Crate oxirs_vec

Crate oxirs_vec 

Source
Expand description

Version docs.rs

Status: Production Release (v0.1.0) - Production-Ready with Complete Documentation Stability: Public APIs are stable. Production-ready with comprehensive testing and 100 KB of documentation.

Vector index abstractions for semantic similarity and AI-augmented SPARQL querying.

This crate provides comprehensive vector search capabilities for knowledge graphs, enabling semantic similarity searches, AI-augmented SPARQL queries, and hybrid symbolic-vector operations.

§Features

  • Multi-algorithm embeddings: TF-IDF, sentence transformers, custom models
  • Advanced indexing: HNSW, flat, quantized, and multi-index support
  • Rich similarity metrics: Cosine, Euclidean, Pearson, Jaccard, and more
  • SPARQL integration: vec:similar service functions and hybrid queries
  • Performance optimization: Caching, batching, and parallel processing

§Quick Start

use oxirs_vec::{VectorStore, embeddings::EmbeddingStrategy};

// Create vector store with sentence transformer embeddings
let mut store = VectorStore::with_embedding_strategy(
    EmbeddingStrategy::SentenceTransformer
).unwrap();

// Index some content
store
    .index_resource(
        "http://example.org/doc1".to_string(),
        "This is a document about AI",
    )
    .unwrap();
store
    .index_resource(
        "http://example.org/doc2".to_string(),
        "Machine learning tutorial",
    )
    .unwrap();

// Search for similar content
let results = store
    .similarity_search("artificial intelligence", 5)
    .unwrap();

println!("Found {} matching resources", results.len());

