => &[1, 2, 3],
    ///                          "object" => &["a", "b", "c"])?;
    /// assert_eq!(df1.shape(), (3, 3));
    ///
    /// let df2: DataFrame = df1.describe(None);
    /// assert_eq!(df2.shape(), (8, 4));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (8, 4)
    /// ┌──────────┬─────────────┬─────────┬────────┐
    /// │ describe ┆ categorical ┆ numeric ┆ object │
    /// │ ---      ┆ ---         ┆ ---     ┆ ---    │
    /// │ str      ┆ f64         ┆ f64     ┆ f64    │
    /// ╞══════════╪═════════════╪═════════╪════════╡
    /// │ count    ┆ 3.0         ┆ 3.0     ┆ 3.0    │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ mean     ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ std      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ min      ┆ null        ┆ 1.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 25%      ┆ null        ┆ 1.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 50%      ┆ null        ┆ 2.0     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ 75%      ┆ null        ┆ 2.5     ┆ null   │
    /// ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
    /// │ max      ┆ null        ┆ 3.0     ┆ null   │
    /// └──────────┴─────────────┴─────────┴────────┘
    /// ```
    #[must_use]
    #[cfg(feature = "describe")]
    pub fn describe(&self, percentiles: Option<&[f64]>) -> Self {
        fn describe_cast(df: &DataFrame) -> DataFrame {
            let mut columns: Vec<Series> = vec![];

            for s in df.columns.iter() {
                columns.push(s.cast(&DataType::Float64).expect("cast to float failed"));
            }

            DataFrame::new(columns).unwrap()
        }

        fn count(df: &DataFrame) -> DataFrame {
            let columns = df.apply_columns_par(&|s| Series::new(s.name(), [s.len() as IdxSize]));
            DataFrame::new_no_checks(columns)
        }

        let percentiles = percentiles.unwrap_or(&[0.25, 0.5, 0.75]);

        let mut headers: Vec<String> = vec![
            "count".to_string(),
            "mean".to_string(),
            "std".to_string(),
            "min".to_string(),
        ];

        let mut tmp: Vec<DataFrame> = vec![
            describe_cast(&count(self)),
            describe_cast(&self.mean()),
            describe_cast(&self.std(1)),
            describe_cast(&self.min()),
        ];

        for p in percentiles {
            tmp.push(describe_cast(
                &self
                    .quantile(*p, QuantileInterpolOptions::Linear)
                    .expect("quantile failed"),
            ));
            headers.push(format!("{}%", *p * 100.0));
        }

        // Keep order same as pandas
        tmp.push(describe_cast(&self.max()));
        headers.push("max".to_string());

        let mut summary = concat_df_unchecked(&tmp);

        summary
            .insert_at_idx(0, Series::new("describe", headers))
            .expect("insert of header failed");

        summary
    }

    /// Aggregate the columns to their maximum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.max();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 6       | 5       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn max(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.max_as_series());

        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their standard deviation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.std(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +-------------------+--------------------+
    /// | Die n°1           | Die n°2            |
    /// | ---               | ---                |
    /// | f64               | f64                |
    /// +===================+====================+
    /// | 2.280350850198276 | 1.0954451150103321 |
    /// +-------------------+--------------------+
    /// ```
    #[must_use]
    pub fn std(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.std_as_series(ddof));

        DataFrame::new_no_checks(columns)
    }
    /// Aggregate the columns to their variation values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.var(1);
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 5.2     | 1.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn var(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.var_as_series(ddof));
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their minimum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.min();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 1       | 2       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn min(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.min_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their sum values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.sum();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 16      | 16      |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn sum(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.sum_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their mean values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.mean();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | f64     | f64     |
    /// +=========+=========+
    /// | 3.2     | 3.2     |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn mean(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.mean_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their median values.
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use polars_core::prelude::*;
    /// let df1: DataFrame = df!("Die n°1" => &[1, 3, 1, 5, 6],
    ///                          "Die n°2" => &[3, 2, 3, 5, 3])?;
    /// assert_eq!(df1.shape(), (5, 2));
    ///
    /// let df2: DataFrame = df1.median();
    /// assert_eq!(df2.shape(), (1, 2));
    /// println!("{}", df2);
    /// # Ok::<(), PolarsError>(())
    /// ```
    ///
    /// Output:
    ///
    /// ```text
    /// shape: (1, 2)
    /// +---------+---------+
    /// | Die n°1 | Die n°2 |
    /// | ---     | ---     |
    /// | i32     | i32     |
    /// +=========+=========+
    /// | 3       | 3       |
    /// +---------+---------+
    /// ```
    #[must_use]
    pub fn median(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.median_as_series());
        DataFrame::new_no_checks(columns)
    }

    /// Aggregate the columns to their quantile values.
    pub fn quantile(&self, quantile: f64, interpol: QuantileInterpolOptions) -> PolarsResult<Self> {
        let columns = self.try_apply_columns_par(&|s| s.quantile_as_series(quantile, interpol))?;

        Ok(DataFrame::new_no_checks(columns))
    }

    /// Aggregate the column horizontally to their min values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmin(&self) -> PolarsResult<Option<Series>> {
        let min_fn = |acc: &Series, s: &Series| {
            let mask = acc.lt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => min_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| min_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their max values.
    #[cfg(feature = "zip_with")]
    #[cfg_attr(docsrs, doc(cfg(feature = "zip_with")))]
    pub fn hmax(&self) -> PolarsResult<Option<Series>> {
        let max_fn = |acc: &Series, s: &Series| {
            let mask = acc.gt(s)? & acc.is_not_null() | s.is_null();
            acc.zip_with(&mask, s)
        };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => max_fn(&self.columns[0], &self.columns[1]).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| max_fn(&l, &r).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }

    /// Aggregate the column horizontally to their sum values.
    pub fn hsum(&self, none_strategy: NullStrategy) -> PolarsResult<Option<Series>> {
        let sum_fn =
            |acc: &Series, s: &Series, none_strategy: NullStrategy| -> PolarsResult<Series> {
                let mut acc = acc.clone();
                let mut s = s.clone();
                if let NullStrategy::Ignore = none_strategy {
                    // if has nulls
                    if acc.has_validity() {
                        acc = acc.fill_null(FillNullStrategy::Zero)?;
                    }
                    if s.has_validity() {
                        s = s.fill_null(FillNullStrategy::Zero)?;
                    }
                }
                Ok(&acc + &s)
            };

        match self.columns.len() {
            0 => Ok(None),
            1 => Ok(Some(self.columns[0].clone())),
            2 => sum_fn(&self.columns[0], &self.columns[1], none_strategy).map(Some),
            _ => {
                // the try_reduce_with is a bit slower in parallelism,
                // but I don't think it matters here as we parallelize over columns, not over elements
                POOL.install(|| {
                    self.columns
                        .par_iter()
                        .map(|s| Ok(Cow::Borrowed(s)))
                        .try_reduce_with(|l, r| sum_fn(&l, &r, none_strategy).map(Cow::Owned))
                        // we can unwrap the option, because we are certain there is a column
                        // we started this operation on 3 columns
                        .unwrap()
                        .map(|cow| Some(cow.into_owned()))
                })
            }
        }
    }
More examples
Hide additional examples
src/chunked_array/ops/unique/rank.rs (line 66)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
pub(crate) fn rank(s: &Series, method: RankMethod, reverse: bool) -> Series {
    match s.len() {
        1 => {
            return match method {
                Average => Series::new(s.name(), &[1.0f32]),
                _ => Series::new(s.name(), &[1 as IdxSize]),
            };
        }
        0 => {
            return match method {
                Average => Float32Chunked::from_slice(s.name(), &[]).into_series(),
                _ => IdxCa::from_slice(s.name(), &[]).into_series(),
            };
        }
        _ => {}
    }

    if s.null_count() > 0 {
        let nulls = s.is_not_null().rechunk();
        let arr = nulls.downcast_iter().next().unwrap();
        let validity = arr.values();
        // Currently, nulls tie with the minimum or maximum bound for a type, depending on reverse.
        // TODO: Need to expose nulls_last in argsort to prevent this.
        // Fill using MaxBound/MinBound to give nulls last rank.
        // we will replace them later.
        let null_strategy = if reverse {
            FillNullStrategy::MinBound
        } else {
            FillNullStrategy::MaxBound
        };
        let s = s.fill_null(null_strategy).unwrap();

        let mut out = rank(&s, method, reverse);
        unsafe {
            let arr = &mut out.chunks_mut()[0];
            *arr = arr.with_validity(Some(validity.clone()))
        }
        return out;
    }

