Expand description
§OxiRS Vector Search
Status: Alpha Release (v0.1.0-alpha.2) ⚠️ APIs may change. Not recommended for production use.
Vector index abstractions for semantic similarity and AI-augmented SPARQL querying.
This crate provides comprehensive vector search capabilities for knowledge graphs, enabling semantic similarity searches, AI-augmented SPARQL queries, and hybrid symbolic-vector operations.
§Features
- Multi-algorithm embeddings: TF-IDF, sentence transformers, custom models
- Advanced indexing: HNSW, flat, quantized, and multi-index support
- Rich similarity metrics: Cosine, Euclidean, Pearson, Jaccard, and more
- SPARQL integration:
vec:similar
service functions and hybrid queries - Performance optimization: Caching, batching, and parallel processing
§Quick Start
use oxirs_vec::{VectorStore, embeddings::EmbeddingStrategy};
// Create vector store with sentence transformer embeddings
let mut store = VectorStore::with_embedding_strategy(
EmbeddingStrategy::SentenceTransformer
).unwrap();
// Index some content
store.index_resource("http://example.org/doc1", "This is a document about AI")?;
store.index_resource("http://example.org/doc2", "Machine learning tutorial")?;
// Search for similar content
let results = store.similarity_search("artificial intelligence", 5)?;
Re-exports§
pub use adaptive_compression::AdaptiveCompressor;
pub use adaptive_compression::CompressionMetrics;
pub use adaptive_compression::CompressionPriorities;
pub use adaptive_compression::MultiLevelCompression;
pub use adaptive_compression::VectorStats;
pub use adaptive_intelligent_caching::AccessPatternAnalyzer;
pub use adaptive_intelligent_caching::AdaptiveIntelligentCache;
pub use adaptive_intelligent_caching::CacheConfiguration;
pub use adaptive_intelligent_caching::CacheOptimizer;
pub use adaptive_intelligent_caching::CachePerformanceMetrics;
pub use adaptive_intelligent_caching::CacheTier;
pub use adaptive_intelligent_caching::MLModels;
pub use adaptive_intelligent_caching::PredictivePrefetcher;
pub use advanced_analytics::AnomalyDetection;
pub use advanced_analytics::AnomalyDetector;
pub use advanced_analytics::AnomalyType;
pub use advanced_analytics::ImplementationEffort;
pub use advanced_analytics::OptimizationRecommendation;
pub use advanced_analytics::PerformanceTrends;
pub use advanced_analytics::Priority;
pub use advanced_analytics::QualityAspect;
pub use advanced_analytics::QualityRecommendation;
pub use advanced_analytics::QueryAnalytics;
pub use advanced_analytics::QueryAnomaly;
pub use advanced_analytics::RecommendationType;
pub use advanced_analytics::VectorAnalyticsEngine;
pub use advanced_analytics::VectorDistributionAnalysis;
pub use advanced_analytics::VectorQualityAssessment;
pub use advanced_benchmarking::AdvancedBenchmarkConfig;
pub use advanced_benchmarking::AdvancedBenchmarkResult;
pub use advanced_benchmarking::AdvancedBenchmarkSuite;
pub use advanced_benchmarking::AlgorithmParameters;
pub use advanced_benchmarking::BenchmarkAlgorithm;
pub use advanced_benchmarking::BuildTimeMetrics;
pub use advanced_benchmarking::CacheMetrics;
pub use advanced_benchmarking::DatasetQualityMetrics;
pub use advanced_benchmarking::DatasetStatistics;
pub use advanced_benchmarking::DistanceStatistics;
pub use advanced_benchmarking::EnhancedBenchmarkDataset;
pub use advanced_benchmarking::HyperparameterTuner;
pub use advanced_benchmarking::IndexSizeMetrics;
pub use advanced_benchmarking::LatencyMetrics;
pub use advanced_benchmarking::MemoryMetrics;
pub use advanced_benchmarking::ObjectiveFunction;
pub use advanced_benchmarking::OptimizationStrategy;
pub use advanced_benchmarking::ParallelBenchmarkConfig;
pub use advanced_benchmarking::ParameterSpace;
pub use advanced_benchmarking::ParameterType;
