Expand description
§OxiRS Vector Search
Status: Production Release (v0.1.0) - Production-Ready with Complete Documentation Stability: Public APIs are stable. Production-ready with comprehensive testing and 100 KB of documentation.
Vector index abstractions for semantic similarity and AI-augmented SPARQL querying.
This crate provides comprehensive vector search capabilities for knowledge graphs, enabling semantic similarity searches, AI-augmented SPARQL queries, and hybrid symbolic-vector operations.
§Features
- Multi-algorithm embeddings: TF-IDF, sentence transformers, custom models
- Advanced indexing: HNSW, flat, quantized, and multi-index support
- Rich similarity metrics: Cosine, Euclidean, Pearson, Jaccard, and more
- SPARQL integration:
vec:similarservice functions and hybrid queries - Performance optimization: Caching, batching, and parallel processing
§Quick Start
use oxirs_vec::{VectorStore, embeddings::EmbeddingStrategy};
// Create vector store with sentence transformer embeddings
let mut store = VectorStore::with_embedding_strategy(
EmbeddingStrategy::SentenceTransformer
).unwrap();
// Index some content
store
.index_resource(
"http://example.org/doc1".to_string(),
"This is a document about AI",
)
.unwrap();
store
.index_resource(
"http://example.org/doc2".to_string(),
"Machine learning tutorial",
)
.unwrap();
// Search for similar content
let results = store
.similarity_search("artificial intelligence", 5)
.unwrap();
println!("Found {} matching resources", results.len());Re-exports§
pub use adaptive_compression::AdaptiveCompressor;pub use adaptive_compression::CompressionMetrics;pub use adaptive_compression::CompressionPriorities;pub use adaptive_compression::MultiLevelCompression;pub use adaptive_compression::VectorStats;pub use adaptive_intelligent_caching::AccessPatternAnalyzer;pub use adaptive_intelligent_caching::AdaptiveIntelligentCache;pub use adaptive_intelligent_caching::CacheConfiguration;pub use adaptive_intelligent_caching::CacheOptimizer;pub use adaptive_intelligent_caching::CachePerformanceMetrics;pub use adaptive_intelligent_caching::CacheTier;pub use adaptive_intelligent_caching::MLModels;pub use adaptive_intelligent_caching::PredictivePrefetcher;pub use advanced_analytics::AnomalyDetection;pub use advanced_analytics::AnomalyDetector;pub use advanced_analytics::AnomalyType;pub use advanced_analytics::ImplementationEffort;pub use advanced_analytics::OptimizationRecommendation;pub use advanced_analytics::PerformanceTrends;pub use advanced_analytics::Priority;pub use advanced_analytics::QualityAspect;pub use advanced_analytics::QualityRecommendation;pub use advanced_analytics::QueryAnalytics;pub use advanced_analytics::QueryAnomaly;pub use advanced_analytics::RecommendationType;pub use advanced_analytics::VectorAnalyticsEngine;pub use advanced_analytics::VectorDistributionAnalysis;pub use advanced_analytics::VectorQualityAssessment;pub use advanced_benchmarking::AdvancedBenchmarkConfig;pub use advanced_benchmarking::AdvancedBenchmarkResult;pub use advanced_benchmarking::AdvancedBenchmarkSuite;pub use advanced_benchmarking::AlgorithmParameters;pub use advanced_benchmarking::BenchmarkAlgorithm;pub use advanced_benchmarking::BuildTimeMetrics;pub use advanced_benchmarking::CacheMetrics;pub use advanced_benchmarking::DatasetQualityMetrics;pub use advanced_benchmarking::DatasetStatistics;pub use advanced_benchmarking::DistanceStatistics;pub use advanced_benchmarking::EnhancedBenchmarkDataset;pub use advanced_benchmarking::HyperparameterTuner;pub use advanced_benchmarking::IndexSizeMetrics;pub use advanced_benchmarking::LatencyMetrics;pub use advanced_benchmarking::MemoryMetrics;pub use advanced_benchmarking::ObjectiveFunction;pub use advanced_benchmarking::OptimizationStrategy;pub use advanced_benchmarking::ParallelBenchmarkConfig;pub use advanced_benchmarking::ParameterSpace;pub use advanced_benchmarking::ParameterType;pub use advanced_benchmarking::ParameterValue;pub use advanced_benchmarking::PerformanceMetrics;pub use advanced_benchmarking::PerformanceProfiler;pub use advanced_benchmarking::QualityDegradation;pub use advanced_benchmarking::QualityMetrics;pub use advanced_benchmarking::ScalabilityMetrics;pub use advanced_benchmarking::StatisticalAnalyzer;pub use advanced_benchmarking::StatisticalMetrics;pub use advanced_benchmarking::ThroughputMetrics;pub