#[repr(C, align(8))]pub struct AtomicPtr<T> { /* private fields */ }Expand description
A raw pointer type which can be safely shared between threads.
This type has the same in-memory representation as a *mut T.
Note: This type is only available on platforms that support atomic loads and stores of pointers. Its size depends on the target pointer’s size.
Implementations
sourceimpl<T> AtomicPtr<T>
impl<T> AtomicPtr<T>
const: 1.24.0 · sourcepub const fn new(p: *mut T) -> AtomicPtr<T>
pub const fn new(p: *mut T) -> AtomicPtr<T>
Creates a new AtomicPtr.
Examples
use std::sync::atomic::AtomicPtr;
let ptr = &mut 5;
let atomic_ptr = AtomicPtr::new(ptr);1.15.0 · sourcepub fn get_mut(&mut self) -> &mut *mut T
pub fn get_mut(&mut self) -> &mut *mut T
Returns a mutable reference to the underlying pointer.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let mut data = 10;
let mut atomic_ptr = AtomicPtr::new(&mut data);
let mut other_data = 5;
*atomic_ptr.get_mut() = &mut other_data;
assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);sourcepub fn from_mut(v: &mut *mut T) -> &mut AtomicPtr<T>
🔬 This is a nightly-only experimental API. (atomic_from_mut)
pub fn from_mut(v: &mut *mut T) -> &mut AtomicPtr<T>
atomic_from_mut)Get atomic access to a pointer.
Examples
#![feature(atomic_from_mut)]
use std::sync::atomic::{AtomicPtr, Ordering};
let mut data = 123;
let mut some_ptr = &mut data as *mut i32;
let a = AtomicPtr::from_mut(&mut some_ptr);
let mut other_data = 456;
a.store(&mut other_data, Ordering::Relaxed);
assert_eq!(unsafe { *some_ptr }, 456);sourcepub fn get_mut_slice(this: &mut [AtomicPtr<T>]) -> &mut [*mut T]
🔬 This is a nightly-only experimental API. (atomic_from_mut)
pub fn get_mut_slice(this: &mut [AtomicPtr<T>]) -> &mut [*mut T]
atomic_from_mut)Get non-atomic access to a &mut [AtomicPtr] slice.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
Examples
#![feature(atomic_from_mut, inline_const)]
use std::ptr::null_mut;
use std::sync::atomic::{AtomicPtr, Ordering};
let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
assert_eq!(view, [null_mut::<String>(); 10]);
view
.iter_mut()
.enumerate()
.for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
std::thread::scope(|s| {
for ptr in &some_ptrs {
s.spawn(move || {
let ptr = ptr.load(Ordering::Relaxed);
assert!(!ptr.is_null());
let name = unsafe { Box::from_raw(ptr) };
println!("Hello, {name}!");
});
}
});sourcepub fn from_mut_slice(v: &mut [*mut T]) -> &mut [AtomicPtr<T>]
🔬 This is a nightly-only experimental API. (atomic_from_mut)
pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [AtomicPtr<T>]
atomic_from_mut)Get atomic access to a slice of pointers.
Examples
#![feature(atomic_from_mut)]
use std::ptr::null_mut;
use std::sync::atomic::{AtomicPtr, Ordering};
let mut some_ptrs = [null_mut::<String>(); 10];
let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
std::thread::scope(|s| {
for i in 0..a.len() {
s.spawn(move || {
let name = Box::new(format!("thread{i}"));
a[i].store(Box::into_raw(name), Ordering::Relaxed);
});
}
});
for p in some_ptrs {
assert!(!p.is_null());
let name = unsafe { Box::from_raw(p) };
println!("Hello, {name}!");
}1.15.0 (const: unstable) · sourcepub fn into_inner(self) -> *mut T
pub fn into_inner(self) -> *mut T
Consumes the atomic and returns the contained value.
This is safe because passing self by value guarantees that no other threads are
concurrently accessing the atomic data.
