BackTracking

Struct BackTracking 

Source
pub struct BackTracking { /* private fields */ }

Implementations§

Source§

impl BackTracking

Source

pub fn new(c1: Floating, beta: Floating) -> Self

Examples found in repository?
examples/quadratic_with_plots.rs (line 20)
6fn main() {
7    // Setting up log verbosity and _.
8    std::env::set_var("RUST_LOG", "debug");
9    let _ = Tracer::default().with_normal_stdout_layer().build();
10    // Setting up the oracle
11    let matrix = DMatrix::from_vec(2, 2, vec![100., 0., 0., 100.]);
12    let mut f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
13        let f = x.dot(&(&matrix * x));
14        let g = 2. * &matrix * x;
15        FuncEvalMultivariate::new(f, g)
16    };
17    // Setting up the line search
18    let armijo_factr = 1e-4;
19    let beta = 0.5; // (beta in (0, 1), ntice that beta = 0.5 corresponds to bisection)
20    let mut ls = BackTracking::new(armijo_factr, beta);
21    // Setting up the main solver, with its parameters and the initial guess
22    let tol = 1e-6;
23    let x0 = DVector::from_vec(vec![10., 10.]);
24    let mut solver = GradientDescent::new(tol, x0);
25    // We define a callback to store iterates and function evaluations
26    let mut iterates = vec![];
27    let mut solver_callback = |s: &GradientDescent| {
28        iterates.push(s.x().clone());
29    };
30    // Running the solver
31    let max_iter_solver = 100;
32    let max_iter_line_search = 10;
33
34    solver
35        .minimize(
36            &mut ls,
37            f_and_g,
38            max_iter_solver,
39            max_iter_line_search,
40            Some(&mut solver_callback),
41        )
42        .unwrap();
43    // Printing the result
44    let x = solver.x();
45    let eval = f_and_g(x);
46    println!("x: {:?}", x);
47    println!("f(x): {}", eval.f());
48    println!("g(x): {:?}", eval.g());
49
50    // Plotting the iterates
51    let n = 50;
52    let start = -5.0;
53    let end = 5.0;
54    let plotter = Plotter3d::new(start, end, start, end, n)
55        .append_plot(&mut f_and_g, "Objective function", 0.5)
56        .append_scatter_points(&mut f_and_g, &iterates, "Iterates")
57        .set_layout_size(1600, 1000);
58    plotter.build("quadratic.html");
59}
More examples
Hide additional examples
examples/gradient_descent_example.rs (line 31)
6fn main() {
7    // Setting up logging
8    std::env::set_var("RUST_LOG", "info");
9    let _ = Tracer::default().with_normal_stdout_layer().build();
10
11    // Convex quadratic function: f(x,y) = x^2 + 2y^2
12    // Global minimum at (0, 0) with f(0,0) = 0
13    let f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
14        let x1 = x[0];
15        let x2 = x[1];
16
17        // Function value
18        let f = x1.powi(2) + 2.0 * x2.powi(2);
19
20        // Gradient
21        let g1 = 2.0 * x1;
22        let g2 = 4.0 * x2;
23        let g = DVector::from_vec(vec![g1, g2]);
24
25        FuncEvalMultivariate::new(f, g)
26    };
27
28    // Setting up the line search (backtracking with Armijo condition)
29    let armijo_factor = 1e-4;
30    let beta = 0.5;
31    let mut ls = BackTracking::new(armijo_factor, beta);
32
33    // Setting up the solver
34    let tol = 1e-6;
35    let x0 = DVector::from_vec(vec![2.0, 1.0]); // Starting point
36    let mut solver = GradientDescent::new(tol, x0.clone());
37
38    // Running the solver
39    let max_iter_solver = 100;
40    let max_iter_line_search = 20;
41
42    println!("=== Gradient Descent Example ===");
43    println!("Objective: f(x,y) = x^2 + 2y^2 (convex quadratic)");
44    println!("Global minimum: (0, 0) with f(0,0) = 0");
45    println!("Starting point: {:?}", x0);
46    println!("Tolerance: {}", tol);
47    println!();
48
49    match solver.minimize(
50        &mut ls,
51        f_and_g,