use advanced_caching::BackgroundCacheWorker;pub use advanced_caching::CacheAnalysisReport;pub use advanced_caching::CacheAnalyzer;pub use advanced_caching::CacheConfig;pub use advanced_caching::CacheEntry;pub use advanced_caching::CacheInvalidator;pub use advanced_caching::CacheKey;pub use advanced_caching::CacheStats;pub use advanced_caching::CacheWarmer;pub use advanced_caching::EvictionPolicy;pub use advanced_caching::InvalidationStats;pub use advanced_caching::MultiLevelCache;pub use advanced_caching::MultiLevelCacheStats;pub use advanced_result_merging::AdvancedResultMerger;pub use advanced_result_merging::ConfidenceInterval;pub use advanced_result_merging::DiversityConfig;pub use advanced_result_merging::DiversityMetric;pub use advanced_result_merging::FusionStatistics;pub use advanced_result_merging::MergedResult;pub use advanced_result_merging::RankFusionAlgorithm;pub use advanced_result_merging::RankingFactor;pub use advanced_result_merging::ResultExplanation;pub use advanced_result_merging::ResultMergingConfig;pub use advanced_result_merging::ResultMetadata;pub use advanced_result_merging::ScoreCombinationStrategy;pub use advanced_result_merging::ScoreNormalizationMethod;pub use advanced_result_merging::ScoredResult;pub use advanced_result_merging::SourceContribution;pub use advanced_result_merging::SourceResult;pub use advanced_result_merging::SourceType;pub use automl_optimization::AutoMLConfig;pub use automl_optimization::AutoMLOptimizer;pub use automl_optimization::AutoMLResults;pub use automl_optimization::AutoMLStatistics;pub use automl_optimization::IndexConfiguration;pub use automl_optimization::IndexParameterSpace;pub use automl_optimization::OptimizationMetric;pub use automl_optimization::OptimizationTrial;pub use automl_optimization::ResourceConstraints;pub use automl_optimization::SearchSpace;pub use automl_optimization::TrialResult;pub use benchmarking::BenchmarkConfig;pub use benchmarking::BenchmarkDataset;pub use benchmarking::BenchmarkOutputFormat;pub use benchmarking::BenchmarkResult;pub use benchmarking::BenchmarkRunner;pub use benchmarking::BenchmarkSuite;pub use benchmarking::BenchmarkTestCase;pub use benchmarking::MemoryMetrics as BenchmarkMemoryMetrics;pub use benchmarking::PerformanceMetrics as BenchmarkPerformanceMetrics;pub use benchmarking::QualityMetrics as BenchmarkQualityMetrics;pub use benchmarking::ScalabilityMetrics as BenchmarkScalabilityMetrics;pub use benchmarking::SystemInfo;pub use cache_friendly_index::CacheFriendlyVectorIndex;pub use cache_friendly_index::IndexConfig as CacheFriendlyIndexConfig;pub use compaction::CompactionConfig;pub use compaction::CompactionManager;pub use compaction::CompactionMetrics;pub use compaction::CompactionResult;pub use compaction::CompactionState;pub use compaction::CompactionStatistics;pub use compaction::CompactionStrategy;pub use compression::create_compressor;pub use compression::CompressionMethod;pub use compression::VectorCompressor;pub use content_processing::ChunkType;pub use content_processing::ChunkingStrategy;pub use content_processing::ContentChunk;pub use content_processing::ContentExtractionConfig;pub use content_processing::ContentLocation;pub use content_processing::ContentProcessor;pub use content_processing::DocumentFormat;pub use content_processing::DocumentStructure;pub use content_processing::ExtractedContent;pub use content_processing::ExtractedImage;pub use content_processing::ExtractedLink;pub use content_processing::ExtractedTable;pub use content_processing::FormatHandler;pub use content_processing::Heading;pub use content_processing::ProcessingStats;pub use content_processing::TocEntry;pub use crash_recovery::CrashRecoveryManager;pub use crash_recovery::RecoveryConfig;pub use crash_recovery::RecoveryPolicy;pub use crash_recovery::RecoveryStats;pub use cross_modal_embeddings::AttentionMechanism;pub use cross_modal_embeddings::AudioData;pub use cross_modal_embeddings::AudioEncoder;pub use cross_modal_embeddings::CrossModalConfig;pub use cross_modal_embeddings::CrossModalEncoder;pub use cross_modal_embeddings::FusionLayer;pub use cross_modal_embeddings::FusionStrategy;pub use cross_modal_embeddings::GraphData;pub use cross_modal_embeddings::GraphEncoder;pub use cross_modal_embeddings::ImageData;pub use cross_modal_embeddings::ImageEncoder;pub use