Re-exports§

pub use adaptive_compression::AdaptiveCompressor;
pub use adaptive_compression::CompressionMetrics;
pub use adaptive_compression::CompressionPriorities;
pub use adaptive_compression::MultiLevelCompression;
pub use adaptive_compression::VectorStats;
pub use adaptive_intelligent_caching::AccessPatternAnalyzer;
pub use adaptive_intelligent_caching::AdaptiveIntelligentCache;
pub use adaptive_intelligent_caching::CacheConfiguration;
pub use adaptive_intelligent_caching::CacheOptimizer;
pub use adaptive_intelligent_caching::CachePerformanceMetrics;
pub use adaptive_intelligent_caching::CacheTier;
pub use adaptive_intelligent_caching::MLModels;
pub use adaptive_intelligent_caching::PredictivePrefetcher;
pub use advanced_analytics::AnomalyDetection;
pub use advanced_analytics::AnomalyDetector;
pub use advanced_analytics::AnomalyType;
pub use advanced_analytics::ImplementationEffort;
pub use advanced_analytics::OptimizationRecommendation;
pub use advanced_analytics::PerformanceTrends;
pub use advanced_analytics::Priority;
pub use advanced_analytics::QualityAspect;
pub use advanced_analytics::QualityRecommendation;
pub use advanced_analytics::QueryAnalytics;
pub use advanced_analytics::QueryAnomaly;
pub use advanced_analytics::RecommendationType;
pub use advanced_analytics::VectorAnalyticsEngine;
pub use advanced_analytics::VectorDistributionAnalysis;
pub use advanced_analytics::VectorQualityAssessment;
pub use advanced_benchmarking::AdvancedBenchmarkConfig;
pub use advanced_benchmarking::AdvancedBenchmarkResult;
pub use advanced_benchmarking::AdvancedBenchmarkSuite;
pub use advanced_benchmarking::AlgorithmParameters;
pub use advanced_benchmarking::BenchmarkAlgorithm;
pub use advanced_benchmarking::BuildTimeMetrics;
pub use advanced_benchmarking::CacheMetrics;
pub use advanced_benchmarking::DatasetQualityMetrics;
pub use advanced_benchmarking::DatasetStatistics;
pub use advanced_benchmarking::DistanceStatistics;
pub use advanced_benchmarking::EnhancedBenchmarkDataset;
pub use advanced_benchmarking::HyperparameterTuner;
pub use advanced_benchmarking::IndexSizeMetrics;
pub use advanced_benchmarking::LatencyMetrics;
pub use advanced_benchmarking::MemoryMetrics;
pub use advanced_benchmarking::ObjectiveFunction;
pub use advanced_benchmarking::OptimizationStrategy;
pub use advanced_benchmarking::ParallelBenchmarkConfig;
pub use advanced_benchmarking::ParameterSpace;
pub use advanced_benchmarking::ParameterType;
pub use advanced_benchmarking::ParameterValue;
pub use advanced_benchmarking::PerformanceMetrics;
pub use advanced_benchmarking::PerformanceProfiler;
pub use advanced_benchmarking::QualityDegradation;
pub use advanced_benchmarking::QualityMetrics;
pub use advanced_benchmarking::ScalabilityMetrics;
pub use advanced_benchmarking::StatisticalAnalyzer;
pub use advanced_benchmarking::StatisticalMetrics;
pub use advanced_benchmarking::ThroughputMetrics;
pub use advanced_caching::BackgroundCacheWorker;
pub use advanced_caching::CacheAnalysisReport;
pub use advanced_caching::CacheAnalyzer;
pub use advanced_caching::CacheConfig;
pub use advanced_caching::CacheEntry;
pub use advanced_caching::CacheInvalidator;
pub use advanced_caching::CacheKey;
pub use advanced_caching::CacheStats;
pub use advanced_caching::CacheWarmer;
pub use advanced_caching::EvictionPolicy;
pub use advanced_caching::InvalidationStats;
pub use advanced_caching::MultiLevelCache;
pub use advanced_caching::MultiLevelCacheStats;
pub use advanced_result_merging::AdvancedResultMerger;
pub use advanced_result_merging::ConfidenceInterval;
pub use advanced_result_merging::DiversityConfig;
pub use advanced_result_merging::DiversityMetric;
pub use advanced_result_merging::FusionStatistics;
pub use advanced_result_merging::MergedResult;
pub use advanced_result_merging::RankFusionAlgorithm;
pub use advanced_result_merging::RankingFactor;
pub use advanced_result_merging::ResultExplanation;
pub use advanced_result_merging::ResultMergingConfig;
pub use advanced_result_merging::ResultMetadata;
pub use advanced_result_merging::ScoreCombinationStrategy;
pub use advanced_result_merging::ScoreNormalizationMethod;
pub use advanced_result_merging::ScoredResult;
pub use advanced_result_merging::SourceContribution;
pub use advanced_result_merging::SourceResult;
pub use advanced_result_merging::SourceType;
pub use automl_optimization::AutoMLConfig;
pub use automl_optimization::AutoMLOptimizer;