pub use advanced_benchmarking::ParameterValue;
pub use advanced_benchmarking::PerformanceMetrics;
pub use advanced_benchmarking::PerformanceProfiler;
pub use advanced_benchmarking::QualityDegradation;
pub use advanced_benchmarking::QualityMetrics;
pub use advanced_benchmarking::ScalabilityMetrics;
pub use advanced_benchmarking::StatisticalAnalyzer;
pub use advanced_benchmarking::StatisticalMetrics;
pub use advanced_benchmarking::ThroughputMetrics;
pub use advanced_caching::BackgroundCacheWorker;
pub use advanced_caching::CacheAnalysisReport;
pub use advanced_caching::CacheAnalyzer;
pub use advanced_caching::CacheConfig;
pub use advanced_caching::CacheEntry;
pub use advanced_caching::CacheInvalidator;
pub use advanced_caching::CacheKey;
pub use advanced_caching::CacheStats;
pub use advanced_caching::CacheWarmer;
pub use advanced_caching::EvictionPolicy;
pub use advanced_caching::InvalidationStats;
pub use advanced_caching::MultiLevelCache;
pub use advanced_caching::MultiLevelCacheStats;
pub use advanced_result_merging::AdvancedResultMerger;
pub use advanced_result_merging::ConfidenceInterval;
pub use advanced_result_merging::DiversityConfig;
pub use advanced_result_merging::DiversityMetric;
pub use advanced_result_merging::FusionStatistics;
pub use advanced_result_merging::MergedResult;
pub use advanced_result_merging::RankFusionAlgorithm;
pub use advanced_result_merging::RankingFactor;
pub use advanced_result_merging::ResultExplanation;
pub use advanced_result_merging::ResultMergingConfig;
pub use advanced_result_merging::ResultMetadata;
pub use advanced_result_merging::ScoreCombinationStrategy;
pub use advanced_result_merging::ScoreNormalizationMethod;
pub use advanced_result_merging::ScoredResult;
pub use advanced_result_merging::SourceContribution;
pub use advanced_result_merging::SourceResult;
pub use advanced_result_merging::SourceType;
pub use automl_optimization::AutoMLConfig;
pub use automl_optimization::AutoMLOptimizer;
pub use automl_optimization::AutoMLResults;
pub use automl_optimization::AutoMLStatistics;
pub use automl_optimization::IndexConfiguration;
pub use automl_optimization::IndexParameterSpace;
pub use automl_optimization::OptimizationMetric;
pub use automl_optimization::OptimizationTrial;
pub use automl_optimization::ResourceConstraints;
pub use automl_optimization::SearchSpace;
pub use automl_optimization::TrialResult;
pub use benchmarking::BenchmarkConfig;
pub use benchmarking::BenchmarkDataset;
pub use benchmarking::BenchmarkOutputFormat;
pub use benchmarking::BenchmarkResult;
pub use benchmarking::BenchmarkRunner;
pub use benchmarking::BenchmarkSuite;
pub use benchmarking::BenchmarkTestCase;
pub use benchmarking::MemoryMetrics as BenchmarkMemoryMetrics;
pub use benchmarking::PerformanceMetrics as BenchmarkPerformanceMetrics;
pub use benchmarking::QualityMetrics as BenchmarkQualityMetrics;
pub use benchmarking::ScalabilityMetrics as BenchmarkScalabilityMetrics;
pub use benchmarking::SystemInfo;
pub use cache_friendly_index::CacheFriendlyVectorIndex;
pub use cache_friendly_index::IndexConfig as CacheFriendlyIndexConfig;
pub use compression::create_compressor;
pub use compression::CompressionMethod;
pub use compression::VectorCompressor;
pub use cross_modal_embeddings::AttentionMechanism;
pub use cross_modal_embeddings::AudioData;
pub use cross_modal_embeddings::AudioEncoder;
pub use cross_modal_embeddings::CrossModalConfig;
pub use cross_modal_embeddings::CrossModalEncoder;
pub use cross_modal_embeddings::FusionLayer;
pub use cross_modal_embeddings::FusionStrategy;
pub use cross_modal_embeddings::GraphData;
pub use cross_modal_embeddings::GraphEncoder;
pub use cross_modal_embeddings::ImageData;
pub use cross_modal_embeddings::ImageEncoder;