cross_modal_embeddings::Modality;pub use cross_modal_embeddings::ModalityData;pub use cross_modal_embeddings::MultiModalContent;pub use cross_modal_embeddings::TextEncoder;pub use cross_modal_embeddings::VideoData;pub use cross_modal_embeddings::VideoEncoder;pub use diskann::DiskAnnBuildStats;pub use diskann::DiskAnnBuilder;pub use diskann::DiskAnnConfig;pub use diskann::DiskAnnError;pub use diskann::DiskAnnIndex;pub use diskann::DiskAnnResult;pub use diskann::DiskStorage;pub use diskann::IndexMetadata as DiskAnnIndexMetadata;pub use diskann::MemoryMappedStorage;pub use diskann::NodeId;pub use diskann::PruningStrategy;pub use diskann::SearchMode as DiskAnnSearchMode;pub use diskann::SearchStats as DiskAnnSearchStats;pub use diskann::StorageBackend;pub use diskann::VamanaGraph;pub use diskann::VamanaNode;pub use diskann::VectorId as DiskAnnVectorId;pub use distributed_vector_search::ConsistencyLevel;pub use distributed_vector_search::DistributedClusterStats;pub use distributed_vector_search::DistributedNodeConfig;pub use distributed_vector_search::DistributedQuery;pub use distributed_vector_search::DistributedSearchResponse;pub use distributed_vector_search::DistributedVectorSearch;pub use distributed_vector_search::LoadBalancingAlgorithm;pub use distributed_vector_search::NodeHealthStatus;pub use distributed_vector_search::PartitioningStrategy;pub use distributed_vector_search::QueryExecutionStrategy;pub use dynamic_index_selector::DynamicIndexSelector;pub use dynamic_index_selector::IndexSelectorConfig;pub use embedding_pipeline::DimensionalityReduction;pub use embedding_pipeline::EmbeddingPipeline;pub use embedding_pipeline::NormalizationConfig;pub use embedding_pipeline::PostprocessingPipeline;pub use embedding_pipeline::PreprocessingPipeline;pub use embedding_pipeline::TokenizerConfig;pub use embedding_pipeline::VectorNormalization;pub use embeddings::EmbeddableContent;pub use embeddings::EmbeddingConfig;pub use embeddings::EmbeddingManager;pub use embeddings::EmbeddingStrategy;pub use embeddings::ModelDetails;pub use embeddings::OpenAIConfig;pub use embeddings::OpenAIEmbeddingGenerator;pub use embeddings::SentenceTransformerGenerator;pub use embeddings::TransformerModelType;pub use enhanced_performance_monitoring::Alert;pub use enhanced_performance_monitoring::AlertManager;pub use enhanced_performance_monitoring::AlertSeverity;pub use enhanced_performance_monitoring::AlertThresholds;pub use enhanced_performance_monitoring::AlertType;pub use enhanced_performance_monitoring::AnalyticsEngine;pub use enhanced_performance_monitoring::AnalyticsReport;pub use enhanced_performance_monitoring::DashboardData;pub use enhanced_performance_monitoring::EnhancedPerformanceMonitor;pub use enhanced_performance_monitoring::ExportConfig;pub use enhanced_performance_monitoring::ExportDestination;pub use enhanced_performance_monitoring::ExportFormat;pub use enhanced_performance_monitoring::LatencyDistribution;pub use enhanced_performance_monitoring::MonitoringConfig as EnhancedMonitoringConfig;pub use enhanced_performance_monitoring::QualityMetrics as EnhancedQualityMetrics;pub use enhanced_performance_monitoring::QualityMetricsCollector;pub use enhanced_performance_monitoring::QualityStatistics;pub use enhanced_performance_monitoring::QueryInfo;pub use enhanced_performance_monitoring::QueryMetricsCollector;pub use enhanced_performance_monitoring::QueryStatistics;pub use enhanced_performance_monitoring::QueryType;pub use enhanced_performance_monitoring::Recommendation;pub use enhanced_performance_monitoring::RecommendationCategory;pub use enhanced_performance_monitoring::RecommendationPriority;pub use enhanced_performance_monitoring::SystemMetrics;pub use enhanced_performance_monitoring::SystemMetricsCollector;pub use enhanced_performance_monitoring::SystemStatistics;pub use enhanced_performance_monitoring::TrendData;pub use enhanced_performance_monitoring::TrendDirection;pub use faiss_compatibility::CompressionLevel;pub use faiss_compatibility::ConversionMetrics;pub use faiss_compatibility::ConversionResult;pub use faiss_compatibility::FaissCompatibility;pub use faiss_compatibility::FaissExportConfig;pub use faiss_compatibility::FaissImportConfig;pub use faiss_compatibility::FaissIndexMetadata;pub use faiss_compatibility::FaissIndexType;pub use faiss_compatibility::FaissMetricType;pub use