pub use automl_optimization::AutoMLResults;
pub use automl_optimization::AutoMLStatistics;
pub use automl_optimization::IndexConfiguration;
pub use automl_optimization::IndexParameterSpace;
pub use automl_optimization::OptimizationMetric;
pub use automl_optimization::OptimizationTrial;
pub use automl_optimization::ResourceConstraints;
pub use automl_optimization::SearchSpace;
pub use automl_optimization::TrialResult;
pub use benchmarking::BenchmarkConfig;
pub use benchmarking::BenchmarkDataset;
pub use benchmarking::BenchmarkOutputFormat;
pub use benchmarking::BenchmarkResult;
pub use benchmarking::BenchmarkRunner;
pub use benchmarking::BenchmarkSuite;
pub use benchmarking::BenchmarkTestCase;
pub use benchmarking::MemoryMetrics as BenchmarkMemoryMetrics;
pub use benchmarking::PerformanceMetrics as BenchmarkPerformanceMetrics;
pub use benchmarking::QualityMetrics as BenchmarkQualityMetrics;
pub use benchmarking::ScalabilityMetrics as BenchmarkScalabilityMetrics;
pub use benchmarking::SystemInfo;
pub use cache_friendly_index::CacheFriendlyVectorIndex;
pub use cache_friendly_index::IndexConfig as CacheFriendlyIndexConfig;
pub use compaction::CompactionConfig;
pub use compaction::CompactionManager;
pub use compaction::CompactionMetrics;
pub use compaction::CompactionResult;
pub use compaction::CompactionState;
pub use compaction::CompactionStatistics;
pub use compaction::CompactionStrategy;
pub use compression::create_compressor;
pub use compression::CompressionMethod;
pub use compression::VectorCompressor;
pub use content_processing::ChunkType;
pub use content_processing::ChunkingStrategy;
pub use content_processing::ContentChunk;
pub use content_processing::ContentExtractionConfig;
pub use content_processing::ContentLocation;
pub use content_processing::ContentProcessor;
pub use content_processing::DocumentFormat;
pub use content_processing::DocumentStructure;
pub use content_processing::ExtractedContent;
pub use content_processing::ExtractedImage;
pub use content_processing::ExtractedTable;
pub use content_processing::FormatHandler;
pub use content_processing::Heading;
pub use content_processing::ProcessingStats;
pub use content_processing::TocEntry;
pub use crash_recovery::CrashRecoveryManager;
pub use crash_recovery::RecoveryConfig;
pub use crash_recovery::RecoveryPolicy;
pub use crash_recovery::RecoveryStats;
pub use cross_modal_embeddings::AttentionMechanism;
pub use cross_modal_embeddings::AudioData;
pub use cross_modal_embeddings::AudioEncoder;
pub use cross_modal_embeddings::CrossModalConfig;
pub use cross_modal_embeddings::CrossModalEncoder;
pub use cross_modal_embeddings::FusionLayer;
pub use cross_modal_embeddings::FusionStrategy;
pub use cross_modal_embeddings::GraphData;
pub use cross_modal_embeddings::GraphEncoder;
pub use cross_modal_embeddings::ImageData;
pub use cross_modal_embeddings::ImageEncoder;
pub use cross_modal_embeddings::Modality;
pub use cross_modal_embeddings::ModalityData;
pub use cross_modal_embeddings::MultiModalContent;
pub use cross_modal_embeddings::TextEncoder;
pub use cross_modal_embeddings::VideoData;
pub use cross_modal_embeddings::VideoEncoder;
pub use diskann::DiskAnnBuildStats;
pub use diskann::DiskAnnBuilder;
pub use diskann::DiskAnnConfig;
pub use diskann::DiskAnnError;
pub use diskann::DiskAnnIndex;
pub use diskann::DiskAnnResult;
pub use diskann::DiskStorage;
pub use diskann::IndexMetadata as DiskAnnIndexMetadata;
pub use diskann::MemoryMappedStorage;
pub use diskann::NodeId;
pub use diskann::PruningStrategy;
pub use diskann::SearchMode as DiskAnnSearchMode;
pub use diskann::SearchStats as DiskAnnSearchStats;
pub use diskann::StorageBackend;
pub use diskann::VamanaGraph;
pub use diskann::VamanaNode;
pub use diskann::VectorId as DiskAnnVectorId;
pub use distributed_vector_search::ConsistencyLevel;
pub use distributed_vector_search::DistributedClusterStats;
pub use distributed_vector_search::DistributedNodeConfig;
pub use distributed_vector_search::DistributedQuery;
pub use distributed_vector_search::DistributedSearchResponse;
pub use distributed_vector_search::DistributedVectorSearch;
pub use distributed_vector_search::LoadBalancingAlgorithm;
pub use distributed_vector_search::NodeHealthStatus;
pub use distributed_vector_search::PartitioningStrategy;
pub use distributed_vector_search::QueryExecutionStrategy;
pub use dynamic_index_selector::DynamicIndexSelector;