pub use cross_modal_embeddings::Modality;
pub use cross_modal_embeddings::ModalityData;
pub use cross_modal_embeddings::MultiModalContent;
pub use cross_modal_embeddings::TextEncoder;
pub use cross_modal_embeddings::VideoData;
pub use cross_modal_embeddings::VideoEncoder;
pub use distributed_vector_search::ConsistencyLevel;
pub use distributed_vector_search::DistributedClusterStats;
pub use distributed_vector_search::DistributedNodeConfig;
pub use distributed_vector_search::DistributedQuery;
pub use distributed_vector_search::DistributedSearchResponse;
pub use distributed_vector_search::DistributedVectorSearch;
pub use distributed_vector_search::LoadBalancingAlgorithm;
pub use distributed_vector_search::NodeHealthStatus;
pub use distributed_vector_search::PartitioningStrategy;
pub use distributed_vector_search::QueryExecutionStrategy;
pub use embedding_pipeline::DimensionalityReduction;
pub use embedding_pipeline::EmbeddingPipeline;
pub use embedding_pipeline::NormalizationConfig;
pub use embedding_pipeline::PostprocessingPipeline;
pub use embedding_pipeline::PreprocessingPipeline;
pub use embedding_pipeline::TokenizerConfig;
pub use embedding_pipeline::VectorNormalization;
pub use embeddings::EmbeddableContent;
pub use embeddings::EmbeddingConfig;
pub use embeddings::EmbeddingManager;
pub use embeddings::EmbeddingStrategy;
pub use embeddings::ModelDetails;
pub use embeddings::OpenAIConfig;
pub use embeddings::OpenAIEmbeddingGenerator;
pub use embeddings::SentenceTransformerGenerator;
pub use embeddings::TransformerModelType;
pub use enhanced_performance_monitoring::Alert;
pub use enhanced_performance_monitoring::AlertManager;
pub use enhanced_performance_monitoring::AlertSeverity;
pub use enhanced_performance_monitoring::AlertThresholds;
pub use enhanced_performance_monitoring::AlertType;
pub use enhanced_performance_monitoring::AnalyticsEngine;
pub use enhanced_performance_monitoring::AnalyticsReport;
pub use enhanced_performance_monitoring::DashboardData;
pub use enhanced_performance_monitoring::EnhancedPerformanceMonitor;
pub use enhanced_performance_monitoring::ExportConfig;
pub use enhanced_performance_monitoring::ExportDestination;
pub use enhanced_performance_monitoring::ExportFormat;
pub use enhanced_performance_monitoring::LatencyDistribution;
pub use enhanced_performance_monitoring::MonitoringConfig as EnhancedMonitoringConfig;
pub use enhanced_performance_monitoring::QualityMetrics as EnhancedQualityMetrics;
pub use enhanced_performance_monitoring::QualityMetricsCollector;
pub use enhanced_performance_monitoring::QualityStatistics;
pub use enhanced_performance_monitoring::QueryInfo;
pub use enhanced_performance_monitoring::QueryMetricsCollector;
pub use enhanced_performance_monitoring::QueryStatistics;
pub use enhanced_performance_monitoring::QueryType;
pub use enhanced_performance_monitoring::Recommendation;
pub use enhanced_performance_monitoring::RecommendationCategory;
pub use enhanced_performance_monitoring::RecommendationPriority;
pub use enhanced_performance_monitoring::SystemMetrics;
pub use enhanced_performance_monitoring::SystemMetricsCollector;
pub use enhanced_performance_monitoring::SystemStatistics;
pub use enhanced_performance_monitoring::TrendData;
pub use enhanced_performance_monitoring::TrendDirection;
pub use faiss_compatibility::CompressionLevel;
pub use faiss_compatibility::ConversionMetrics;
pub use faiss_compatibility::ConversionResult;
pub use faiss_compatibility::FaissCompatibility;
pub use faiss_compatibility::FaissExportConfig;
pub use faiss_compatibility::FaissImportConfig;
pub use faiss_compatibility::FaissIndexMetadata;
pub use faiss_compatibility::FaissIndexType;
pub use faiss_compatibility::FaissMetricType;