faiss_compatibility::FaissParameter;pub use faiss_compatibility::SimpleVectorIndex;pub use federated_search::AuthenticationConfig;pub use federated_search::FederatedSearchConfig;pub use federated_search::FederatedVectorSearch;pub use federated_search::FederationEndpoint;pub use federated_search::PrivacyEngine;pub use federated_search::PrivacyMode;pub use federated_search::SchemaCompatibility;pub use federated_search::TrustManager;pub use gnn_embeddings::AggregatorType;pub use gnn_embeddings::GraphSAGE;pub use gnn_embeddings::GCN;pub use gpu::create_default_accelerator;pub use gpu::create_memory_optimized_accelerator;pub use gpu::create_performance_accelerator;pub use gpu::is_gpu_available;pub use gpu::GpuAccelerator;pub use gpu::GpuBuffer;pub use gpu::GpuConfig;pub use gpu::GpuDevice;pub use gpu::GpuExecutionConfig;pub use gpu_benchmarks::BenchmarkResult as GpuBenchmarkResult;pub use gpu_benchmarks::GpuBenchmarkConfig;pub use gpu_benchmarks::GpuBenchmarkSuite;pub use graph_indices::DelaunayGraph;pub use graph_indices::GraphIndex;pub use graph_indices::GraphIndexConfig;pub use graph_indices::GraphType;pub use graph_indices::NSWGraph;pub use graph_indices::ONNGGraph;pub use graph_indices::PANNGGraph;pub use graph_indices::RNGGraph;pub use hierarchical_similarity::ConceptHierarchy;pub use hierarchical_similarity::HierarchicalSimilarity;pub use hierarchical_similarity::HierarchicalSimilarityConfig;pub use hierarchical_similarity::HierarchicalSimilarityResult;pub use hierarchical_similarity::HierarchicalSimilarityStats;pub use hierarchical_similarity::SimilarityContext;pub use hierarchical_similarity::SimilarityExplanation;pub use hierarchical_similarity::SimilarityTaskType;pub use hnsw::HnswConfig;pub use hnsw::HnswIndex;pub use hybrid_fusion::FusedResult;pub use hybrid_fusion::HybridFusion;pub use hybrid_fusion::HybridFusionConfig;pub use hybrid_fusion::HybridFusionStatistics;pub use hybrid_fusion::HybridFusionStrategy;pub use hybrid_fusion::NormalizationMethod;pub use hybrid_search::Bm25Scorer;pub use hybrid_search::DocumentScore;pub use hybrid_search::HybridQuery;pub use hybrid_search::HybridResult;pub use hybrid_search::HybridSearchConfig;pub use hybrid_search::HybridSearchManager;pub use hybrid_search::KeywordAlgorithm;pub use hybrid_search::KeywordMatch;pub use hybrid_search::KeywordSearcher;pub use hybrid_search::QueryExpander;pub use hybrid_search::RankFusion;pub use hybrid_search::RankFusionStrategy;pub use hybrid_search::SearchMode;pub use hybrid_search::SearchWeights;pub use hybrid_search::TfidfScorer;pub use index::AdvancedVectorIndex;pub use index::DistanceMetric;pub use index::IndexConfig;pub use index::IndexType;pub use index::SearchResult;pub use ivf::IvfConfig;pub use ivf::IvfIndex;pub use ivf::IvfStats;pub use ivf::QuantizationStrategy;pub use joint_embedding_spaces::ActivationFunction;pub use joint_embedding_spaces::AlignmentPair;pub use joint_embedding_spaces::CLIPAligner;pub use joint_embedding_spaces::ContrastiveOptimizer;pub use joint_embedding_spaces::CrossModalAttention;pub use joint_embedding_spaces::CurriculumLearning;pub use joint_embedding_spaces::DataAugmentation;pub use joint_embedding_spaces::DifficultySchedule;pub use joint_embedding_spaces::DomainAdapter;pub use joint_embedding_spaces::DomainStatistics;pub use joint_embedding_spaces::JointEmbeddingConfig;pub use joint_embedding_spaces::JointEmbeddingSpace;pub use joint_embedding_spaces::LearningRateSchedule;pub use joint_embedding_spaces::LinearProjector;pub use joint_embedding_spaces::PacingFunction;pub use joint_embedding_spaces::ScheduleType;pub use joint_embedding_spaces::TemperatureScheduler;pub use joint_embedding_spaces::TrainingStatistics;pub use kg_embeddings::ComplEx;pub use kg_embeddings::KGEmbedding;pub use kg_embeddings::KGEmbeddingConfig;pub use kg_embeddings::KGEmbeddingModel as KGModel;pub use kg_embeddings::KGEmbeddingModelType;pub use kg_embeddings::RotatE;pub use kg_embeddings::TransE;pub use kg_embeddings::Triple;pub use lsh::LshConfig;pub use lsh::LshFamily;pub use lsh::LshIndex;pub use lsh::LshStats;pub use mmap_index::MemoryMappedIndexStats;pub use mmap_index::MemoryMappedVectorIndex;pub use multi_tenancy::AccessControl;pub use multi_tenancy::AccessPolicy;pub use multi_tenancy::BillingEngine;pub use multi_tenancy::BillingMetrics;pub use multi_tenancy::BillingPeriod;pub