    // See: https://github.com/scipy/scipy/blob/v1.7.1/scipy/stats/stats.py#L8631-L8737

    let len = s.len();
    let null_count = s.null_count();
    let sort_idx_ca = s.argsort(SortOptions {
        descending: reverse,
        ..Default::default()
    });
    let sort_idx = sort_idx_ca.downcast_iter().next().unwrap().values();

    let mut inv: Vec<IdxSize> = Vec::with_capacity(len);
    // Safety:
    // Values will be filled next and there is only primitive data
    #[allow(clippy::uninit_vec)]
    unsafe {
        inv.set_len(len)
    }
    let inv_values = inv.as_mut_slice();

    #[cfg(feature = "random")]
    let mut count = if let RankMethod::Ordinal | RankMethod::Random = method {
        1 as IdxSize
    } else {
        0
    };

    #[cfg(not(feature = "random"))]
    let mut count = if let RankMethod::Ordinal = method {
        1 as IdxSize
    } else {
        0
    };

    // Safety:
    // we are in bounds
    unsafe {
        sort_idx.iter().for_each(|&i| {
            *inv_values.get_unchecked_mut(i as usize) = count;
            count += 1;
        });
    }

    use RankMethod::*;
    match method {
        Ordinal => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        #[cfg(feature = "random")]
        Random => {
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            let obs = not_consecutive_same.downcast_iter().next().unwrap();

            // Collect slice indices for sort_idx which point to ties in the original series.
            let mut ties_indices = Vec::with_capacity(len + 1);
            let mut ties_index: usize = 0;

            ties_indices.push(ties_index);
            obs.iter().for_each(|b| {
                if let Some(b) = b {
                    ties_index += 1;
                    if b {
                        ties_indices.push(ties_index)
                    }
                }
            });
            // Close last slice (if there where nulls in the original series, they will always be in the last slice).
            ties_indices.push(len);

            let mut sort_idx = sort_idx.to_vec();

            let mut thread_rng = thread_rng();
            let rng = &mut SmallRng::from_rng(&mut thread_rng).unwrap();

            // Shuffle sort_idx positions which point to ties in the original series.
            for i in 0..(ties_indices.len() - 1) {
                let ties_index_start = ties_indices[i];
                let ties_index_end = ties_indices[i + 1];
                if ties_index_end - ties_index_start > 1 {
                    sort_idx[ties_index_start..ties_index_end].shuffle(rng);
                }
            }

            // Recreate inv_ca (where ties are randomly shuffled compared with Ordinal).
            let mut count = 1 as IdxSize;
            unsafe {
                sort_idx.iter().for_each(|&i| {
                    *inv_values.get_unchecked_mut(i as usize) = count;
                    count += 1;
                });
            }

            let inv_ca = IdxCa::from_vec(s.name(), inv);
            inv_ca.into_series()
        }
        _ => {
            let inv_ca = IdxCa::from_vec(s.name(), inv);
            // Safety:
            // in bounds
            let arr = unsafe { s.take_unchecked(&sort_idx_ca).unwrap() };
            let validity = arr.chunks()[0].validity().cloned();
            let not_consecutive_same = arr
                .slice(1, len - 1)
                .not_equal(&arr.slice(0, len - 1))
                .unwrap()
                .rechunk();
            // this obs is shorter than that of scipy stats, because we can just start the cumsum by 1
            // instead of 0
            let obs = not_consecutive_same.downcast_iter().next().unwrap();
            let mut dense = Vec::with_capacity(len);

            // this offset save an offset on the whole column, what scipy does in:
            //
            // ```python
            //     if method == 'min':
            //         return count[dense - 1] + 1
            // ```
            // INVALID LINT REMOVE LATER
            #[allow(clippy::bool_to_int_with_if)]
            let mut cumsum: IdxSize = if let RankMethod::Min = method {
                0
            } else {
                // nulls will be first, rank, but we will replace them (with null)
                // so this ensures the second rank will be 1
                if matches!(method, RankMethod::Dense) && s.null_count() > 0 {
                    0
                } else {
                    1
                }
            };

            dense.push(cumsum);
            obs.values_iter().for_each(|b| {
                if b {
                    cumsum += 1;
                }
                dense.push(cumsum)
            });
            let arr = IdxArr::from_data_default(dense.into(), validity);
            let dense: IdxCa = (s.name(), arr).into();
            // Safety:
            // in bounds
            let dense = unsafe { dense.take_unchecked((&inv_ca).into()) };

            if let RankMethod::Dense = method {
                return if s.null_count() == 0 {
                    dense.into_series()
                } else {
                    // null will be the first rank
                    // we restore original nulls and shift all ranks by one
                    let validity = s.is_null().rechunk();
                    let validity = validity.downcast_iter().next().unwrap();
                    let validity = validity.values().clone();

                    let arr = dense.downcast_iter().next().unwrap();
                    let arr = arr.with_validity(Some(validity));
                    let dtype = arr.data_type().clone();

                    // Safety:
                    // given dtype is correct
                    unsafe {
                        Series::try_from_arrow_unchecked(s.name(), vec![arr], &dtype).unwrap()
                    }
                };
            }

            let bitmap = obs.values();
            let cap = bitmap.len() - bitmap.unset_bits();
            let mut count = Vec::with_capacity(cap + 1);
            let mut cnt: IdxSize = 0;
            count.push(cnt);

            if null_count > 0 {
                obs.iter().for_each(|b| {
                    if let Some(b) = b {
                        cnt += 1;
                        if b {
                            count.push(cnt)
                        }
                    }
                });
            } else {
                obs.values_iter().for_each(|b| {
                    cnt += 1;
                    if b {
                        count.push(cnt)
                    }
                });
            }

            count.push((len - null_count) as IdxSize);
            let count = IdxCa::from_vec(s.name(), count);

            match method {
                Max => {
                    // Safety:
                    // within bounds
                    unsafe { count.take_unchecked((&dense).into()).into_series() }
                }
                Min => {
                    // Safety:
                    // within bounds
                    unsafe { (count.take_unchecked((&dense).into()) + 1).into_series() }
                }
                Average => {
                    // Safety:
                    // in bounds
                    let a = unsafe { count.take_unchecked((&dense).into()) }
                        .cast(&DataType::Float32)
                        .unwrap();
                    let b = unsafe { count.take_unchecked((&(dense - 1)).into()) }
                        .cast(&DataType::Float32)
                        .unwrap()
                        + 1.0;
                    (&a + &b) * 0.5
                }
                #[cfg(feature = "random")]
                Dense | Ordinal | Random => unimplemented!(),
                #[cfg(not(feature = "random"))]
                Dense | Ordinal => unimplemented!(),
            }
        }
    }
}

Get the sum of the Series as a new Series of length 1.