pub use dynamic_index_selector::IndexSelectorConfig;
pub use embedding_pipeline::DimensionalityReduction;
pub use embedding_pipeline::EmbeddingPipeline;
pub use embedding_pipeline::NormalizationConfig;
pub use embedding_pipeline::PostprocessingPipeline;
pub use embedding_pipeline::PreprocessingPipeline;
pub use embedding_pipeline::TokenizerConfig;
pub use embedding_pipeline::VectorNormalization;
pub use embeddings::EmbeddableContent;
pub use embeddings::EmbeddingConfig;
pub use embeddings::EmbeddingManager;
pub use embeddings::EmbeddingStrategy;
pub use embeddings::ModelDetails;
pub use embeddings::OpenAIConfig;
pub use embeddings::OpenAIEmbeddingGenerator;
pub use embeddings::SentenceTransformerGenerator;
pub use embeddings::TransformerModelType;
pub use enhanced_performance_monitoring::Alert;
pub use enhanced_performance_monitoring::AlertManager;
pub use enhanced_performance_monitoring::AlertSeverity;
pub use enhanced_performance_monitoring::AlertThresholds;
pub use enhanced_performance_monitoring::AlertType;
pub use enhanced_performance_monitoring::AnalyticsEngine;
pub use enhanced_performance_monitoring::AnalyticsReport;
pub use enhanced_performance_monitoring::DashboardData;
pub use enhanced_performance_monitoring::EnhancedPerformanceMonitor;
pub use enhanced_performance_monitoring::ExportConfig;
pub use enhanced_performance_monitoring::ExportDestination;
pub use enhanced_performance_monitoring::ExportFormat;
pub use enhanced_performance_monitoring::LatencyDistribution;
pub use enhanced_performance_monitoring::MonitoringConfig as EnhancedMonitoringConfig;
pub use enhanced_performance_monitoring::QualityMetrics as EnhancedQualityMetrics;
pub use enhanced_performance_monitoring::QualityMetricsCollector;
pub use enhanced_performance_monitoring::QualityStatistics;
pub use enhanced_performance_monitoring::QueryInfo;
pub use enhanced_performance_monitoring::QueryMetricsCollector;
pub use enhanced_performance_monitoring::QueryStatistics;
pub use enhanced_performance_monitoring::QueryType;
pub use enhanced_performance_monitoring::Recommendation;
pub use enhanced_performance_monitoring::RecommendationCategory;
pub use enhanced_performance_monitoring::RecommendationPriority;
pub use enhanced_performance_monitoring::SystemMetrics;
pub use enhanced_performance_monitoring::SystemMetricsCollector;
pub use enhanced_performance_monitoring::SystemStatistics;
pub use enhanced_performance_monitoring::TrendData;
pub use enhanced_performance_monitoring::TrendDirection;
pub use faiss_compatibility::CompressionLevel;
pub use faiss_compatibility::ConversionMetrics;
pub use faiss_compatibility::ConversionResult;
pub use faiss_compatibility::FaissCompatibility;
pub use faiss_compatibility::FaissExportConfig;
pub use faiss_compatibility::FaissImportConfig;
pub use faiss_compatibility::FaissIndexMetadata;
pub use faiss_compatibility::FaissIndexType;
pub use faiss_compatibility::FaissMetricType;
pub use faiss_compatibility::FaissParameter;
pub use faiss_compatibility::SimpleVectorIndex;
pub use federated_search::AuthenticationConfig;
pub use federated_search::FederatedSearchConfig;
pub use federated_search::FederatedVectorSearch;
pub use federated_search::FederationEndpoint;
pub use federated_search::PrivacyEngine;
pub use federated_search::PrivacyMode;
pub use federated_search::SchemaCompatibility;
pub use federated_search::TrustManager;
pub use gnn_embeddings::AggregatorType;
pub use gnn_embeddings::GraphSAGE;
pub use gnn_embeddings::GCN;
pub use gpu::create_default_accelerator;
pub use gpu::create_memory_optimized_accelerator;
pub use gpu::create_performance_accelerator;
pub use gpu::is_gpu_available;
pub use gpu::GpuAccelerator;
pub use gpu::GpuBuffer;
pub use gpu::GpuConfig;
pub use gpu::GpuDevice;
pub use gpu::GpuExecutionConfig;
pub use gpu_benchmarks::BenchmarkResult as GpuBenchmarkResult;
pub use gpu_benchmarks::GpuBenchmarkConfig;
pub use gpu_benchmarks::GpuBenchmarkSuite;
pub use graph_indices::DelaunayGraph;
pub use graph_indices::GraphIndex;
pub use graph_indices::GraphIndexConfig;
pub use graph_indices::GraphType;
pub use graph_indices::NSWGraph;
pub use graph_indices::ONNGGraph;
pub use graph_indices::PANNGGraph;
pub use graph_indices::RNGGraph;
pub use hierarchical_similarity::ConceptHierarchy;
pub use hierarchical_similarity::HierarchicalSimilarity;
pub use hierarchical_similarity::HierarchicalSimilarityConfig;