use multi_tenancy::IsolationLevel;pub use multi_tenancy::IsolationStrategy;pub use multi_tenancy::MultiTenancyError;pub use multi_tenancy::MultiTenancyResult;pub use multi_tenancy::MultiTenantManager;pub use multi_tenancy::NamespaceManager;pub use multi_tenancy::Permission;pub use multi_tenancy::PricingModel;pub use multi_tenancy::QuotaEnforcer;pub use multi_tenancy::QuotaLimits;pub use multi_tenancy::QuotaUsage;pub use multi_tenancy::RateLimiter;pub use multi_tenancy::ResourceQuota;pub use multi_tenancy::ResourceType;pub use multi_tenancy::Role;pub use multi_tenancy::Tenant;pub use multi_tenancy::TenantConfig;pub use multi_tenancy::TenantContext;pub use multi_tenancy::TenantId;pub use multi_tenancy::TenantManagerConfig;pub use multi_tenancy::TenantMetadata;pub use multi_tenancy::TenantOperation;pub use multi_tenancy::TenantStatistics;pub use multi_tenancy::TenantStatus;pub use multi_tenancy::UsageRecord;pub use nsg::DistanceMetric as NsgDistanceMetric;pub use nsg::NsgConfig;pub use nsg::NsgIndex;pub use nsg::NsgStats;pub use performance_insights::AlertingSystem;pub use performance_insights::OptimizationRecommendations;pub use performance_insights::PerformanceInsightsAnalyzer;pub use performance_insights::PerformanceTrends as InsightsPerformanceTrends;pub use performance_insights::QueryComplexity;pub use performance_insights::QueryStatistics as InsightsQueryStatistics;pub use performance_insights::ReportFormat;pub use performance_insights::VectorStatistics;pub use pq::PQConfig;pub use pq::PQIndex;pub use pq::PQStats;pub use pytorch::ArchitectureType;pub use pytorch::CompileMode;pub use pytorch::DeviceManager;pub use pytorch::PyTorchConfig;pub use pytorch::PyTorchDevice;pub use pytorch::PyTorchEmbedder;pub use pytorch::PyTorchModelManager;pub use pytorch::PyTorchModelMetadata;pub use pytorch::PyTorchTokenizer;pub use quantum_search::QuantumSearchConfig;pub use quantum_search::QuantumSearchResult;pub use quantum_search::QuantumSearchStatistics;pub use quantum_search::QuantumState;pub use quantum_search::QuantumVectorSearch;pub use query_planning::CostModel;pub use query_planning::IndexStatistics;pub use query_planning::QueryCharacteristics;pub use query_planning::QueryPlan;pub use query_planning::QueryPlanner;pub use query_planning::QueryStrategy;pub use query_planning::VectorQueryType;pub use query_rewriter::QueryRewriter;pub use query_rewriter::QueryRewriterConfig;pub use query_rewriter::QueryVectorStatistics;pub use query_rewriter::RewriteRule;pub use query_rewriter::RewrittenQuery;pub use rdf_content_enhancement::ComponentWeights;pub use rdf_content_enhancement::MultiLanguageProcessor;pub use rdf_content_enhancement::PathConstraint;pub use rdf_content_enhancement::PathDirection;pub use rdf_content_enhancement::PropertyAggregator;pub use rdf_content_enhancement::PropertyPath;pub use rdf_content_enhancement::RdfContentConfig;pub use rdf_content_enhancement::RdfContentProcessor;pub use rdf_content_enhancement::RdfContext;pub use rdf_content_enhancement::RdfEntity;pub use rdf_content_enhancement::RdfValue;pub use rdf_content_enhancement::TemporalInfo;pub use rdf_integration::RdfIntegrationStats;pub use rdf_integration::RdfTermMapping;pub use rdf_integration::RdfTermMetadata;pub use rdf_integration::RdfTermType;pub use rdf_integration::RdfVectorConfig;pub use rdf_integration::RdfVectorIntegration;pub use rdf_integration::RdfVectorSearchResult;pub use rdf_integration::SearchMetadata;pub use real_time_analytics::AlertSeverity as AnalyticsAlertSeverity;pub use real_time_analytics::AlertType as AnalyticsAlertType;pub use real_time_analytics::AnalyticsConfig;pub use real_time_analytics::AnalyticsEvent;pub use real_time_analytics::AnalyticsReport as RealTimeAnalyticsReport;pub use real_time_analytics::DashboardData as RealTimeDashboardData;pub use real_time_analytics::ExportFormat as AnalyticsExportFormat;pub use real_time_analytics::MetricsCollector;pub use real_time_analytics::PerformanceMonitor;pub use real_time_analytics::QueryMetrics;pub use real_time_analytics::SystemMetrics as AnalyticsSystemMetrics;pub use real_time_analytics::VectorAnalyticsEngine as RealTimeVectorAnalyticsEngine;pub use real_time_embedding_pipeline::AlertThresholds as PipelineAlertThresholds;pub use real_time_embedding_pipeline::AutoScalingConfig;pub use real_time_embedding_pipeline::CompressionConfig;pub