If the DataType is one of {Int8, UInt8, Int16, UInt16} the Series is first cast to Int64 to prevent overflow issues.

Examples found in repository?
src/series/mod.rs (line 529)
519
520
521
522
523
524
525
526
527
528
529
530
531
    pub fn sum_as_series(&self) -> Series {
        use DataType::*;
        if self.is_empty() && self.dtype().is_numeric() {
            return Series::new("", [0])
                .cast(self.dtype())
                .unwrap()
                .sum_as_series();
        }
        match self.dtype() {
            Int8 | UInt8 | Int16 | UInt16 => self.cast(&Int64).unwrap().sum_as_series(),
            _ => self._sum_as_series(),
        }
    }

Get the max of the Series as a new Series of length 1.

Examples found in repository?
src/frame/mod.rs (line 2585)
2584
2585
2586
2587
2588
    pub fn max(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.max_as_series());

        DataFrame::new_no_checks(columns)
    }
More examples
Hide additional examples
src/series/mod.rs (line 284)
280
281
282
283
284
285
286
287
288
    pub fn max<T>(&self) -> Option<T>
    where
        T: NumCast,
    {
        self.max_as_series()
            .cast(&DataType::Float64)
            .ok()
            .and_then(|s| s.f64().unwrap().get(0).and_then(T::from))
    }

Get the min of the Series as a new Series of length 1.

Examples found in repository?
src/frame/mod.rs (line 2688)
2687
2688
2689
2690
    pub fn min(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.min_as_series());
        DataFrame::new_no_checks(columns)
    }
More examples
Hide additional examples
src/series/mod.rs (line 267)
263
264
265
266
267
268
269
270
271
    pub fn min<T>(&self) -> Option<T>
    where
        T: NumCast,
    {
        self.min_as_series()
            .cast(&DataType::Float64)
            .ok()
            .and_then(|s| s.f64().unwrap().get(0).and_then(T::from))
    }

Get the median of the Series as a new Series of length 1.

Examples found in repository?
src/frame/mod.rs (line 2790)
2789
2790
2791
2792
    pub fn median(&self) -> Self {
        let columns = self.apply_columns_par(&|s| s.median_as_series());
        DataFrame::new_no_checks(columns)
    }
More examples
Hide additional examples
src/series/implementations/boolean.rs (line 344)
338
339
340
341
342
343
344
345
346
347
    fn median_as_series(&self) -> Series {
        // first convert array to f32 as that's cheaper
        // finally the single value to f64
        self.0
            .cast(&DataType::Float32)
            .unwrap()
            .median_as_series()
            .cast(&DataType::Float64)
            .unwrap()
    }

Get the variance of the Series as a new Series of length 1.

Examples found in repository?
src/frame/mod.rs (line 2654)
2653
2654
2655
2656
    pub fn var(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.var_as_series(ddof));
        DataFrame::new_no_checks(columns)
    }
More examples
Hide additional examples
src/series/implementations/boolean.rs (line 355)
349
350
351
352
353
354
355
356
357
358
    fn var_as_series(&self, _ddof: u8) -> Series {
        // first convert array to f32 as that's cheaper
        // finally the single value to f64
        self.0
            .cast(&DataType::Float32)
            .unwrap()
            .var_as_series(_ddof)
            .cast(&DataType::Float64)
            .unwrap()
    }

Get the standard deviation of the Series as a new Series of length 1.

Examples found in repository?
src/frame/mod.rs (line 2620)
2619
2620
2621
2622
2623
    pub fn std(&self, ddof: u8) -> Self {
        let columns = self.apply_columns_par(&|s| s.std_as_series(ddof));

        DataFrame::new_no_checks(columns)
    }
More examples
Hide additional examples
src/series/implementations/boolean.rs (line 366)
360
361
362
363
364
365
366
367
368
369
    fn std_as_series(&self, _ddof: u8) -> Series {
        // first convert array to f32 as that's cheaper
        // finally the single value to f64
        self.0
            .cast(&DataType::Float32)
            .unwrap()
            .std_as_series(_ddof)
            .cast(&DataType::Float64)
            .unwrap()
    }

Get the quantile of the ChunkedArray as a new Series of length 1.

Examples found in repository?
src/frame/mod.rs (line 2796)
2795
2796
2797
2798
2799
    pub fn quantile(&self, quantile: f64, interpol: QuantileInterpolOptions) -> PolarsResult<Self> {
        let columns = self.try_apply_columns_par(&|s| s.quantile_as_series(quantile, interpol))?;

        Ok(DataFrame::new_no_checks(columns))
    }
Examples found in repository?
src/series/mod.rs (line 704)
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    pub fn strict_cast(&self, data_type: &DataType) -> PolarsResult<Series> {
        let s = self.cast(data_type)?;
        if self.null_count() != s.null_count() {
            let failure_mask = !self.is_null() & s.is_null();
            let failures = self.filter_threaded(&failure_mask, false)?.unique()?;
            Err(PolarsError::ComputeError(
                format!(
                    "Strict conversion from {:?} to {:?} failed for values {}. \
                    If you were trying to cast Utf8 to Date, Time, or Datetime, \
                    consider using `strptime`.",
                    self.dtype(),
                    data_type,
                    failures.fmt_list(),
                )
                .into(),
            ))
        } else {
            Ok(s)
        }
    }
More examples
Hide additional examples
src/fmt.rs (line 752)
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        let width = 0;
        match self {
            AnyValue::Null => write!(f, "null"),
            AnyValue::UInt8(v) => write!(f, "{v}"),
            AnyValue::UInt16(v) => write!(f, "{v}"),
            AnyValue::UInt32(v) => write!(f, "{v}"),
            AnyValue::UInt64(v) => write!(f, "{v}"),
            AnyValue::Int8(v) => fmt_integer(f, width, *v),
            AnyValue::Int16(v) => fmt_integer(f, width, *v),
            AnyValue::Int32(v) => fmt_integer(f, width, *v),
            AnyValue::Int64(v) => fmt_integer(f, width, *v),
            AnyValue::Float32(v) => fmt_float(f, width, *v),
            AnyValue::Float64(v) => fmt_float(f, width, *v),
            AnyValue::Boolean(v) => write!(f, "{}", *v),
            AnyValue::Utf8(v) => write!(f, "{}", format_args!("\"{v}\"")),
            AnyValue::Utf8Owned(v) => write!(f, "{}", format_args!("\"{v}\"")),
            #[cfg(feature = "dtype-binary")]
            AnyValue::Binary(_) | AnyValue::BinaryOwned(_) => write!(f, "[binary data]"),
            #[cfg(feature = "dtype-date")]
            AnyValue::Date(v) => write!(f, "{}", date32_to_date(*v)),
            #[cfg(feature = "dtype-datetime")]
            AnyValue::Datetime(v, tu, tz) => {
                let ndt = match tu {
                    TimeUnit::Nanoseconds => timestamp_ns_to_datetime(*v),
                    TimeUnit::Microseconds => timestamp_us_to_datetime(*v),
                    TimeUnit::Milliseconds => timestamp_ms_to_datetime(*v),
                };
                match tz {
                    None => write!(f, "{ndt}"),
                    Some(_tz) => {
                        #[cfg(feature = "timezones")]
                        {
                            match _tz.parse::<chrono_tz::Tz>() {
                                Ok(tz) => {
                                    let dt_utc = chrono::Utc.from_local_datetime(&ndt).unwrap();
                                    let dt_tz_aware = dt_utc.with_timezone(&tz);
                                    write!(f, "{dt_tz_aware}")
                                }
                                Err(_) => match parse_offset(_tz) {
                                    Ok(offset) => {
                                        let dt_tz_aware = offset.from_utc_datetime(&ndt);
                                        write!(f, "{dt_tz_aware}")
                                    }
                                    Err(_) => write!(f, "invalid timezone"),
                                },
                            }
                        }
                        #[cfg(not(feature = "timezones"))]
                        {
                            panic!("activate 'timezones' feature")
                        }
                    }
                }
            }
            #[cfg(feature = "dtype-duration")]
            AnyValue::Duration(v, tu) => match tu {
                TimeUnit::Nanoseconds => fmt_duration_ns(f, *v),
                TimeUnit::Microseconds => fmt_duration_us(f, *v),
                TimeUnit::Milliseconds => fmt_duration_ms(f, *v),
            },
            #[cfg(feature = "dtype-time")]
            AnyValue::Time(_) => {
                let nt: chrono::NaiveTime = self.into();
                write!(f, "{nt}")
            }
            #[cfg(feature = "dtype-categorical")]
            AnyValue::Categorical(idx, rev) => {
                let s = rev.get(*idx);
                write!(f, "\"{s}\"")
            }
            AnyValue::List(s) => write!(f, "{}", s.fmt_list()),
            #[cfg(feature = "object")]
            AnyValue::Object(v) => write!(f, "{v}"),
            #[cfg(feature = "dtype-struct")]
            av @ AnyValue::Struct(_, _, _) => {
                let mut avs = vec![];
                av._materialize_struct_av(&mut avs);
                fmt_struct(f, &avs)
            }
            #[cfg(feature = "dtype-struct")]
            AnyValue::StructOwned(payload) => fmt_struct(f, &payload.0),
        }
    }