pub use hierarchical_similarity::HierarchicalSimilarityResult;
pub use hierarchical_similarity::HierarchicalSimilarityStats;
pub use hierarchical_similarity::SimilarityContext;
pub use hierarchical_similarity::SimilarityExplanation;
pub use hierarchical_similarity::SimilarityTaskType;
pub use hnsw::HnswConfig;
pub use hnsw::HnswIndex;
pub use hybrid_fusion::FusedResult;
pub use hybrid_fusion::HybridFusion;
pub use hybrid_fusion::HybridFusionConfig;
pub use hybrid_fusion::HybridFusionStatistics;
pub use hybrid_fusion::HybridFusionStrategy;
pub use hybrid_fusion::NormalizationMethod;
pub use hybrid_search::Bm25Scorer;
pub use hybrid_search::DocumentScore;
pub use hybrid_search::HybridQuery;
pub use hybrid_search::HybridResult;
pub use hybrid_search::HybridSearchConfig;
pub use hybrid_search::HybridSearchManager;
pub use hybrid_search::KeywordAlgorithm;
pub use hybrid_search::KeywordMatch;
pub use hybrid_search::KeywordSearcher;
pub use hybrid_search::QueryExpander;
pub use hybrid_search::RankFusion;
pub use hybrid_search::RankFusionStrategy;
pub use hybrid_search::SearchMode;
pub use hybrid_search::SearchWeights;
pub use hybrid_search::TfidfScorer;
pub use index::AdvancedVectorIndex;
pub use index::DistanceMetric;
pub use index::IndexConfig;
pub use index::IndexType;
pub use index::SearchResult;
pub use ivf::IvfConfig;
pub use ivf::IvfIndex;
pub use ivf::IvfStats;
pub use ivf::QuantizationStrategy;
pub use joint_embedding_spaces::ActivationFunction;
pub use joint_embedding_spaces::AlignmentPair;
pub use joint_embedding_spaces::CLIPAligner;
pub use joint_embedding_spaces::ContrastiveOptimizer;
pub use joint_embedding_spaces::CrossModalAttention;
pub use joint_embedding_spaces::CurriculumLearning;
pub use joint_embedding_spaces::DataAugmentation;
pub use joint_embedding_spaces::DifficultySchedule;
pub use joint_embedding_spaces::DomainAdapter;
pub use joint_embedding_spaces::DomainStatistics;
pub use joint_embedding_spaces::JointEmbeddingConfig;
pub use joint_embedding_spaces::JointEmbeddingSpace;
pub use joint_embedding_spaces::LearningRateSchedule;
pub use joint_embedding_spaces::LinearProjector;
pub use joint_embedding_spaces::PacingFunction;
pub use joint_embedding_spaces::ScheduleType;
pub use joint_embedding_spaces::TemperatureScheduler;
pub use joint_embedding_spaces::TrainingStatistics;
pub use kg_embeddings::ComplEx;
pub use kg_embeddings::KGEmbedding;
pub use kg_embeddings::KGEmbeddingConfig;
pub use kg_embeddings::KGEmbeddingModel as KGModel;
pub use kg_embeddings::KGEmbeddingModelType;
pub use kg_embeddings::RotatE;
pub use kg_embeddings::TransE;
pub use kg_embeddings::Triple;
pub use lsh::LshConfig;
pub use lsh::LshFamily;
pub use lsh::LshIndex;
pub use lsh::LshStats;
pub use mmap_index::MemoryMappedIndexStats;
pub use mmap_index::MemoryMappedVectorIndex;
pub use multi_tenancy::AccessControl;
pub use multi_tenancy::AccessPolicy;
pub use multi_tenancy::BillingEngine;
pub use multi_tenancy::BillingMetrics;
pub use multi_tenancy::BillingPeriod;
pub use multi_tenancy::IsolationLevel;
pub use multi_tenancy::IsolationStrategy;
pub use multi_tenancy::MultiTenancyError;
pub use multi_tenancy::MultiTenancyResult;
pub use multi_tenancy::MultiTenantManager;
pub use multi_tenancy::NamespaceManager;
pub use multi_tenancy::Permission;
pub use multi_tenancy::PricingModel;
pub use multi_tenancy::QuotaEnforcer;
pub use multi_tenancy::QuotaLimits;
pub use multi_tenancy::QuotaUsage;
pub use multi_tenancy::RateLimiter;
pub use multi_tenancy::ResourceQuota;
pub use multi_tenancy::ResourceType;
pub use multi_tenancy::Role;
pub use multi_tenancy::Tenant;
pub use multi_tenancy::TenantConfig;
pub use multi_tenancy::TenantContext;
pub use multi_tenancy::TenantId;
pub use multi_tenancy::TenantManagerConfig;
pub use multi_tenancy::TenantMetadata;
pub use multi_tenancy::TenantOperation;
pub use multi_tenancy::TenantStatistics;
pub use multi_tenancy::TenantStatus;
pub use multi_tenancy::UsageRecord;
pub use nsg::DistanceMetric as NsgDistanceMetric;
pub use nsg::NsgConfig;
pub use nsg::NsgIndex;
pub use nsg::NsgStats;
pub use performance_insights::AlertingSystem;
pub use performance_insights::OptimizationRecommendations;
pub use performance_insights::PerformanceInsightsAnalyzer;
pub use performance_insights::PerformanceTrends as InsightsPerformanceTrends;
pub use performance_insights::QueryComplexity;