52        max_iter_solver,
53        max_iter_line_search,
54        None,
55    ) {
56        Ok(()) => {
57            let x = solver.x();
58            let eval = f_and_g(x);
59            println!("✅ Optimization completed successfully!");
60            println!("Final iterate: {:?}", x);
61            println!("Function value: {:.6}", eval.f());
62            println!("Gradient norm: {:.6}", eval.g().norm());
63            println!("Iterations: {}", solver.k());
64
65            // Check if we're close to the known minimum
66            let true_min = DVector::from_vec(vec![0.0, 0.0]);
67            let distance_to_min = (x - true_min).norm();
68            println!("Distance to true minimum: {:.6}", distance_to_min);
69            println!("Expected function value: 0.0");
70        }
71        Err(e) => {
72            println!("❌ Optimization failed: {:?}", e);
73        }
74    }
75}
examples/coordinate_descent_example.rs (line 33)
6fn main() {
7    // Setting up logging
8    std::env::set_var("RUST_LOG", "info");
9    let _ = Tracer::default().with_normal_stdout_layer().build();
10
11    // Separable convex function: f(x,y,z) = x^2 + 2y^2 + 3z^2
12    // This function is separable and has a minimum at (0, 0, 0)
13    let f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
14        let x1 = x[0];
15        let x2 = x[1];
16        let x3 = x[2];
17
18        // Function value
19        let f = x1.powi(2) + 2.0 * x2.powi(2) + 3.0 * x3.powi(2);
20
21        // Gradient
22        let g1 = 2.0 * x1;
23        let g2 = 4.0 * x2;
24        let g3 = 6.0 * x3;
25        let g = DVector::from_vec(vec![g1, g2, g3]);
26
27        FuncEvalMultivariate::new(f, g)
28    };
29
30    // Setting up the line search (backtracking)
31    let armijo_factor = 1e-4;
32    let beta = 0.5;
33    let mut ls = BackTracking::new(armijo_factor, beta);
34
35    // Setting up the solver
36    let tol = 1e-6;
37    let x0 = DVector::from_vec(vec![1.0, 1.0, 1.0]); // Starting point
38    let mut solver = CoordinateDescent::new(tol, x0.clone());
39
40    // Running the solver
41    let max_iter_solver = 100;
42    let max_iter_line_search = 10;
43
44    println!("=== Coordinate Descent Example ===");
45    println!("Objective: f(x,y,z) = x^2 + 2y^2 + 3z^2 (separable convex)");
46    println!("Global minimum: (0, 0, 0) with f(0,0,0) = 0");
47    println!("Starting point: {:?}", x0);
48    println!("Tolerance: {}", tol);
49    println!();
50
51    match solver.minimize(
52        &mut ls,
53        f_and_g,
54        max_iter_solver,
55        max_iter_line_search,
56        None,
57    ) {
58        Ok(()) => {
59            let x = solver.x();
60            let eval = f_and_g(x);
61            println!("✅ Optimization completed successfully!");
62            println!("Final iterate: {:?}", x);
63            println!("Function value: {:.6}", eval.f());
64            println!("Gradient norm: {:.6}", eval.g().norm());
65            println!("Iterations: {}", solver.k());
66
67            // Check if we're close to the known minimum
68            let true_min = DVector::from_vec(vec![0.0, 0.0, 0.0]);
69            let distance_to_min = (x - true_min).norm();
70            println!("Distance to true minimum: {:.6}", distance_to_min);
71            println!("Expected function value: 0.0");
72
73            // Verify optimality conditions
74            let gradient_at_solution = eval.g();
75            println!("Gradient at solution: {:?}", gradient_at_solution);
76            println!(
77                "Gradient norm should be close to 0: {}",
78                gradient_at_solution.norm()
79            );
80        }
81        Err(e) => {
82            println!("❌ Optimization failed: {:?}", e);
83        }
84    }
85}
examples/pnorm_descent_example.rs (line 31)
6fn main() {