pub use faiss_compatibility::FaissParameter;
pub use faiss_compatibility::SimpleVectorIndex;
pub use federated_search::AuthenticationConfig;
pub use federated_search::FederatedSearchConfig;
pub use federated_search::FederatedVectorSearch;
pub use federated_search::FederationEndpoint;
pub use federated_search::PrivacyEngine;
pub use federated_search::PrivacyMode;
pub use federated_search::SchemaCompatibility;
pub use federated_search::TrustManager;
pub use gnn_embeddings::AggregatorType;
pub use gnn_embeddings::GraphSAGE;
pub use gnn_embeddings::GCN;
pub use gpu::create_default_accelerator;
pub use gpu::create_memory_optimized_accelerator;
pub use gpu::create_performance_accelerator;
pub use gpu::is_gpu_available;
pub use gpu::GpuAccelerator;
pub use gpu::GpuBuffer;
pub use gpu::GpuConfig;
pub use gpu::GpuDevice;
pub use gpu::GpuExecutionConfig;
pub use graph_indices::DelaunayGraph;
pub use graph_indices::GraphIndex;
pub use graph_indices::GraphIndexConfig;
pub use graph_indices::GraphType;
pub use graph_indices::NSWGraph;
pub use graph_indices::ONNGGraph;
pub use graph_indices::PANNGGraph;
pub use graph_indices::RNGGraph;
pub use hierarchical_similarity::ConceptHierarchy;
pub use hierarchical_similarity::HierarchicalSimilarity;
pub use hierarchical_similarity::HierarchicalSimilarityConfig;
pub use hierarchical_similarity::HierarchicalSimilarityResult;
pub use hierarchical_similarity::HierarchicalSimilarityStats;
pub use hierarchical_similarity::SimilarityContext;
pub use hierarchical_similarity::SimilarityExplanation;
pub use hierarchical_similarity::SimilarityTaskType;
pub use hnsw::HnswConfig;
pub use hnsw::HnswIndex;
pub use index::AdvancedVectorIndex;
pub use index::DistanceMetric;
pub use index::IndexConfig;
pub use index::IndexType;
pub use index::SearchResult;
pub use ivf::IvfConfig;
pub use ivf::IvfIndex;
pub use ivf::IvfStats;
pub use ivf::QuantizationStrategy;
pub use joint_embedding_spaces::ActivationFunction;
pub use joint_embedding_spaces::AlignmentPair;
pub use joint_embedding_spaces::CLIPAligner;
pub use joint_embedding_spaces::ContrastiveOptimizer;
pub use joint_embedding_spaces::CrossModalAttention;
pub use joint_embedding_spaces::CurriculumLearning;
pub use joint_embedding_spaces::DataAugmentation;
pub use joint_embedding_spaces::DifficultySchedule;
pub use joint_embedding_spaces::DomainAdapter;
pub use joint_embedding_spaces::DomainStatistics;
pub use joint_embedding_spaces::JointEmbeddingConfig;
pub use joint_embedding_spaces::JointEmbeddingSpace;
pub use joint_embedding_spaces::LearningRateSchedule;
pub use joint_embedding_spaces::LinearProjector;
pub use joint_embedding_spaces::PacingFunction;
pub use joint_embedding_spaces::ScheduleType;
pub use joint_embedding_spaces::TemperatureScheduler;
pub use joint_embedding_spaces::TrainingStatistics;
pub use kg_embeddings::ComplEx;
pub use kg_embeddings::KGEmbedding;
pub use kg_embeddings::KGEmbeddingConfig;
pub use kg_embeddings::KGEmbeddingModel as KGModel;
pub use kg_embeddings::KGEmbeddingModelType;
pub use kg_embeddings::RotatE;
pub use kg_embeddings::TransE;
pub use kg_embeddings::Triple;
pub use lsh::LshConfig;
pub use lsh::LshFamily;
pub use lsh::LshIndex;
pub use lsh::LshStats;
pub use mmap_index::MemoryMappedIndexStats;
pub use mmap_index::MemoryMappedVectorIndex;
pub use performance_insights::AlertingSystem;
pub use performance_insights::OptimizationRecommendations;
pub use performance_insights::PerformanceInsightsAnalyzer;
pub use performance_insights::PerformanceTrends as InsightsPerformanceTrends;
pub use performance_insights::QueryComplexity;
pub use performance_insights::QueryStatistics as InsightsQueryStatistics;
pub use performance_insights::ReportFormat;
pub use performance_insights::VectorStatistics;