pub use performance_insights::QueryStatistics as InsightsQueryStatistics;
pub use performance_insights::ReportFormat;
pub use performance_insights::VectorStatistics;
pub use pq::PQConfig;
pub use pq::PQIndex;
pub use pq::PQStats;
pub use pytorch::ArchitectureType;
pub use pytorch::CompileMode;
pub use pytorch::DeviceManager;
pub use pytorch::PyTorchConfig;
pub use pytorch::PyTorchDevice;
pub use pytorch::PyTorchEmbedder;
pub use pytorch::PyTorchModelManager;
pub use pytorch::PyTorchModelMetadata;
pub use pytorch::PyTorchTokenizer;
pub use quantum_search::QuantumSearchConfig;
pub use quantum_search::QuantumSearchResult;
pub use quantum_search::QuantumSearchStatistics;
pub use quantum_search::QuantumState;
pub use quantum_search::QuantumVectorSearch;
pub use query_planning::CostModel;
pub use query_planning::IndexStatistics;
pub use query_planning::QueryCharacteristics;
pub use query_planning::QueryPlan;
pub use query_planning::QueryPlanner;
pub use query_planning::QueryStrategy;
pub use query_planning::VectorQueryType;
pub use query_rewriter::QueryRewriter;
pub use query_rewriter::QueryRewriterConfig;
pub use query_rewriter::QueryVectorStatistics;
pub use query_rewriter::RewriteRule;
pub use query_rewriter::RewrittenQuery;
pub use rdf_content_enhancement::ComponentWeights;
pub use rdf_content_enhancement::MultiLanguageProcessor;
pub use rdf_content_enhancement::PathConstraint;
pub use rdf_content_enhancement::PathDirection;
pub use rdf_content_enhancement::PropertyAggregator;
pub use rdf_content_enhancement::PropertyPath;
pub use rdf_content_enhancement::RdfContentConfig;
pub use rdf_content_enhancement::RdfContentProcessor;
pub use rdf_content_enhancement::RdfContext;
pub use rdf_content_enhancement::RdfEntity;
pub use rdf_content_enhancement::RdfValue;
pub use rdf_content_enhancement::TemporalInfo;
pub use rdf_integration::RdfIntegrationStats;
pub use rdf_integration::RdfTermMapping;
pub use rdf_integration::RdfTermMetadata;
pub use rdf_integration::RdfTermType;
pub use rdf_integration::RdfVectorConfig;
pub use rdf_integration::RdfVectorIntegration;
pub use rdf_integration::RdfVectorSearchResult;
pub use rdf_integration::SearchMetadata;
pub use real_time_analytics::AlertSeverity as AnalyticsAlertSeverity;
pub use real_time_analytics::AlertType as AnalyticsAlertType;
pub use real_time_analytics::AnalyticsConfig;
pub use real_time_analytics::AnalyticsEvent;
pub use real_time_analytics::AnalyticsReport as RealTimeAnalyticsReport;
pub use real_time_analytics::DashboardData as RealTimeDashboardData;
pub use real_time_analytics::ExportFormat as AnalyticsExportFormat;
pub use real_time_analytics::MetricsCollector;
pub use real_time_analytics::PerformanceMonitor;
pub use real_time_analytics::QueryMetrics;
pub use real_time_analytics::SystemMetrics as AnalyticsSystemMetrics;
pub use real_time_analytics::VectorAnalyticsEngine as RealTimeVectorAnalyticsEngine;
pub use real_time_embedding_pipeline::AlertThresholds as PipelineAlertThresholds;
pub use real_time_embedding_pipeline::AutoScalingConfig;
pub use real_time_embedding_pipeline::CompressionConfig;
pub use real_time_embedding_pipeline::ContentItem;
pub use real_time_embedding_pipeline::MonitoringConfig as PipelineMonitoringConfig;
pub use real_time_embedding_pipeline::PipelineConfig as RealTimeEmbeddingConfig;
pub use real_time_embedding_pipeline::PipelineStatistics as PipelineStats;
pub use real_time_embedding_pipeline::ProcessingPriority;
pub use real_time_embedding_pipeline::ProcessingResult;
pub use real_time_embedding_pipeline::ProcessingStatus;
pub use real_time_embedding_pipeline::RealTimeEmbeddingPipeline;
pub use real_time_embedding_pipeline::VersioningStrategy;
pub use real_time_updates::BatchProcessor;
pub use real_time_updates::RealTimeConfig;
pub use real_time_updates::RealTimeVectorSearch;
pub use real_time_updates::RealTimeVectorUpdater;
pub use real_time_updates::UpdateBatch;
pub use real_time_updates::UpdateOperation;
pub use real_time_updates::UpdatePriority;
pub use real_time_updates::UpdateStats;
pub use reranking::CrossEncoder;
pub use reranking::CrossEncoderBackend;
pub use reranking::CrossEncoderModel;
pub use reranking::CrossEncoderReranker;
pub use reranking::DiversityReranker;
pub use reranking::DiversityStrategy;
pub use reranking::FusionStrategy as RerankingFusionStrategy;
pub use reranking::ModelBackend;
pub use reranking::ModelConfig;
pub use reranking::RerankingCache;