Examples
use std::sync::atomic::AtomicPtr;
let mut data = 5;
let atomic_ptr = AtomicPtr::new(&mut data);
assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);sourcepub fn load(&self, order: Ordering) -> *mut T
pub fn load(&self, order: Ordering) -> *mut T
Loads a value from the pointer.
load takes an Ordering argument which describes the memory ordering
of this operation. Possible values are SeqCst, Acquire and Relaxed.
Panics
Panics if order is Release or AcqRel.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let ptr = &mut 5;
let some_ptr = AtomicPtr::new(ptr);
let value = some_ptr.load(Ordering::Relaxed);sourcepub fn store(&self, ptr: *mut T, order: Ordering)
pub fn store(&self, ptr: *mut T, order: Ordering)
Stores a value into the pointer.
store takes an Ordering argument which describes the memory ordering
of this operation. Possible values are SeqCst, Release and Relaxed.
Panics
Panics if order is Acquire or AcqRel.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let ptr = &mut 5;
let some_ptr = AtomicPtr::new(ptr);
let other_ptr = &mut 10;
some_ptr.store(other_ptr, Ordering::Relaxed);sourcepub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T
pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T
Stores a value into the pointer, returning the previous value.
swap takes an Ordering argument which describes the memory ordering
of this operation. All ordering modes are possible. Note that using
Acquire makes the store part of this operation Relaxed, and
using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on pointers.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let ptr = &mut 5;
let some_ptr = AtomicPtr::new(ptr);
let other_ptr = &mut 10;
let value = some_ptr.swap(other_ptr, Ordering::Relaxed);sourcepub fn compare_and_swap(
&self,
current: *mut T,
new: *mut T,
order: Ordering
) -> *mut T
👎 Deprecated since 1.50.0: Use compare_exchange or compare_exchange_weak instead
pub fn compare_and_swap(
&self,
current: *mut T,
new: *mut T,
order: Ordering
) -> *mut T
Use compare_exchange or compare_exchange_weak instead
Stores a value into the pointer if the current value is the same as the current value.
The return value is always the previous value. If it is equal to current, then the value
was updated.
compare_and_swap also takes an Ordering argument which describes the memory
ordering of this operation. Notice that even when using AcqRel, the operation
might fail and hence just perform an Acquire load, but not have Release semantics.
Using Acquire makes the store part of this operation Relaxed if it
happens, and using Release makes the load part Relaxed.
Note: This method is only available on platforms that support atomic operations on pointers.
Migrating to compare_exchange and compare_exchange_weak
compare_and_swap is equivalent to compare_exchange with the following mapping for
memory orderings:
| Original | Success | Failure |
|---|---|---|
| Relaxed | Relaxed | Relaxed |
| Acquire | Acquire | Acquire |
| Release | Release | Relaxed |
| AcqRel | AcqRel | Acquire |
| SeqCst | SeqCst | SeqCst |
compare_exchange_weak is allowed to fail spuriously even when the comparison succeeds,
which allows the compiler to generate better assembly code when the compare and swap
is used in a loop.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let ptr = &mut 5;
let some_ptr = AtomicPtr::new(ptr);
let other_ptr = &mut 10;
let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);1.10.0 · sourcepub fn compare_exchange(
&self,
current: *mut T,
new: *mut T,
success: Ordering,
failure: Ordering
) -> Result<*mut T, *mut T>
pub fn compare_exchange(
&self,
current: *mut T,
new: *mut T,
success: Ordering,
failure: Ordering
) -> Result<*mut T, *mut T>
Stores a value into the pointer if the current value is the same as the current value.
The return value is a result indicating whether the new value was written and containing
the previous value. On success this value is guaranteed to be equal to current.
compare_exchange takes two Ordering arguments to describe the memory
ordering of this operation. success describes the required ordering for the
read-modify-write operation that takes place if the comparison with current succeeds.
failure describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the successful load
Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed
and must be equivalent to or weaker than the success ordering.