use real_time_embedding_pipeline::ContentItem;pub use real_time_embedding_pipeline::MonitoringConfig as PipelineMonitoringConfig;pub use real_time_embedding_pipeline::PipelineConfig as RealTimeEmbeddingConfig;pub use real_time_embedding_pipeline::PipelineStatistics as PipelineStats;pub use real_time_embedding_pipeline::ProcessingPriority;pub use real_time_embedding_pipeline::ProcessingResult;pub use real_time_embedding_pipeline::ProcessingStatus;pub use real_time_embedding_pipeline::RealTimeEmbeddingPipeline;pub use real_time_embedding_pipeline::VersioningStrategy;pub use real_time_updates::BatchProcessor;pub use real_time_updates::RealTimeConfig;pub use real_time_updates::RealTimeVectorSearch;pub use real_time_updates::RealTimeVectorUpdater;pub use real_time_updates::UpdateBatch;pub use real_time_updates::UpdateOperation;pub use real_time_updates::UpdatePriority;pub use real_time_updates::UpdateStats;pub use reranking::CrossEncoder;pub use reranking::CrossEncoderBackend;pub use reranking::CrossEncoderModel;pub use reranking::CrossEncoderReranker;pub use reranking::DiversityReranker;pub use reranking::DiversityStrategy;pub use reranking::FusionStrategy as RerankingFusionStrategy;pub use reranking::ModelBackend;pub use reranking::ModelConfig;pub use reranking::RerankingCache;pub use reranking::RerankingCacheConfig;pub use reranking::RerankingConfig;pub use reranking::RerankingError;pub use reranking::RerankingMode;pub use reranking::RerankingOutput;pub use reranking::RerankingStats;pub use reranking::Result as RerankingResult;pub use reranking::ScoreFusion;pub use reranking::ScoreFusionConfig;pub use reranking::ScoredCandidate;pub use result_fusion::FusedResults;pub use result_fusion::FusionAlgorithm;pub use result_fusion::FusionConfig;pub use result_fusion::FusionQualityMetrics;pub use result_fusion::FusionStats;pub use result_fusion::ResultFusionEngine;pub use result_fusion::ScoreNormalizationStrategy;pub use result_fusion::SourceResults;pub use result_fusion::VectorSearchResult;pub use similarity::AdaptiveSimilarity;pub use similarity::SemanticSimilarity;pub use similarity::SimilarityConfig;pub use similarity::SimilarityMetric;pub use sparql_integration::CrossLanguageProcessor;pub use sparql_integration::FederatedQueryResult;pub use sparql_integration::QueryExecutor;pub use sparql_integration::SparqlVectorFunctions;pub use sparql_integration::SparqlVectorService;pub use sparql_integration::VectorOperation;pub use sparql_integration::VectorQuery;pub use sparql_integration::VectorQueryResult;pub use sparql_integration::VectorServiceArg;pub use sparql_integration::VectorServiceConfig;pub use sparql_integration::VectorServiceResult;pub use sparql_service_endpoint::AuthenticationInfo;pub use sparql_service_endpoint::AuthenticationType;pub use sparql_service_endpoint::CustomFunctionRegistry;pub use sparql_service_endpoint::FederatedOperation;pub use sparql_service_endpoint::FederatedSearchResult;pub use sparql_service_endpoint::FederatedServiceEndpoint;pub use sparql_service_endpoint::FederatedVectorQuery;pub use sparql_service_endpoint::FunctionMetadata;pub use sparql_service_endpoint::LoadBalancer;pub use sparql_service_endpoint::ParameterInfo;pub use sparql_service_endpoint::ParameterType as ServiceParameterType;pub use sparql_service_endpoint::PartialSearchResult;pub use sparql_service_endpoint::QueryScope;pub use sparql_service_endpoint::ReturnType;pub use sparql_service_endpoint::ServiceCapability;pub use sparql_service_endpoint::ServiceEndpointManager;pub use sparql_service_endpoint::ServiceType;pub use sparse::COOMatrix;pub use sparse::CSRMatrix;pub use sparse::SparseVector;pub use sq::QuantizationMode;pub use sq::QuantizationParams;pub use sq::SqConfig;pub use sq::SqIndex;pub use sq::SqStats;pub use storage_optimizations::CompressionType;pub use storage_optimizations::MmapVectorFile;pub use storage_optimizations::StorageConfig;pub use storage_optimizations::StorageUtils;pub use storage_optimizations::VectorBlock;pub use storage_optimizations::VectorFileHeader;pub use storage_optimizations::VectorReader;pub use storage_optimizations::VectorWriter;pub use structured_vectors::ConfidenceScoredVector;pub use structured_vectors::HierarchicalVector;pub use structured_vectors::NamedDimensionVector;pub use structured_vectors::TemporalVector;pub use