pub use reranking::RerankingCacheConfig;
pub use reranking::RerankingConfig;
pub use reranking::RerankingError;
pub use reranking::RerankingMode;
pub use reranking::RerankingOutput;
pub use reranking::RerankingStats;
pub use reranking::Result as RerankingResult;
pub use reranking::ScoreFusion;
pub use reranking::ScoreFusionConfig;
pub use reranking::ScoredCandidate;
pub use result_fusion::FusedResults;
pub use result_fusion::FusionAlgorithm;
pub use result_fusion::FusionConfig;
pub use result_fusion::FusionQualityMetrics;
pub use result_fusion::FusionStats;
pub use result_fusion::ResultFusionEngine;
pub use result_fusion::ScoreNormalizationStrategy;
pub use result_fusion::SourceResults;
pub use result_fusion::VectorSearchResult;
pub use similarity::AdaptiveSimilarity;
pub use similarity::SemanticSimilarity;
pub use similarity::SimilarityConfig;
pub use similarity::SimilarityMetric;
pub use sparql_integration::CrossLanguageProcessor;
pub use sparql_integration::FederatedQueryResult;
pub use sparql_integration::QueryExecutor;
pub use sparql_integration::SparqlVectorFunctions;
pub use sparql_integration::SparqlVectorService;
pub use sparql_integration::VectorOperation;
pub use sparql_integration::VectorQuery;
pub use sparql_integration::VectorQueryResult;
pub use sparql_integration::VectorServiceArg;
pub use sparql_integration::VectorServiceConfig;
pub use sparql_integration::VectorServiceResult;
pub use sparql_service_endpoint::AuthenticationInfo;
pub use sparql_service_endpoint::AuthenticationType;
pub use sparql_service_endpoint::CustomFunctionRegistry;
pub use sparql_service_endpoint::FederatedOperation;
pub use sparql_service_endpoint::FederatedSearchResult;
pub use sparql_service_endpoint::FederatedServiceEndpoint;
pub use sparql_service_endpoint::FederatedVectorQuery;
pub use sparql_service_endpoint::FunctionMetadata;
pub use sparql_service_endpoint::LoadBalancer;
pub use sparql_service_endpoint::ParameterInfo;
pub use sparql_service_endpoint::ParameterType as ServiceParameterType;
pub use sparql_service_endpoint::PartialSearchResult;
pub use sparql_service_endpoint::QueryScope;
pub use sparql_service_endpoint::ReturnType;
pub use sparql_service_endpoint::ServiceCapability;
pub use sparql_service_endpoint::ServiceEndpointManager;
pub use sparql_service_endpoint::ServiceType;
pub use sparse::COOMatrix;
pub use sparse::CSRMatrix;
pub use sparse::SparseVector;
pub use sq::QuantizationMode;
pub use sq::QuantizationParams;
pub use sq::SqConfig;
pub use sq::SqIndex;
pub use sq::SqStats;
pub use storage_optimizations::CompressionType;
pub use storage_optimizations::MmapVectorFile;
pub use storage_optimizations::StorageConfig;
pub use storage_optimizations::StorageUtils;
pub use storage_optimizations::VectorBlock;
pub use storage_optimizations::VectorFileHeader;
pub use storage_optimizations::VectorReader;
pub use storage_optimizations::VectorWriter;
pub use structured_vectors::ConfidenceScoredVector;
pub use structured_vectors::HierarchicalVector;
pub use structured_vectors::NamedDimensionVector;
pub use structured_vectors::TemporalVector;
pub use structured_vectors::WeightedDimensionVector;
pub use tensorflow::OptimizationLevel;
pub use tensorflow::PreprocessingPipeline as TensorFlowPreprocessingPipeline;
pub use tensorflow::ServerConfig;
pub use tensorflow::SessionConfig;
pub use tensorflow::TensorDataType;
pub use tensorflow::TensorFlowConfig;
pub use tensorflow::TensorFlowDevice;
pub use tensorflow::TensorFlowEmbedder;
pub use tensorflow::TensorFlowModelInfo;
pub use tensorflow::TensorFlowModelServer;
pub use tensorflow::TensorSpec;
pub use tiering::IndexMetadata;
pub use tiering::StorageTier;
pub use tiering::TierMetrics;
pub use tiering::TierStatistics;
pub use tiering::TierTransitionReason;
pub use tiering::TieringConfig;
pub use tiering::TieringManager;
pub use tiering::TieringPolicy;
pub use tree_indices::BallTree;
pub use tree_indices::CoverTree;
pub use tree_indices::KdTree;
pub use tree_indices::RandomProjectionTree;
pub use tree_indices::TreeIndex;
pub use tree_indices::TreeIndexConfig;
pub use tree_indices::TreeType;
pub use tree_indices::VpTree;
pub use wal::WalConfig;
pub use wal::WalEntry;
pub use wal::WalManager;
pub use word2vec::AggregationMethod;
pub use word2vec::OovStrategy;
pub use word2vec::Word2VecConfig;
pub use word2vec::Word2VecEmbeddingGenerator;
pub use word2vec::Word2VecFormat;