Note: This method is only available on platforms that support atomic operations on pointers.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let ptr = &mut 5;
let some_ptr = AtomicPtr::new(ptr);
let other_ptr = &mut 10;
let value = some_ptr.compare_exchange(ptr, other_ptr,
Ordering::SeqCst, Ordering::Relaxed);1.10.0 · sourcepub fn compare_exchange_weak(
&self,
current: *mut T,
new: *mut T,
success: Ordering,
failure: Ordering
) -> Result<*mut T, *mut T>
pub fn compare_exchange_weak(
&self,
current: *mut T,
new: *mut T,
success: Ordering,
failure: Ordering
) -> Result<*mut T, *mut T>
Stores a value into the pointer if the current value is the same as the current value.
Unlike AtomicPtr::compare_exchange, this function is allowed to spuriously fail even when the
comparison succeeds, which can result in more efficient code on some platforms. The
return value is a result indicating whether the new value was written and containing the
previous value.
compare_exchange_weak takes two Ordering arguments to describe the memory
ordering of this operation. success describes the required ordering for the
read-modify-write operation that takes place if the comparison with current succeeds.
failure describes the required ordering for the load operation that takes place when
the comparison fails. Using Acquire as success ordering makes the store part
of this operation Relaxed, and using Release makes the successful load
Relaxed. The failure ordering can only be SeqCst, Acquire or Relaxed
and must be equivalent to or weaker than the success ordering.
Note: This method is only available on platforms that support atomic operations on pointers.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let some_ptr = AtomicPtr::new(&mut 5);
let new = &mut 10;
let mut old = some_ptr.load(Ordering::Relaxed);
loop {
match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
Ok(_) => break,
Err(x) => old = x,
}
}1.53.0 · sourcepub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F
) -> Result<*mut T, *mut T> where
F: FnMut(*mut T) -> Option<*mut T>,
pub fn fetch_update<F>(
&self,
set_order: Ordering,
fetch_order: Ordering,
f: F
) -> Result<*mut T, *mut T> where
F: FnMut(*mut T) -> Option<*mut T>,
Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result of Ok(previous_value) if the function
returned Some(_), else Err(previous_value).
Note: This may call the function multiple times if the value has been
changed from other threads in the meantime, as long as the function
returns Some(_), but the function will have been applied only once to
the stored value.
fetch_update takes two Ordering arguments to describe the memory
ordering of this operation. The first describes the required ordering for
when the operation finally succeeds while the second describes the
required ordering for loads. These correspond to the success and failure
orderings of AtomicPtr::compare_exchange respectively.
Using Acquire as success ordering makes the store part of this
operation Relaxed, and using Release makes the final successful
load Relaxed. The (failed) load ordering can only be SeqCst,
Acquire or Relaxed and must be equivalent to or weaker than the
success ordering.
Note: This method is only available on platforms that support atomic operations on pointers.