pub use pq::PQConfig;
pub use pq::PQIndex;
pub use pq::PQStats;
pub use pytorch::ArchitectureType;
pub use pytorch::CompileMode;
pub use pytorch::DeviceManager;
pub use pytorch::PyTorchConfig;
pub use pytorch::PyTorchDevice;
pub use pytorch::PyTorchEmbedder;
pub use pytorch::PyTorchModelManager;
pub use pytorch::PyTorchModelMetadata;
pub use pytorch::PyTorchTokenizer;
pub use quantum_search::QuantumSearchConfig;
pub use quantum_search::QuantumSearchResult;
pub use quantum_search::QuantumSearchStatistics;
pub use quantum_search::QuantumState;
pub use quantum_search::QuantumVectorSearch;
pub use rdf_content_enhancement::ComponentWeights;
pub use rdf_content_enhancement::MultiLanguageProcessor;
pub use rdf_content_enhancement::PathConstraint;
pub use rdf_content_enhancement::PathDirection;
pub use rdf_content_enhancement::PropertyAggregator;
pub use rdf_content_enhancement::PropertyPath;
pub use rdf_content_enhancement::RdfContentConfig;
pub use rdf_content_enhancement::RdfContentProcessor;
pub use rdf_content_enhancement::RdfContext;
pub use rdf_content_enhancement::RdfEntity;
pub use rdf_content_enhancement::RdfValue;
pub use rdf_content_enhancement::TemporalInfo;
pub use rdf_integration::RdfIntegrationStats;
pub use rdf_integration::RdfTermMapping;
pub use rdf_integration::RdfTermMetadata;
pub use rdf_integration::RdfTermType;
pub use rdf_integration::RdfVectorConfig;
pub use rdf_integration::RdfVectorIntegration;
pub use rdf_integration::RdfVectorSearchResult;
pub use rdf_integration::SearchMetadata;
pub use real_time_analytics::AlertSeverity as AnalyticsAlertSeverity;
pub use real_time_analytics::AlertType as AnalyticsAlertType;
pub use real_time_analytics::AnalyticsConfig;
pub use real_time_analytics::AnalyticsEvent;
pub use real_time_analytics::AnalyticsReport as RealTimeAnalyticsReport;
pub use real_time_analytics::DashboardData as RealTimeDashboardData;
pub use real_time_analytics::ExportFormat as AnalyticsExportFormat;
pub use real_time_analytics::MetricsCollector;
pub use real_time_analytics::PerformanceMonitor;
pub use real_time_analytics::QueryMetrics;
pub use real_time_analytics::SystemMetrics as AnalyticsSystemMetrics;
pub use real_time_analytics::VectorAnalyticsEngine as RealTimeVectorAnalyticsEngine;
pub use real_time_embedding_pipeline::AlertThresholds as PipelineAlertThresholds;
pub use real_time_embedding_pipeline::AutoScalingConfig;
pub use real_time_embedding_pipeline::CompressionConfig;
pub use real_time_embedding_pipeline::ContentItem;
pub use real_time_embedding_pipeline::MonitoringConfig as PipelineMonitoringConfig;
pub use real_time_embedding_pipeline::PipelineConfig as RealTimeEmbeddingConfig;
pub use real_time_embedding_pipeline::PipelineStatistics as PipelineStats;
pub use real_time_embedding_pipeline::ProcessingPriority;
pub use real_time_embedding_pipeline::ProcessingResult;
pub use real_time_embedding_pipeline::ProcessingStatus;
pub use real_time_embedding_pipeline::RealTimeEmbeddingPipeline;
pub use real_time_embedding_pipeline::VersioningStrategy;
pub use real_time_updates::BatchProcessor;
pub use real_time_updates::RealTimeConfig;
pub use real_time_updates::RealTimeVectorSearch;
pub use real_time_updates::RealTimeVectorUpdater;
pub use real_time_updates::UpdateBatch;
pub use real_time_updates::UpdateOperation;
pub use real_time_updates::UpdatePriority;
pub use real_time_updates::UpdateStats;
pub use result_fusion::FusedResults;
pub use result_fusion::FusionAlgorithm;
pub use result_fusion::FusionConfig;
pub use result_fusion::FusionQualityMetrics;
pub use result_fusion::FusionStats;
pub use result_fusion::ResultFusionEngine;
pub use result_fusion::ScoreNormalizationStrategy;
pub use result_fusion::SourceResults;