structured_vectors::WeightedDimensionVector;pub use tensorflow::OptimizationLevel;pub use tensorflow::PreprocessingPipeline as TensorFlowPreprocessingPipeline;pub use tensorflow::ServerConfig;pub use tensorflow::SessionConfig;pub use tensorflow::TensorDataType;pub use tensorflow::TensorFlowConfig;pub use tensorflow::TensorFlowDevice;pub use tensorflow::TensorFlowEmbedder;pub use tensorflow::TensorFlowModelInfo;pub use tensorflow::TensorFlowModelServer;pub use tensorflow::TensorSpec;pub use tiering::IndexMetadata;pub use tiering::StorageTier;pub use tiering::TierMetrics;pub use tiering::TierStatistics;pub use tiering::TierTransitionReason;pub use tiering::TieringConfig;pub use tiering::TieringManager;pub use tiering::TieringPolicy;pub use tree_indices::BallTree;pub use tree_indices::CoverTree;pub use tree_indices::KdTree;pub use tree_indices::RandomProjectionTree;pub use tree_indices::TreeIndex;pub use tree_indices::TreeIndexConfig;pub use tree_indices::TreeType;pub use tree_indices::VpTree;pub use wal::WalConfig;pub use wal::WalEntry;pub use wal::WalManager;pub use word2vec::AggregationMethod;pub use word2vec::OovStrategy;pub use word2vec::Word2VecConfig;pub use word2vec::Word2VecEmbeddingGenerator;pub use word2vec::Word2VecFormat;
Modules§
- adaptive_
compression - Adaptive compression techniques for vector data
- adaptive_
intelligent_ caching - Adaptive Intelligent Caching System for OxiRS Vector Search
- advanced_
analytics - Advanced Analytics and Insights for Vector Search
- advanced_
benchmarking - Advanced Benchmarking Framework for Vector Search Systems
- advanced_
caching - Advanced multi-level caching system for vector embeddings and search results
- advanced_
metrics - Advanced distance and similarity metrics for vectors.
- advanced_
result_ merging - Advanced Result Merging and Score Combination System
- automl_
optimization - AutoML for Embedding Optimization - Version 1.2 Feature
- benchmarking
- Comprehensive benchmarking framework for vector search systems
- cache_
friendly_ index - Cache-friendly memory layouts for vector index
- clustering
- Advanced clustering algorithms for vector similarity and resource grouping
- compaction
- Online Index Compaction System
- compression
- content_
processing - Advanced content processing for multiple document formats
- crash_
recovery - Crash recovery system with Write-Ahead Logging
- cross_
language_ alignment - Cross-Language Vector Alignment - Version 1.2 Feature
- cross_
modal_ embeddings - Cross-modal embeddings for multi-modal vector search
- diskann
- DiskANN - Disk-based Approximate Nearest Neighbor Search
- distance_
metrics - Extended distance metrics for vector similarity
- distributed_
vector_ search - Distributed Vector Search - Version 1.1 Roadmap Feature
- dynamic_
index_ selector - Dynamic index selection for optimal query performance
- embedding_
pipeline - embeddings
- Embedding generation and management for RDF resources and text content
- enhanced_
performance_ monitoring - Enhanced Performance Monitoring and Analytics System
- faiss_
compatibility - FAISS Compatibility Layer
- faiss_
gpu_ integration - FAISS GPU Integration for Massive Performance Acceleration
- faiss_
integration - FAISS Integration for Advanced Vector Search
- faiss_
migration_ tools - FAISS Migration Tools for Seamless Data Transfer
- faiss_
native_ integration - Native FAISS Integration with Real Bindings
- federated_
search - Federated Vector Search - Advanced Multi-Organization Search
- filtered_
search - Filtered search capabilities for vector indices
- gnn_
embeddings - Graph Neural Network (GNN) embeddings for knowledge graphs
- gpu
- GPU acceleration for vector operations using CUDA
- gpu_
benchmarks - Comprehensive GPU vs CPU benchmarking for vector operations
- graph_
aware_ search - Graph-aware vector search for named graph filtering and contextual search
- graph_
indices - Graph-based indices for efficient nearest neighbor search
- hierarchical_
similarity - Hierarchical Similarity Computation for Knowledge Graphs
- hnsw
- HNSW (Hierarchical Navigable Small World) implementation
- huggingface
- HuggingFace Transformers integration for embedding generation
- hybrid_
fusion - Hybrid search with dense + sparse vector fusion
- hybrid_
search - Hybrid search combining keyword and semantic vector search
- index