7    // Setting up logging
8    std::env::set_var("RUST_LOG", "info");
9    let _ = Tracer::default().with_normal_stdout_layer().build();
10
11    // Convex quadratic function: f(x,y) = x^2 + 4y^2
12    // This function has a minimum at (0, 0)
13    let f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
14        let x1 = x[0];
15        let x2 = x[1];
16
17        // Function value
18        let f = x1.powi(2) + 4.0 * x2.powi(2);
19
20        // Gradient
21        let g1 = 2.0 * x1;
22        let g2 = 8.0 * x2;
23        let g = DVector::from_vec(vec![g1, g2]);
24
25        FuncEvalMultivariate::new(f, g)
26    };
27
28    // Setting up the line search (backtracking)
29    let armijo_factor = 1e-4;
30    let beta = 0.5;
31    let mut ls = BackTracking::new(armijo_factor, beta);
32
33    // Setting up the solver with a diagonal preconditioner
34    let tol = 1e-6;
35    let x0 = DVector::from_vec(vec![2.0, 1.0]); // Starting point
36
37    // Create a diagonal preconditioner matrix P = diag(1, 1/4) to improve conditioning
38    let inverse_p = DMatrix::from_vec(2, 2, vec![1.0, 0.0, 0.0, 0.25]);
39    let mut solver = PnormDescent::new(tol, x0.clone(), inverse_p);
40
41    // Running the solver
42    let max_iter_solver = 50;
43    let max_iter_line_search = 20;
44
45    println!("=== P-Norm Descent Example ===");
46    println!("Objective: f(x,y) = x^2 + 4y^2 (convex quadratic)");
47    println!("Global minimum: (0, 0) with f(0,0) = 0");
48    println!("Preconditioner: P = diag(1, 1/4)");
49    println!("Starting point: {:?}", x0);
50    println!("Tolerance: {}", tol);
51    println!();
52
53    match solver.minimize(
54        &mut ls,
55        f_and_g,
56        max_iter_solver,
57        max_iter_line_search,
58        None,
59    ) {
60        Ok(()) => {
61            let x = solver.x();
62            let eval = f_and_g(x);
63            println!("✅ Optimization completed successfully!");
64            println!("Final iterate: {:?}", x);
65            println!("Function value: {:.6}", eval.f());
66            println!("Gradient norm: {:.6}", eval.g().norm());
67            println!("Iterations: {}", solver.k());
68
69            // Check if we're close to the known minimum
70            let true_min = DVector::from_vec(vec![0.0, 0.0]);
71            let distance_to_min = (x - true_min).norm();
72            println!("Distance to true minimum: {:.6}", distance_to_min);
73            println!("Expected function value: 0.0");
74
75            // Verify optimality conditions
76            let gradient_at_solution = eval.g();
77            println!("Gradient at solution: {:?}", gradient_at_solution);
78            println!(
79                "Gradient norm should be close to 0: {}",
80                gradient_at_solution.norm()
81            );
82
83            // Show some properties of P-norm descent
84            println!("P-norm descent properties:");
85            println!("  - Uses a preconditioner P to improve convergence");
86            println!("  - Equivalent to steepest descent with P = identity");
87            println!("  - Good preconditioner can significantly improve convergence rate");
88        }
89        Err(e) => {
90            println!("❌ Optimization failed: {:?}", e);
91        }
92    }
93}
examples/spg_example.rs (line 32)
6fn main() {
7    // Setting up logging
8    std::env::set_var("RUST_LOG", "info");
9    let _ = Tracer::default().with_normal_stdout_layer().build();
10
11    // Convex function: f(x,y) = x^2 + y^2 + exp(x^2 + y^2)
12    // This function is convex and has a minimum at (0, 0)
13    let f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
14        let x1 = x[0];
15        let x2 = x[1];
16
17        // Function value
18        let f = x1.powi(2) + x2.powi(2) + (x1.powi(2) + x2.powi(2)).exp();
19
20        // Gradient