Clone inner ChunkedArray and wrap in a new Arc

Examples found in repository?
src/series/series_trait.rs (line 357)
355
356
357
358
359
360
361
    fn drop_nulls(&self) -> Series {
        if self.null_count() == 0 {
            Series(self.clone_inner())
        } else {
            self.filter(&self.is_not_null()).unwrap()
        }
    }
More examples
Hide additional examples
src/series/mod.rs (line 165)
163
164
165
166
167
168
    pub fn _get_inner_mut(&mut self) -> &mut dyn SeriesTrait {
        if Arc::weak_count(&self.0) + Arc::strong_count(&self.0) != 1 {
            self.0 = self.0.clone_inner();
        }
        Arc::get_mut(&mut self.0).expect("implementation error")
    }
Available on crate feature object only.

Get the value at this index as a downcastable Any trait ref.

Get a hold to self as Any trait reference. Only implemented for ObjectType

Examples found in repository?
src/chunked_array/object/extension/list.rs (line 42)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
    fn append_series(&mut self, s: &Series) {
        let arr = s
            .as_any()
            .downcast_ref::<ObjectChunked<T>>()
            .expect("series of type object");

        for v in arr.into_iter() {
            self.values_builder.append_option(v.cloned())
        }
        if arr.is_empty() {
            self.fast_explode = false;
        }
        let len_so_far = self.offsets[self.offsets.len() - 1];
        self.offsets.push(len_so_far + arr.len() as i64);
    }

Get a hold to self as Any trait reference. Only implemented for ObjectType

Get a boolean mask of the local maximum peaks.

Get a boolean mask of the local minimum peaks.

Available on crate feature is_in only.

Check if elements of this Series are in the right Series, or List values of the right Series.

Examples found in repository?
src/chunked_array/ops/is_in.rs (line 53)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        // We check implicitly cast to supertype here
        match other.dtype() {
            DataType::List(dt) => {
                let st = try_get_supertype(self.dtype(), dt)?;
                if &st != self.dtype() {
                    let left = self.cast(&st)?;
                    let right = other.cast(&DataType::List(Box::new(st)))?;
                    return left.is_in(&right);
                }

                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);

                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_s| {
                            opt_s.map(|s| {
                                let ca = s.as_ref().unpack::<T>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<T>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            _ => {
                // first make sure that the types are equal
                let st = try_get_supertype(self.dtype(), other.dtype())?;
                if self.dtype() != other.dtype() {
                    let left = self.cast(&st)?;
                    let right = other.cast(&st)?;
                    return left.is_in(&right);
                }
                // now that the types are equal, we coerce every 32 bit array to u32
                // and every 64 bit array to u64 (including floats)
                // this allows hashing them and greatly reduces the number of code paths.
                match self.dtype() {
                    DataType::UInt64 | DataType::Int64 | DataType::Float64 => unsafe {
                        is_in_helper::<T, u64>(self, other)
                    },
                    DataType::UInt32 | DataType::Int32 | DataType::Float32 => unsafe {
                        is_in_helper::<T, u32>(self, other)
                    },
                    DataType::UInt8 | DataType::Int8 => unsafe {
                        is_in_helper::<T, u8>(self, other)
                    },
                    DataType::UInt16 | DataType::Int16 => unsafe {
                        is_in_helper::<T, u16>(self, other)
                    },
                    _ => Err(PolarsError::ComputeError(
                        format!(
                            "Data type {:?} not supported in is_in operation",
                            self.dtype()
                        )
                        .into(),
                    )),
                }
            }
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
Available on crate feature repeat_by only.
Available on crate feature checked_arithmetic only.
Examples found in repository?
src/series/arithmetic/borrowed.rs (line 217)
215
216
217
218
        fn checked_div(&self, rhs: &Series) -> PolarsResult<Series> {
            let (lhs, rhs) = coerce_lhs_rhs(self, rhs).expect("cannot coerce datatypes");
            lhs.as_ref().as_ref().checked_div(rhs.as_ref())
        }
Available on crate feature is_first only.

Get a mask of the first unique values.

Examples found in repository?
src/chunked_array/ops/unique/mod.rs (line 463)
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        fn is_first(&self) -> PolarsResult<BooleanChunked> {
            use DataType::*;
            match self.dtype() {
                // cast types to reduce compiler bloat
                Int8 | Int16 | UInt8 | UInt16 => {
                    let s = self.cast(&DataType::Int32).unwrap();
                    s.is_first()
                }
                _ => {
                    if Self::bit_repr_is_large() {
                        let ca = self.bit_repr_large();
                        Ok(is_first(&ca))
                    } else {
                        let ca = self.bit_repr_small();
                        Ok(is_first(&ca))
                    }
                }
            }
        }
Available on crate feature mode only.

Compute the most occurring element in the array.

Available on crate feature rolling_window only.

Apply a custom function over a rolling/ moving window of the array. This has quite some dynamic dispatch, so prefer rolling_min, max, mean, sum over this.