Modules§

adaptive_compression
Adaptive compression techniques for vector data
adaptive_intelligent_caching
Adaptive Intelligent Caching System for OxiRS Vector Search
advanced_analytics
Advanced Analytics and Insights for Vector Search
advanced_benchmarking
Advanced Benchmarking Framework for Vector Search Systems
advanced_caching
Advanced multi-level caching system for vector embeddings and search results
advanced_metrics
Advanced distance and similarity metrics for vectors.
advanced_result_merging
Advanced Result Merging and Score Combination System
automl_optimization
AutoML for Embedding Optimization - Version 1.2 Feature
benchmarking
Comprehensive benchmarking framework for vector search systems
cache_friendly_index
Cache-friendly memory layouts for vector index
clustering
Advanced clustering algorithms for vector similarity and resource grouping
compaction
Online Index Compaction System
compression
content_processing
Advanced content processing for multiple document formats
crash_recovery
Crash recovery system with Write-Ahead Logging
cross_language_alignment
Cross-Language Vector Alignment - Version 1.2 Feature
cross_modal_embeddings
Cross-modal embeddings for multi-modal vector search
diskann
DiskANN - Disk-based Approximate Nearest Neighbor Search
distance_metrics
Extended distance metrics for vector similarity
distributed_vector_search
Distributed Vector Search - Version 1.1 Roadmap Feature
dynamic_index_selector
Dynamic index selection for optimal query performance
embedding_pipeline
embeddings
Embedding generation and management for RDF resources and text content
enhanced_performance_monitoring
Enhanced Performance Monitoring and Analytics System
faiss_compatibility
FAISS Compatibility Layer
faiss_gpu_integration
FAISS GPU Integration for Massive Performance Acceleration
faiss_integration
FAISS Integration for Advanced Vector Search
faiss_migration_tools
FAISS Migration Tools for Seamless Data Transfer
faiss_native_integration
Native FAISS Integration with Real Bindings
federated_search
Federated Vector Search - Advanced Multi-Organization Search
filtered_search
Filtered search capabilities for vector indices
gnn_embeddings
Graph Neural Network (GNN) embeddings for knowledge graphs
gpu
GPU acceleration for vector operations using CUDA
gpu_benchmarks
Comprehensive GPU vs CPU benchmarking for vector operations
graph_aware_search
Graph-aware vector search for named graph filtering and contextual search
graph_indices
Graph-based indices for efficient nearest neighbor search
hierarchical_similarity
Hierarchical Similarity Computation for Knowledge Graphs
hnsw
HNSW (Hierarchical Navigable Small World) implementation
huggingface
HuggingFace Transformers integration for embedding generation
hybrid_fusion
Hybrid search with dense + sparse vector fusion
hybrid_search
Hybrid search combining keyword and semantic vector search
index
Advanced vector indexing with HNSW and other efficient algorithms
ivf
Inverted File (IVF) index implementation for approximate nearest neighbor search
joint_embedding_spaces
Joint Embedding Spaces for Cross-Modal Vector Search
kg_embeddings
Knowledge Graph Embeddings for RDF data
learned_index
Learned vector indexes using neural networks
lsh
Locality Sensitive Hashing (LSH) for approximate nearest neighbor search
mmap_advanced
Advanced memory mapping features for large datasets
mmap_index
Memory-mapped vector index for efficient disk-based storage
multi_modal_search
This module provides a unified interface for multi-modal similarity search, supporting queries across different modalities (text, image, audio, video) with automatic alignment and fusion in a joint embedding space.
multi_tenancy
Multi-tenancy support for OxiRS vector search
nsg
NSG (Navigable Small World Graph) index
opq
Optimized Product Quantization (OPQ) implementation
oxirs_arq_integration
OxiRS ARQ Integration for Vector-Aware Query Optimization
performance_insights
Advanced Performance Insights and Monitoring for OxiRS Vector Search
persistence
Index persistence with compression
personalized_search
Personalized vector search with user-specific embeddings and preferences
pq
Product Quantization (PQ) for memory-efficient vector compression and search
python_bindings
PyO3 Python Bindings for OxiRS Vector Search
pytorch
PyTorch integration for embedding generation and neural network models
quantum_search
Quantum-inspired algorithms for vector search optimization.
query_planning
Query planning and cost estimation for vector search operations
query_rewriter
Query rewriting and optimization for vector search
random_utils
Random utility functions
rdf_content_enhancement
Enhanced RDF Content Processing with Entity and Relationship Embeddings
rdf_integration
RDF term support integration with oxirs-core
real_time_analytics
Real-time analytics and monitoring for vector search operations
real_time_embedding_pipeline
Real-time embedding pipeline module
real_time_updates
Real-time Vector Index Updates
reranking
Re-ranking with cross-encoders for improved search quality
result_fusion
Result fusion and score combination algorithms for merging vector search results
similarity
Advanced similarity algorithms and semantic matching for vectors
sparql_integration
SPARQL integration for vector search and hybrid symbolic-vector queries
sparql_service_endpoint
Advanced SPARQL Service Endpoint for Vector Operations
sparse
sq
Scalar Quantization (SQ) for efficient vector compression
storage_optimizations
Storage optimizations for vector indices
store_integration
Advanced Store Integration for Vector Search
structured_vectors
Structured vector types for enhanced vector representations.
tensorflow
TensorFlow integration for embedding generation and model serving
tiering
Hot/Warm/Cold Tiering System for Vector Indices
tree_indices
Tree-based indices for efficient nearest neighbor search
utils
Utility functions for vector operations
validation
Comprehensive data validation for vector operations
wal
Write-Ahead Logging (WAL) for crash recovery
word2vec
Word2Vec embedding integration for text content

Structs§

DocumentBatchProcessor
Document batch processing utilities
MemoryVectorIndex
In-memory vector index implementation
SearchOptions
Advanced search options
Vector
Multi-precision vector with enhanced functionality
VectorOperationResult
Vector operation results with enhanced metadata
VectorStore
Enhanced vector store with embedding management and advanced features
VectorStoreConfig
Configuration for vector store

Enums§

SearchQuery
Search query types
SearchType
Search operation types
VectorData
Vector data storage supporting multiple precisions
VectorError
Error types specific to vector operations
VectorPrecision
Precision types for vectors

Traits§

VectorIndex
Vector index trait for efficient similarity search
VectorStoreTrait
Trait for vector store implementations

Type Aliases§

BatchSearchResult
Batch search result type
VectorId
Vector identifier type