21        let exp_term = (x1.powi(2) + x2.powi(2)).exp();
22        let g1 = 2.0 * x1 * (1.0 + exp_term);
23        let g2 = 2.0 * x2 * (1.0 + exp_term);
24        let g = DVector::from_vec(vec![g1, g2]);
25
26        FuncEvalMultivariate::new(f, g)
27    };
28
29    // Setting up the line search (backtracking)
30    let armijo_factor = 1e-4;
31    let beta = 0.5;
32    let mut ls = BackTracking::new(armijo_factor, beta);
33
34    // Setting up the solver with box constraints
35    let tol = 1e-6;
36    let x0 = DVector::from_vec(vec![0.5, 0.5]); // Starting point
37    let lower_bound = DVector::from_vec(vec![-1.0, -1.0]); // -1 <= x <= 1, -1 <= y <= 1
38    let upper_bound = DVector::from_vec(vec![1.0, 1.0]);
39
40    // Create a mutable oracle for SPG initialization
41    let mut oracle_for_init = f_and_g;
42    let mut solver = SpectralProjectedGradient::new(
43        tol,
44        x0.clone(),
45        &mut oracle_for_init,
46        lower_bound.clone(),
47        upper_bound.clone(),
48    );
49
50    // Running the solver
51    let max_iter_solver = 100;
52    let max_iter_line_search = 20;
53
54    println!("=== Spectral Projected Gradient (SPG) Example ===");
55    println!("Objective: f(x,y) = x^2 + y^2 + exp(x^2 + y^2) (convex)");
56    println!("Global minimum: (0, 0) with f(0,0) = 1");
57    println!("Constraints: -1 <= x <= 1, -1 <= y <= 1");
58    println!("Starting point: {:?}", x0);
59    println!("Lower bounds: {:?}", lower_bound);
60    println!("Upper bounds: {:?}", upper_bound);
61    println!("Tolerance: {}", tol);
62    println!();
63
64    match solver.minimize(
65        &mut ls,
66        f_and_g,
67        max_iter_solver,
68        max_iter_line_search,
69        None,
70    ) {
71        Ok(()) => {
72            let x = solver.x();
73            let eval = f_and_g(x);
74            println!("✅ Optimization completed successfully!");
75            println!("Final iterate: {:?}", x);
76            println!("Function value: {:.6}", eval.f());
77            println!("Gradient norm: {:.6}", eval.g().norm());
78            println!("Iterations: {}", solver.k());
79
80            // Check constraint satisfaction
81            println!("Constraint satisfaction:");
82            for i in 0..x.len() {
83                println!(
84                    "  x[{}] = {:.6} (bounds: [{:.1}, {:.1}])",
85                    i, x[i], lower_bound[i], upper_bound[i]
86                );
87            }
88
89            // Check if we're close to the known minimum
90            let true_min = DVector::from_vec(vec![0.0, 0.0]);
91            let distance_to_min = (x - true_min).norm();
92            println!("Distance to true minimum: {:.6}", distance_to_min);
93            println!("Expected function value: 1.0");
94
95            // Show some properties of SPG
96            println!("SPG properties:");
97            println!("  - Uses spectral step length estimation");
98            println!("  - Handles box constraints efficiently");
99            println!("  - Often faster than standard projected gradient");
100        }
101        Err(e) => {
102            println!("❌ Optimization failed: {:?}", e);
103        }
104    }
105}

Trait Implementations§

Source§

impl LineSearch for BackTracking

Source§

fn compute_step_len( &mut self, x_k: &DVector<Floating>, eval_x_k: &FuncEvalMultivariate, direction_k: &DVector<Floating>, oracle: &mut impl FnMut(&DVector<Floating>) -> FuncEvalMultivariate, max_iter: usize, ) -> Floating

Source§

impl SufficientDecreaseCondition for BackTracking

Source§

fn c1(&self) -> Floating

Source§

fn sufficient_decrease( &self, f_k: &Floating, f_kp1: &Floating, grad_k: &DVector<Floating>, t: &Floating, direction_k: &DVector<Floating>, ) -> bool

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more