Examples found in repository?
src/chunked_array/ops/rolling_window.rs (line 82)
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        fn rolling_apply(
            &self,
            f: &dyn Fn(&Series) -> Series,
            options: RollingOptionsFixedWindow,
        ) -> PolarsResult<Series> {
            check_input(options.window_size, options.min_periods)?;

            let ca = self.rechunk();
            if options.weights.is_some()
                && !matches!(self.dtype(), DataType::Float64 | DataType::Float32)
            {
                let s = self.cast(&DataType::Float64)?;
                return s.rolling_apply(f, options);
            }

            if options.window_size >= self.len() {
                return Ok(Self::full_null(self.name(), self.len()).into_series());
            }

            let len = self.len();
            let arr = ca.downcast_iter().next().unwrap();
            let mut series_container =
                ChunkedArray::<T>::from_slice("", &[T::Native::zero()]).into_series();
            let array_ptr = series_container.array_ref(0);
            let ptr = array_ptr.as_ref() as *const dyn Array as *mut dyn Array
                as *mut PrimitiveArray<T::Native>;
            let mut builder = PrimitiveChunkedBuilder::<T>::new(self.name(), self.len());

            if let Some(weights) = options.weights {
                let weights_series = Float64Chunked::new("weights", &weights).into_series();

                let weights_series = weights_series.cast(self.dtype()).unwrap();

                for idx in 0..len {
                    let (start, size) = window_edges(idx, len, options.window_size, options.center);

                    if size < options.min_periods {
                        builder.append_null();
                    } else {
                        // safety:
                        // we are in bounds
                        let arr_window = unsafe { arr.slice_unchecked(start, size) };

                        // Safety.
                        // ptr is not dropped as we are in scope
                        // We are also the only owner of the contents of the Arc
                        // we do this to reduce heap allocs.
                        unsafe {
                            *ptr = arr_window;
                        }
                        // ensure the length is correct
                        series_container._get_inner_mut().compute_len();

                        let s = if size == options.window_size {
                            f(&series_container.multiply(&weights_series).unwrap())
                        } else {
                            let weights_cutoff: Series = match self.dtype() {
                                DataType::Float64 => weights_series
                                    .f64()
                                    .unwrap()
                                    .into_iter()
                                    .take(series_container.len())
                                    .collect(),
                                _ => weights_series // Float32 case
                                    .f32()
                                    .unwrap()
                                    .into_iter()
                                    .take(series_container.len())
                                    .collect(),
                            };
                            f(&series_container.multiply(&weights_cutoff).unwrap())
                        };

                        let out = self.unpack_series_matching_type(&s)?;
                        builder.append_option(out.get(0));
                    }
                }

                Ok(builder.finish().into_series())
            } else {
                for idx in 0..len {
                    let (start, size) = window_edges(idx, len, options.window_size, options.center);

                    if size < options.min_periods {
                        builder.append_null();
                    } else {
                        // safety:
                        // we are in bounds
                        let arr_window = unsafe { arr.slice_unchecked(start, size) };

                        // Safety.
                        // ptr is not dropped as we are in scope
                        // We are also the only owner of the contents of the Arc
                        // we do this to reduce heap allocs.
                        unsafe {
                            *ptr = arr_window;
                        }
                        // ensure the length is correct
                        series_container._get_inner_mut().compute_len();

                        let s = f(&series_container);
                        let out = self.unpack_series_matching_type(&s)?;
                        builder.append_option(out.get(0));
                    }
                }

                Ok(builder.finish().into_series())
            }
        }
Available on crate feature concat_str only.

Concat the values into a string array.

Arguments
  • delimiter - A string that will act as delimiter between values.

Implementations§

Examples found in repository?
src/chunked_array/builder/list.rs (line 160)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    fn append_series(&mut self, s: &Series) {
        if s.is_empty() {
            self.fast_explode = false;
        }
        let physical = s.to_physical_repr();
        let ca = physical.unpack::<T>().unwrap();
        let values = self.builder.mut_values();

        ca.downcast_iter().for_each(|arr| {
            if !arr.has_validity() {
                values.extend_from_slice(arr.values().as_slice())
            } else {
                // Safety:
                // Arrow arrays are trusted length iterators.
                unsafe { values.extend_trusted_len_unchecked(arr.into_iter()) }
            }
        });
        // overflow of i64 is far beyond polars capable lengths.
        unsafe { self.builder.try_push_valid().unwrap_unchecked() };
    }
More examples
Hide additional examples
src/chunked_array/ndarray.rs (line 44)
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        if self.null_count() != 0 {
            Err(PolarsError::ComputeError(
                "Creation of ndarray with null values is not supported.".into(),
            ))
        } else {
            let mut iter = self.into_no_null_iter();

            let mut ndarray;
            let width;

            // first iteration determine the size
            if let Some(series) = iter.next() {
                width = series.len();

                let mut row_idx = 0;
                ndarray = ndarray::Array::uninit((self.len(), width));

                let series = series.cast(&N::get_dtype())?;
                let ca = series.unpack::<N>()?;
                let a = ca.to_ndarray()?;
                let mut row = ndarray.slice_mut(s![row_idx, ..]);
                a.assign_to(&mut row);
                row_idx += 1;

                for series in iter {
                    if series.len() != width {
                        return Err(PolarsError::ShapeMisMatch(
                            "Could not create a 2D array. Series have different lengths".into(),
                        ));
                    }
                    let series = series.cast(&N::get_dtype())?;
                    let ca = series.unpack::<N>()?;
                    let a = ca.to_ndarray()?;
                    let mut row = ndarray.slice_mut(s![row_idx, ..]);
                    a.assign_to(&mut row);
                    row_idx += 1;
                }

                debug_assert_eq!(row_idx, self.len());
                // Safety:
                // We have assigned to every row and element of the array
                unsafe { Ok(ndarray.assume_init()) }
            } else {
                Err(PolarsError::NoData(
                    "cannot create ndarray of empty ListChunked".into(),
                ))
            }
        }
    }
}

impl DataFrame {
    /// Create a 2D `ndarray::Array` from this `DataFrame`. This requires all columns in the
    /// `DataFrame` to be non-null and numeric. They will be casted to the same data type
    /// (if they aren't already).
    ///
    /// For floating point data we implicitly convert `None` to `NaN` without failure.
    ///
    /// ```rust
    /// use polars_core::prelude::*;
    /// let a = UInt32Chunked::new("a", &[1, 2, 3]).into_series();
    /// let b = Float64Chunked::new("b", &[10., 8., 6.]).into_series();
    ///
    /// let df = DataFrame::new(vec![a, b]).unwrap();
    /// let ndarray = df.to_ndarray::<Float64Type>().unwrap();
    /// println!("{:?}", ndarray);
    /// ```
    /// Outputs:
    /// ```text
    /// [[1.0, 10.0],
    ///  [2.0, 8.0],
    ///  [3.0, 6.0]], shape=[3, 2], strides=[2, 1], layout=C (0x1), const ndim=2/
    /// ```
    #[cfg_attr(docsrs, doc(cfg(feature = "ndarray")))]
    pub fn to_ndarray<N>(&self) -> PolarsResult<Array2<N::Native>>
    where
        N: PolarsNumericType,
    {
        let columns = self
            .get_columns()
            .par_iter()
            .map(|s| {
                let s = s.cast(&N::get_dtype())?;
                let s = match s.dtype() {
                    DataType::Float32 => {
                        let ca = s.f32().unwrap();
                        ca.none_to_nan().into_series()
                    }
                    DataType::Float64 => {
                        let ca = s.f64().unwrap();
                        ca.none_to_nan().into_series()
                    }
                    _ => s,
                };
                Ok(s.rechunk())
            })
            .collect::<PolarsResult<Vec<_>>>()?;

        let shape = self.shape();
        let height = self.height();
        let mut membuf = Vec::with_capacity(shape.0 * shape.1);
        let ptr = membuf.as_ptr() as usize;

        columns.par_iter().enumerate().map(|(col_idx, s)| {
            if s.null_count() != 0 {
                return Err(PolarsError::ComputeError(
                    "Creation of ndarray with null values is not supported. Consider using floats and NaNs".into(),
                ));
            }