pub use result_fusion::VectorSearchResult;
pub use similarity::AdaptiveSimilarity;
pub use similarity::SemanticSimilarity;
pub use similarity::SimilarityConfig;
pub use similarity::SimilarityMetric;
pub use sparql_integration::CrossLanguageProcessor;
pub use sparql_integration::FederatedQueryResult;
pub use sparql_integration::QueryExecutor;
pub use sparql_integration::SparqlVectorFunctions;
pub use sparql_integration::SparqlVectorService;
pub use sparql_integration::VectorOperation;
pub use sparql_integration::VectorQuery;
pub use sparql_integration::VectorQueryResult;
pub use sparql_integration::VectorServiceArg;
pub use sparql_integration::VectorServiceConfig;
pub use sparql_integration::VectorServiceResult;
pub use sparql_service_endpoint::AuthenticationInfo;
pub use sparql_service_endpoint::AuthenticationType;
pub use sparql_service_endpoint::CustomFunctionRegistry;
pub use sparql_service_endpoint::FederatedOperation;
pub use sparql_service_endpoint::FederatedSearchResult;
pub use sparql_service_endpoint::FederatedServiceEndpoint;
pub use sparql_service_endpoint::FederatedVectorQuery;
pub use sparql_service_endpoint::FunctionMetadata;
pub use sparql_service_endpoint::LoadBalancer;
pub use sparql_service_endpoint::ParameterInfo;
pub use sparql_service_endpoint::ParameterType as ServiceParameterType;
pub use sparql_service_endpoint::PartialSearchResult;
pub use sparql_service_endpoint::QueryScope;
pub use sparql_service_endpoint::ReturnType;
pub use sparql_service_endpoint::ServiceCapability;
pub use sparql_service_endpoint::ServiceEndpointManager;
pub use sparql_service_endpoint::ServiceType;
pub use sparse::COOMatrix;
pub use sparse::CSRMatrix;
pub use sparse::SparseVector;
pub use storage_optimizations::CompressionType;
pub use storage_optimizations::MmapVectorFile;
pub use storage_optimizations::StorageConfig;
pub use storage_optimizations::StorageUtils;
pub use storage_optimizations::VectorBlock;
pub use storage_optimizations::VectorFileHeader;
pub use storage_optimizations::VectorReader;
pub use storage_optimizations::VectorWriter;
pub use structured_vectors::ConfidenceScoredVector;
pub use structured_vectors::HierarchicalVector;
pub use structured_vectors::NamedDimensionVector;
pub use structured_vectors::TemporalVector;
pub use structured_vectors::WeightedDimensionVector;
pub use tensorflow::OptimizationLevel;
pub use tensorflow::PreprocessingPipeline as TensorFlowPreprocessingPipeline;
pub use tensorflow::ServerConfig;
pub use tensorflow::SessionConfig;
pub use tensorflow::TensorDataType;
pub use tensorflow::TensorFlowConfig;
pub use tensorflow::TensorFlowDevice;
pub use tensorflow::TensorFlowEmbedder;
pub use tensorflow::TensorFlowModelInfo;
pub use tensorflow::TensorFlowModelServer;
pub use tensorflow::TensorSpec;
pub use tree_indices::BallTree;
pub use tree_indices::CoverTree;
pub use tree_indices::KdTree;
pub use tree_indices::RandomProjectionTree;
pub use tree_indices::TreeIndex;
pub use tree_indices::TreeIndexConfig;
pub use tree_indices::TreeType;
pub use tree_indices::VpTree;
pub use word2vec::AggregationMethod;
pub use word2vec::OovStrategy;
pub use word2vec::Word2VecConfig;
pub use word2vec::Word2VecEmbeddingGenerator;
pub use word2vec::Word2VecFormat;
Modules§
- adaptive_
compression - Adaptive compression techniques for vector data
- adaptive_
intelligent_ caching - Adaptive Intelligent Caching System for OxiRS Vector Search
- advanced_
analytics - Advanced Analytics and Insights for Vector Search
- advanced_
benchmarking - Advanced Benchmarking Framework for Vector Search Systems
- advanced_
caching - Advanced multi-level caching system for vector embeddings and search results
- advanced_
metrics - Advanced distance and similarity metrics for vectors.