- Advanced vector indexing with HNSW and other efficient algorithms
- ivf
- Inverted File (IVF) index implementation for approximate nearest neighbor search
- joint_
embedding_ spaces - Joint Embedding Spaces for Cross-Modal Vector Search
- kg_
embeddings - Knowledge Graph Embeddings for RDF data
- learned_
index - Learned vector indexes using neural networks
- lsh
- Locality Sensitive Hashing (LSH) for approximate nearest neighbor search
- mmap_
advanced - Advanced memory mapping features for large datasets
- mmap_
index - Memory-mapped vector index for efficient disk-based storage
- multi_
modal_ search - This module provides a unified interface for multi-modal similarity search, supporting queries across different modalities (text, image, audio, video) with automatic alignment and fusion in a joint embedding space.
- multi_
tenancy - Multi-tenancy support for OxiRS vector search
- nsg
- NSG (Navigable Small World Graph) index
- opq
- Optimized Product Quantization (OPQ) implementation
- oxirs_
arq_ integration - OxiRS ARQ Integration for Vector-Aware Query Optimization
- performance_
insights - Advanced Performance Insights and Monitoring for OxiRS Vector Search
- persistence
- Index persistence with compression
- personalized_
search - Personalized vector search with user-specific embeddings and preferences
- pq
- Product Quantization (PQ) for memory-efficient vector compression and search
- python_
bindings - PyO3 Python Bindings for OxiRS Vector Search
- pytorch
- PyTorch integration for embedding generation and neural network models
- quantum_
search - Quantum-inspired algorithms for vector search optimization.
- query_
planning - Query planning and cost estimation for vector search operations
- query_
rewriter - Query rewriting and optimization for vector search
- random_
utils - Random utility functions
- rdf_
content_ enhancement - Enhanced RDF Content Processing with Entity and Relationship Embeddings
- rdf_
integration - RDF term support integration with oxirs-core
- real_
time_ analytics - Real-time analytics and monitoring for vector search operations
- real_
time_ embedding_ pipeline - Real-time embedding pipeline module
- real_
time_ updates - Real-time Vector Index Updates
- reranking
- Re-ranking with cross-encoders for improved search quality
- result_
fusion - Result fusion and score combination algorithms for merging vector search results
- similarity
- Advanced similarity algorithms and semantic matching for vectors
- sparql_
integration - SPARQL integration for vector search and hybrid symbolic-vector queries
- sparql_
service_ endpoint - Advanced SPARQL Service Endpoint for Vector Operations
- sparse
- sq
- Scalar Quantization (SQ) for efficient vector compression
- storage_
optimizations - Storage optimizations for vector indices
- store_
integration - Advanced Store Integration for Vector Search
- structured_
vectors - Structured vector types for enhanced vector representations.
- tensorflow
- TensorFlow integration for embedding generation and model serving
- tiering
- Hot/Warm/Cold Tiering System for Vector Indices
- tree_
indices - Tree-based indices for efficient nearest neighbor search
- utils
- Utility functions for vector operations
- validation
- Comprehensive data validation for vector operations
- wal
- Write-Ahead Logging (WAL) for crash recovery
- word2vec
- Word2Vec embedding integration for text content
Structs§
- Document
Batch Processor - Document batch processing utilities
- Memory
Vector Index - In-memory vector index implementation
- Search
Options - Advanced search options
- Vector
- Multi-precision vector with enhanced functionality
- Vector
Operation Result - Vector operation results with enhanced metadata
- Vector
Store - Enhanced vector store with embedding management and advanced features
- Vector
Store Config - Configuration for vector store
Enums§
- Search
Query - Search query types
- Search
Type - Search operation types
- Vector
Data - Vector data storage supporting multiple precisions
- Vector
Error - Error types specific to vector operations
- Vector
Precision - Precision types for vectors
Traits§
- Vector
Index - Vector index trait for efficient similarity search
- Vector
Store Trait - Trait for vector store implementations
Type Aliases§
- Batch
Search Result - Batch search result type
- Vector
Id - Vector identifier type