            // this is an Arc clone if already of type N
            let s = s.cast(&N::get_dtype())?;
            let ca = s.unpack::<N>()?;
            let vals = ca.cont_slice().unwrap();

            // Safety:
            // we get parallel access to the vector
            // but we make sure that we don't get aliased access by offsetting the column indices + length
            unsafe {
                let offset_ptr = (ptr as *mut N::Native).add(col_idx * height) ;
                // Safety:
                // this is uninitialized memory, so we must never read from this data
                // copy_from_slice does not read
                let buf = std::slice::from_raw_parts_mut(offset_ptr, height);
                buf.copy_from_slice(vals)
            }

            Ok(())
        }).collect::<PolarsResult<Vec<_>>>()?;

        // Safety:
        // we have written all data, so we can now safely set length
        unsafe {
            membuf.set_len(shape.0 * shape.1);
        }
        let ndarr = Array2::from_shape_vec((shape.1, shape.0), membuf).unwrap();
        Ok(ndarr.reversed_axes())
    }
src/frame/groupby/aggregations/mod.rs (line 781)
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    pub(crate) unsafe fn agg_var(&self, groups: &GroupsProxy, ddof: u8) -> Series {
        let ca = &self.0;
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<T, _>(groups, |idx| {
                debug_assert!(idx.len() <= ca.len());
                if idx.is_empty() {
                    return None;
                }
                let take = { ca.take_unchecked(idx.into()) };
                take.var_as_series(ddof).unpack::<T>().unwrap().get(0)
            }),
            GroupsProxy::Slice { groups, .. } => {
                if _use_rolling_kernels(groups, self.chunks()) {
                    let arr = self.downcast_iter().next().unwrap();
                    let values = arr.values().as_slice();
                    let offset_iter = groups.iter().map(|[first, len]| (*first, *len));
                    let arr = match arr.validity() {
                        None => _rolling_apply_agg_window_no_nulls::<VarWindow<_>, _, _>(
                            values,
                            offset_iter,
                        ),
                        Some(validity) => _rolling_apply_agg_window_nulls::<
                            rolling::nulls::VarWindow<_>,
                            _,
                            _,
                        >(values, validity, offset_iter),
                    };
                    ChunkedArray::<T>::from_chunks("", vec![arr]).into_series()
                } else {
                    _agg_helper_slice::<T, _>(groups, |[first, len]| {
                        debug_assert!(len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => NumCast::from(0),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.var(ddof).map(|flt| NumCast::from(flt).unwrap())
                            }
                        }
                    })
                }
            }
        }
    }
    pub(crate) unsafe fn agg_std(&self, groups: &GroupsProxy, ddof: u8) -> Series {
        let ca = &self.0;
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<T, _>(groups, |idx| {
                debug_assert!(idx.len() <= ca.len());
                if idx.is_empty() {
                    return None;
                }
                let take = { ca.take_unchecked(idx.into()) };
                take.std_as_series(ddof).unpack::<T>().unwrap().get(0)
            }),
            GroupsProxy::Slice { groups, .. } => {
                if _use_rolling_kernels(groups, self.chunks()) {
                    let arr = self.downcast_iter().next().unwrap();
                    let values = arr.values().as_slice();
                    let offset_iter = groups.iter().map(|[first, len]| (*first, *len));
                    let arr = match arr.validity() {
                        None => _rolling_apply_agg_window_no_nulls::<StdWindow<_>, _, _>(
                            values,
                            offset_iter,
                        ),
                        Some(validity) => _rolling_apply_agg_window_nulls::<
                            rolling::nulls::StdWindow<_>,
                            _,
                            _,
                        >(values, validity, offset_iter),
                    };
                    ChunkedArray::<T>::from_chunks("", vec![arr]).into_series()
                } else {
                    _agg_helper_slice::<T, _>(groups, |[first, len]| {
                        debug_assert!(len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => NumCast::from(0),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.std(ddof).map(|flt| NumCast::from(flt).unwrap())
                            }
                        }
                    })
                }
            }
        }
    }

    pub(crate) unsafe fn agg_quantile(
        &self,
        groups: &GroupsProxy,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> Series {
        let ca = &self.0;
        let invalid_quantile = !(0.0..=1.0).contains(&quantile);
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<T, _>(groups, |idx| {
                debug_assert!(idx.len() <= ca.len());
                if idx.is_empty() | invalid_quantile {
                    return None;
                }
                let take = { ca.take_unchecked(idx.into()) };
                take.quantile_as_series(quantile, interpol)
                    .unwrap() // checked with invalid quantile check
                    .unpack::<T>()
                    .unwrap()
                    .get(0)
            }),
            GroupsProxy::Slice { groups, .. } => {
                if _use_rolling_kernels(groups, self.chunks()) {
                    let arr = self.downcast_iter().next().unwrap();
                    let values = arr.values().as_slice();
                    let offset_iter = groups.iter().map(|[first, len]| (*first, *len));
                    let arr = match arr.validity() {
                        None => rolling::no_nulls::rolling_quantile_by_iter(
                            values,
                            quantile,
                            interpol,
                            offset_iter,
                        ),
                        Some(validity) => rolling::nulls::rolling_quantile_by_iter(
                            values,
                            validity,
                            quantile,
                            interpol,
                            offset_iter,
                        ),
                    };
                    ChunkedArray::<T>::from_chunks("", vec![arr]).into_series()
                } else {
                    _agg_helper_slice::<T, _>(groups, |[first, len]| {
                        debug_assert!(first + len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => self.get(first as usize),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                // unwrap checked with invalid quantile check
                                arr_group
                                    .quantile(quantile, interpol)
                                    .unwrap()
                                    .map(|flt| NumCast::from(flt).unwrap())
                            }
                        }
                    })
                }
            }
        }
    }
    pub(crate) unsafe fn agg_median(&self, groups: &GroupsProxy) -> Series {
        let ca = &self.0;
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<T, _>(groups, |idx| {
                debug_assert!(idx.len() <= ca.len());
                if idx.is_empty() {
                    return None;
                }
                let take = { ca.take_unchecked(idx.into()) };
                take.median_as_series().unpack::<T>().unwrap().get(0)
            }),
            GroupsProxy::Slice { .. } => {
                self.agg_quantile(groups, 0.5, QuantileInterpolOptions::Linear)
            }
        }
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsIntegerType,
    ChunkedArray<T>: IntoSeries,
    T::Native: NumericNative + Ord,
    <T::Native as Simd>::Simd: std::ops::Add<Output = <T::Native as Simd>::Simd>
        + arrow::compute::aggregate::Sum<T::Native>
        + arrow::compute::aggregate::SimdOrd<T::Native>,
{
    pub(crate) unsafe fn agg_mean(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => {
                _agg_helper_idx::<Float64Type, _>(groups, |(first, idx)| {
                    // this can fail due to a bug in lazy code.
                    // here users can create filters in aggregations
                    // and thereby creating shorter columns than the original group tuples.
                    // the group tuples are modified, but if that's done incorrect there can be out of bounds
                    // access
                    debug_assert!(idx.len() <= self.len());
                    if idx.is_empty() {
                        None
                    } else if idx.len() == 1 {
                        self.get(first as usize).map(|sum| sum.to_f64().unwrap())
                    } else {
                        match (self.has_validity(), self.chunks.len()) {
                            (false, 1) => {
                                take_agg_no_null_primitive_iter_unchecked(
                                    self.downcast_iter().next().unwrap(),
                                    idx.iter().map(|i| *i as usize),
                                    |a, b| a + b,
                                    0.0f64,
                                )
                            }
                            .to_f64()
                            .map(|sum| sum / idx.len() as f64),
                            (_, 1) => {
                                {
                                    take_agg_primitive_iter_unchecked_count_nulls::<
                                        T::Native,
                                        f64,
                                        _,
                                        _,
                                    >(
                                        self.downcast_iter().next().unwrap(),
                                        idx.iter().map(|i| *i as usize),
                                        |a, b| a + b,
                                        0.0,
                                        idx.len() as IdxSize,
                                    )
                                }
                                .map(|(sum, null_count)| {
                                    sum / (idx.len() as f64 - null_count as f64)
                                })
                            }
                            _ => {
                                let take = { self.take_unchecked(idx.into()) };
                                take.mean()
                            }
                        }
                    }
                })
            }
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let ca = self.cast(&DataType::Float64).unwrap();
                    ca.agg_mean(groups)
                } else {
                    _agg_helper_slice::<Float64Type, _>(groups_slice, |[first, len]| {
                        debug_assert!(first + len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => self.get(first as usize).map(|v| NumCast::from(v).unwrap()),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.mean()
                            }
                        }
                    })
                }
            }
        }
    }