Examples
use std::sync::atomic::{AtomicPtr, Ordering};
let ptr: *mut _ = &mut 5;
let some_ptr = AtomicPtr::new(ptr);
let new: *mut _ = &mut 10;
assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
if x == ptr {
Some(new)
} else {
None
}
});
assert_eq!(result, Ok(ptr));
assert_eq!(some_ptr.load(Ordering::SeqCst), new);Trait Implementations
impl<T> AtomicConsume for AtomicPtr<T>
impl<T> AtomicConsume for AtomicPtr<T>
fn load_consume(&self) -> <AtomicPtr<T> as AtomicConsume>::Val
fn load_consume(&self) -> <AtomicPtr<T> as AtomicConsume>::Val
Loads a value from the atomic using a “consume” memory ordering. Read more
sourceimpl<T> ConstDefault for AtomicPtr<T>
impl<T> ConstDefault for AtomicPtr<T>
impl<T> RefUnwindSafe for AtomicPtr<T>
impl<T> Send for AtomicPtr<T>
impl<T> Sync for AtomicPtr<T>
Auto Trait Implementations
impl<T> Unpin for AtomicPtr<T>
impl<T> UnwindSafe for AtomicPtr<T> where
T: RefUnwindSafe,
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T> Downcast for T where
T: Any,
impl<T> Downcast for T where
T: Any,
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<W, Global>impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<W, Global>impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;
W: Write + ?Sized, impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<F, A> Future for Box<F, A> where
F: Future + Unpin + ?Sized,
A: Allocator + 'static, type Output = <F as Future>::Output;impl<I, A> Iterator for Box<I, A> where
I: Iterator + ?Sized,
A: Allocator, type Item = <I as Iterator>::Item;
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more
fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s. Read more
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s. Read more
impl<A> DynCastExt for A
impl<A> DynCastExt for A
fn dyn_cast<T>(
self
) -> Result<<A as DynCastExtHelper<T>>::Target, <A as DynCastExtHelper<T>>::Source> where
A: DynCastExtHelper<T>,
T: ?Sized,
fn dyn_cast<T>(
self
) -> Result<<A as DynCastExtHelper<T>>::Target, <A as DynCastExtHelper<T>>::Source> where
A: DynCastExtHelper<T>,
T: ?Sized,
Use this to cast from one trait object type to another. Read more
fn dyn_upcast<T>(self) -> <A as DynCastExtAdvHelper<T, T>>::Target where
A: DynCastExtAdvHelper<T, T, Source = <A as DynCastExtAdvHelper<T, T>>::Target>,
T: ?Sized,
fn dyn_upcast<T>(self) -> <A as DynCastExtAdvHelper<T, T>>::Target where
A: DynCastExtAdvHelper<T, T, Source = <A as DynCastExtAdvHelper<T, T>>::Target>,
T: ?Sized,
Use this to upcast a trait to one of its supertraits. Read more
fn dyn_cast_adv<F, T>(
self
) -> Result<<A as DynCastExtAdvHelper<F, T>>::Target, <A as DynCastExtAdvHelper<F, T>>::Source> where
A: DynCastExtAdvHelper<F, T>,
F: ?Sized,
T: ?Sized,
fn dyn_cast_adv<F, T>(
self
) -> Result<<A as DynCastExtAdvHelper<F, T>>::Target, <A as DynCastExtAdvHelper<F, T>>::Source> where
A: DynCastExtAdvHelper<F, T>,
F: ?Sized,
T: ?Sized,
fn dyn_cast_with_config<C>(
self
) -> Result<<A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Target, <A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Source> where
C: DynCastConfig,
A: DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>,
fn dyn_cast_with_config<C>(
self
) -> Result<<A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Target, <A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Source> where
C: DynCastConfig,
A: DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>,
Use this to cast from one trait object type to another. With this method the type parameter is a config type that uniquely specifies which cast should be preformed. Read more
sourceimpl<T> Instrument for T
impl<T> Instrument for T
sourcefn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
fn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
T: Future, type Output = <T as Future>::Output;
sourcefn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
fn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
T: Future, type Output = <T as Future>::Output;
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
fn vzip(self) -> V
sourceimpl<T> WithSubscriber for T
impl<T> WithSubscriber for T
sourcefn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T> where
T: Future, type Output = <T as Future>::Output; where
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T> where
T: Future, type Output = <T as Future>::Output; where
S: Into<Dispatch>,
T: Future, type Output = <T as Future>::Output;
Attaches the provided Subscriber to this type, returning a
WithDispatch wrapper. Read more
sourcefn with_current_subscriber(self) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T> where
T: Future, type Output = <T as Future>::Output;
fn with_current_subscriber(self) -> WithDispatch<Self>ⓘNotable traits for WithDispatch<T>impl<T> Future for WithDispatch<T> where
T: Future, type Output = <T as Future>::Output;
T: Future, type Output = <T as Future>::Output;
Attaches the current default Subscriber to this type, returning a
WithDispatch wrapper. Read more