- advanced_
result_ merging - Advanced Result Merging and Score Combination System
- automl_
optimization - AutoML for Embedding Optimization - Version 1.2 Feature
- benchmarking
- Comprehensive benchmarking framework for vector search systems
- cache_
friendly_ index - Cache-friendly memory layouts for vector index
- clustering
- Advanced clustering algorithms for vector similarity and resource grouping
- compression
- cross_
language_ alignment - Cross-Language Vector Alignment - Version 1.2 Feature
- cross_
modal_ embeddings - Cross-modal embeddings for multi-modal vector search
- distributed_
vector_ search - Distributed Vector Search - Version 1.1 Roadmap Feature
- embedding_
pipeline - embeddings
- Embedding generation and management for RDF resources and text content
- enhanced_
performance_ monitoring - Enhanced Performance Monitoring and Analytics System
- faiss_
compatibility - FAISS Compatibility Layer
- faiss_
gpu_ integration - FAISS GPU Integration for Massive Performance Acceleration
- faiss_
integration - FAISS Integration for Advanced Vector Search
- faiss_
migration_ tools - FAISS Migration Tools for Seamless Data Transfer
- faiss_
native_ integration - Native FAISS Integration with Real Bindings
- federated_
search - Federated Vector Search - Advanced Multi-Organization Search
- gnn_
embeddings - Graph Neural Network (GNN) embeddings for knowledge graphs
- gpu
- GPU acceleration for vector operations using CUDA
- graph_
aware_ search - Graph-aware vector search for named graph filtering and contextual search
- graph_
indices - Graph-based indices for efficient nearest neighbor search
- hierarchical_
similarity - Hierarchical Similarity Computation for Knowledge Graphs
- hnsw
- HNSW (Hierarchical Navigable Small World) implementation
- huggingface
- HuggingFace Transformers integration for embedding generation
- index
- Advanced vector indexing with HNSW and other efficient algorithms
- ivf
- Inverted File (IVF) index implementation for approximate nearest neighbor search
- joint_
embedding_ spaces - Joint Embedding Spaces for Cross-Modal Vector Search
- kg_
embeddings - Knowledge Graph Embeddings for RDF data
- lsh
- Locality Sensitive Hashing (LSH) for approximate nearest neighbor search
- mmap_
advanced - Advanced memory mapping features for large datasets
- mmap_
index - Memory-mapped vector index for efficient disk-based storage
- opq
- Optimized Product Quantization (OPQ) implementation
- oxirs_
arq_ integration - OxiRS ARQ Integration for Vector-Aware Query Optimization
- performance_
insights - Advanced Performance Insights and Monitoring for OxiRS Vector Search
- pq
- Product Quantization (PQ) for memory-efficient vector compression and search
- pytorch
- PyTorch integration for embedding generation and neural network models
- quantum_
search - Quantum-inspired algorithms for vector search optimization.
- random_
utils - Random utility functions
- rdf_
content_ enhancement - Enhanced RDF Content Processing with Entity and Relationship Embeddings
- rdf_
integration - RDF term support integration with oxirs-core
- real_
time_ analytics - Real-time analytics and monitoring for vector search operations
- real_
time_ embedding_ pipeline - Real-time embedding pipeline module
- real_
time_ updates - Real-time Vector Index Updates
- result_
fusion - Result fusion and score combination algorithms for merging vector search results
- similarity
- Advanced similarity algorithms and semantic matching for vectors
- sparql_
integration - SPARQL integration for vector search and hybrid symbolic-vector queries
- sparql_
service_ endpoint - Advanced SPARQL Service Endpoint for Vector Operations
- sparse
- storage_
optimizations - Storage optimizations for vector indices
- store_
integration - Advanced Store Integration for Vector Search
- structured_
vectors - Structured vector types for enhanced vector representations.
- tensorflow
- TensorFlow integration for embedding generation and model serving
- tree_
indices - Tree-based indices for efficient nearest neighbor search
- utils
- Utility functions for vector operations
- word2vec
- Word2Vec embedding integration for text content
Structs§
- Document
Batch Processor - Document batch processing utilities
- Memory
Vector Index - In-memory vector index implementation
- Search
Options - Advanced search options
- Vector
- Multi-precision vector with enhanced functionality
- Vector
Operation Result - Vector operation results with enhanced metadata
- Vector
Store - Enhanced vector store with embedding management and advanced features
- Vector
Store Config - Configuration for vector store
Enums§
- Search
Query - Search query types
- Search
Type - Search operation types
- Vector
Data - Vector data storage supporting multiple precisions
- Vector
Error - Error types specific to vector operations
- Vector
Precision - Precision types for vectors
Traits§
- Vector
Index - Vector index trait for efficient similarity search
- Vector
Store Trait - Trait for vector store implementations
Type Aliases§
- Batch
Search Result - Batch search result type
- Vector
Id - Vector identifier type