    pub(crate) unsafe fn agg_var(&self, groups: &GroupsProxy, ddof: u8) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<Float64Type, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    return None;
                }
                let take = { self.take_unchecked(idx.into()) };
                take.var_as_series(ddof)
                    .unpack::<Float64Type>()
                    .unwrap()
                    .get(0)
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let ca = self.cast(&DataType::Float64).unwrap();
                    ca.agg_var(groups, ddof)
                } else {
                    _agg_helper_slice::<Float64Type, _>(groups_slice, |[first, len]| {
                        debug_assert!(first + len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => NumCast::from(0),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.var(ddof)
                            }
                        }
                    })
                }
            }
        }
    }
    pub(crate) unsafe fn agg_std(&self, groups: &GroupsProxy, ddof: u8) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<Float64Type, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    return None;
                }
                let take = { self.take_unchecked(idx.into()) };
                take.std_as_series(ddof)
                    .unpack::<Float64Type>()
                    .unwrap()
                    .get(0)
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let ca = self.cast(&DataType::Float64).unwrap();
                    ca.agg_std(groups, ddof)
                } else {
                    _agg_helper_slice::<Float64Type, _>(groups_slice, |[first, len]| {
                        debug_assert!(first + len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => NumCast::from(0),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.std(ddof)
                            }
                        }
                    })
                }
            }
        }
    }

    pub(crate) unsafe fn agg_quantile(
        &self,
        groups: &GroupsProxy,
        quantile: f64,
        interpol: QuantileInterpolOptions,
    ) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<Float64Type, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    return None;
                }
                let take = self.take_unchecked(idx.into());
                take.quantile_as_series(quantile, interpol)
                    .unwrap()
                    .unpack::<Float64Type>()
                    .unwrap()
                    .get(0)
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let ca = self.cast(&DataType::Float64).unwrap();
                    ca.agg_quantile(groups, quantile, interpol)
                } else {
                    _agg_helper_slice::<Float64Type, _>(groups_slice, |[first, len]| {
                        debug_assert!(len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => self.get(first as usize).map(|v| NumCast::from(v).unwrap()),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.quantile(quantile, interpol).unwrap()
                            }
                        }
                    })
                }
            }
        }
    }
    pub(crate) unsafe fn agg_median(&self, groups: &GroupsProxy) -> Series {
        match groups {
            GroupsProxy::Idx(groups) => agg_helper_idx_on_all::<Float64Type, _>(groups, |idx| {
                debug_assert!(idx.len() <= self.len());
                if idx.is_empty() {
                    return None;
                }
                let take = self.take_unchecked(idx.into());
                take.median_as_series()
                    .unpack::<Float64Type>()
                    .unwrap()
                    .get(0)
            }),
            GroupsProxy::Slice {
                groups: groups_slice,
                ..
            } => {
                if _use_rolling_kernels(groups_slice, self.chunks()) {
                    let ca = self.cast(&DataType::Float64).unwrap();
                    ca.agg_median(groups)
                } else {
                    _agg_helper_slice::<Float64Type, _>(groups_slice, |[first, len]| {
                        debug_assert!(len <= self.len() as IdxSize);
                        match len {
                            0 => None,
                            1 => self.get(first as usize).map(|v| NumCast::from(v).unwrap()),
                            _ => {
                                let arr_group = _slice_from_offsets(self, first, len);
                                arr_group.median()
                            }
                        }
                    })
                }
            }
        }
    }
src/chunked_array/ops/is_in.rs (line 64)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        // We check implicitly cast to supertype here
        match other.dtype() {
            DataType::List(dt) => {
                let st = try_get_supertype(self.dtype(), dt)?;
                if &st != self.dtype() {
                    let left = self.cast(&st)?;
                    let right = other.cast(&DataType::List(Box::new(st)))?;
                    return left.is_in(&right);
                }

                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);

                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_s| {
                            opt_s.map(|s| {
                                let ca = s.as_ref().unpack::<T>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<T>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            _ => {
                // first make sure that the types are equal
                let st = try_get_supertype(self.dtype(), other.dtype())?;
                if self.dtype() != other.dtype() {
                    let left = self.cast(&st)?;
                    let right = other.cast(&st)?;
                    return left.is_in(&right);
                }
                // now that the types are equal, we coerce every 32 bit array to u32
                // and every 64 bit array to u64 (including floats)
                // this allows hashing them and greatly reduces the number of code paths.
                match self.dtype() {
                    DataType::UInt64 | DataType::Int64 | DataType::Float64 => unsafe {
                        is_in_helper::<T, u64>(self, other)
                    },
                    DataType::UInt32 | DataType::Int32 | DataType::Float32 => unsafe {
                        is_in_helper::<T, u32>(self, other)
                    },
                    DataType::UInt8 | DataType::Int8 => unsafe {
                        is_in_helper::<T, u8>(self, other)
                    },
                    DataType::UInt16 | DataType::Int16 => unsafe {
                        is_in_helper::<T, u16>(self, other)
                    },
                    _ => Err(PolarsError::ComputeError(
                        format!(
                            "Data type {:?} not supported in is_in operation",
                            self.dtype()
                        )
                        .into(),
                    )),
                }
            }
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
}
impl IsIn for Utf8Chunked {
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            #[cfg(feature = "dtype-categorical")]
            DataType::List(dt) if matches!(&**dt, DataType::Categorical(_)) => {
                if let DataType::Categorical(Some(rev_map)) = &**dt {
                    let opt_val = self.get(0);

                    let other = other.list()?;
                    match opt_val {
                        None => {
                            let mut ca: BooleanChunked = other
                                .amortized_iter()
                                .map(|opt_s| {
                                    opt_s.map(|s| s.as_ref().null_count() > 0) == Some(true)
                                })
                                .collect_trusted();
                            ca.rename(self.name());
                            Ok(ca)
                        }
                        Some(value) => {
                            match rev_map.find(value) {
                                // all false
                                None => Ok(BooleanChunked::full(self.name(), false, other.len())),
                                Some(idx) => {
                                    let mut ca: BooleanChunked = other
                                        .amortized_iter()
                                        .map(|opt_s| {
                                            opt_s.map(|s| {
                                                let s = s.as_ref().to_physical_repr();
                                                let ca = s.as_ref().u32().unwrap();
                                                if ca.null_count() == 0 {
                                                    ca.into_no_null_iter().any(|a| a == idx)
                                                } else {
                                                    ca.into_iter().any(|a| a == Some(idx))
                                                }
                                            }) == Some(true)
                                        })
                                        .collect_trusted();
                                    ca.rename(self.name());
                                    Ok(ca)
                                }
                            }
                        }
                    }
                } else {
                    unreachable!()
                }
            }
            DataType::List(dt) if DataType::Utf8 == **dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_s| {
                            opt_s.map(|s| {
                                let ca = s.as_ref().unpack::<Utf8Type>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<Utf8Type>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Utf8 => {
                let mut set = HashSet::with_capacity(other.len());

                let other = other.utf8()?;
                other.downcast_iter().for_each(|iter| {
                    iter.into_iter().for_each(|opt_val| {
                        set.insert(opt_val);
                    })
                });
                let mut ca: BooleanChunked = self
                    .into_iter()
                    .map(|opt_val| set.contains(&opt_val))
                    .collect_trusted();
                ca.rename(self.name());
                Ok(ca)
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
}

#[cfg(feature = "dtype-binary")]
impl IsIn for BinaryChunked {
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            DataType::List(dt) if DataType::Binary == **dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    other
                        .list()?
                        .amortized_iter()
                        .map(|opt_b| {
                            opt_b.map(|s| {
                                let ca = s.as_ref().unpack::<BinaryType>().unwrap();
                                ca.into_iter().any(|a| a == value)
                            }) == Some(true)
                        })
                        .collect_trusted()
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<BinaryType>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Binary => {
                let mut set = HashSet::with_capacity(other.len());

                let other = other.binary()?;
                other.downcast_iter().for_each(|iter| {
                    iter.into_iter().for_each(|opt_val| {
                        set.insert(opt_val);
                    })
                });
                let mut ca: BooleanChunked = self
                    .into_iter()
                    .map(|opt_val| set.contains(&opt_val))
                    .collect_trusted();
                ca.rename(self.name());
                Ok(ca)
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
}

impl IsIn for BooleanChunked {
    fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
        match other.dtype() {
            DataType::List(dt) if self.dtype() == &**dt => {
                let mut ca: BooleanChunked = if self.len() == 1 && other.len() != 1 {
                    let value = self.get(0);
                    // safety: we know the iterators len
                    unsafe {
                        other
                            .list()?
                            .amortized_iter()
                            .map(|opt_s| {
                                opt_s.map(|s| {
                                    let ca = s.as_ref().unpack::<BooleanType>().unwrap();
                                    ca.into_iter().any(|a| a == value)
                                }) == Some(true)
                            })
                            .trust_my_length(other.len())
                            .collect_trusted()
                    }
                } else {
                    self.into_iter()
                        .zip(other.list()?.amortized_iter())
                        .map(|(value, series)| match (value, series) {
                            (val, Some(series)) => {
                                let ca = series.as_ref().unpack::<BooleanType>().unwrap();
                                ca.into_iter().any(|a| a == val)
                            }
                            _ => false,
                        })
                        .collect_trusted()
                };
                ca.rename(self.name());
                Ok(ca)
            }
            DataType::Boolean => {
                let other = other.bool().unwrap();
                let has_true = other.any();
                let has_false = !other.all();
                Ok(self.apply(|v| if v { has_true } else { has_false }))
            }
            _ => Err(PolarsError::SchemaMisMatch(
                format!(
                    "cannot do is_in operation with left a dtype: {:?} and right a dtype {:?}",
                    self.dtype(),
                    other.dtype()
                )
                .into(),
            )),
        }
        .map(|mut ca| {
            ca.rename(self.name());
            ca
        })
    }
src/frame/row.rs (line 579)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
fn numeric_transpose<T>(cols: &[Series]) -> PolarsResult<DataFrame>
where
    T: PolarsNumericType,
    ChunkedArray<T>: IntoSeries,
{
    let new_width = cols[0].len();
    let new_height = cols.len();

    let has_nulls = cols.iter().any(|s| s.null_count() > 0);

    let mut values_buf: Vec<Vec<T::Native>> = (0..new_width)
        .map(|_| Vec::with_capacity(new_height))
        .collect();
    let mut validity_buf: Vec<_> = if has_nulls {
        // we first use bools instead of bits, because we can access these in parallel without aliasing
        (0..new_width).map(|_| vec![true; new_height]).collect()
    } else {
        (0..new_width).map(|_| vec![]).collect()
    };

    // work with *mut pointers because we it is UB write to &refs.
    let values_buf_ptr = &mut values_buf as *mut Vec<Vec<T::Native>> as usize;
    let validity_buf_ptr = &mut validity_buf as *mut Vec<Vec<bool>> as usize;

    POOL.install(|| {
        cols.iter().enumerate().for_each(|(row_idx, s)| {
            let s = s.cast(&T::get_dtype()).unwrap();
            let ca = s.unpack::<T>().unwrap();

            // Safety
            // we access in parallel, but every access is unique, so we don't break aliasing rules
            // we also ensured we allocated enough memory, so we never reallocate and thus
            // the pointers remain valid.
            if has_nulls {
                for (col_idx, opt_v) in ca.into_iter().enumerate() {
                    match opt_v {
                        None => unsafe {
                            let column = (*(validity_buf_ptr as *mut Vec<Vec<bool>>))
                                .get_unchecked_mut(col_idx);
                            let el_ptr = column.as_mut_ptr();
                            *el_ptr.add(row_idx) = false;
                            // we must initialize this memory otherwise downstream code
                            // might access uninitialized memory when the masked out values
                            // are changed.
                            add_value(values_buf_ptr, col_idx, row_idx, T::Native::default());
                        },
                        Some(v) => unsafe {
                            add_value(values_buf_ptr, col_idx, row_idx, v);
                        },
                    }
                }
            } else {
                for (col_idx, v) in ca.into_no_null_iter().enumerate() {
                    unsafe {
                        let column = (*(values_buf_ptr as *mut Vec<Vec<T::Native>>))
                            .get_unchecked_mut(col_idx);
                        let el_ptr = column.as_mut_ptr();
                        *el_ptr.add(row_idx) = v;
                    }
                }
            }
        })
    });

    let series = POOL.install(|| {
        values_buf
            .into_par_iter()
            .zip(validity_buf)
            .enumerate()
            .map(|(i, (mut values, validity))| {
                // Safety:
                // all values are written we can now set len
                unsafe {
                    values.set_len(new_height);
                }

                let validity = if has_nulls {
                    let validity = Bitmap::from_trusted_len_iter(validity.iter().copied());
                    if validity.unset_bits() > 0 {
                        Some(validity)
                    } else {
                        None
                    }
                } else {
                    None
                };

                let arr = PrimitiveArray::<T::Native>::new(
                    T::get_dtype().to_arrow(),
                    values.into(),
                    validity,
                );
                let name = format!("column_{i}");
                ChunkedArray::<T>::from_chunks(&name, vec![Box::new(arr) as ArrayRef]).into_series()
            })
            .collect()
    });

    Ok(DataFrame::new_no_checks(series))
}

Trait Implementations§

Converts this type into a mutable reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.

Implementors§