spg_example/
spg_example.rs1use nalgebra::DVector;
2use optimization_solvers::{
3 BackTracking, FuncEvalMultivariate, LineSearchSolver, SpectralProjectedGradient, Tracer,
4};
5
6fn main() {
7 std::env::set_var("RUST_LOG", "info");
9 let _ = Tracer::default().with_normal_stdout_layer().build();
10
11 let f_and_g = |x: &DVector<f64>| -> FuncEvalMultivariate {
14 let x1 = x[0];
15 let x2 = x[1];
16
17 let f = x1.powi(2) + x2.powi(2) + (x1.powi(2) + x2.powi(2)).exp();
19
20 let exp_term = (x1.powi(2) + x2.powi(2)).exp();
22 let g1 = 2.0 * x1 * (1.0 + exp_term);
23 let g2 = 2.0 * x2 * (1.0 + exp_term);
24 let g = DVector::from_vec(vec![g1, g2]);
25
26 FuncEvalMultivariate::new(f, g)
27 };
28
29 let armijo_factor = 1e-4;
31 let beta = 0.5;
32 let mut ls = BackTracking::new(armijo_factor, beta);
33
34 let tol = 1e-6;
36 let x0 = DVector::from_vec(vec![0.5, 0.5]); let lower_bound = DVector::from_vec(vec![-1.0, -1.0]); let upper_bound = DVector::from_vec(vec![1.0, 1.0]);
39
40 let mut oracle_for_init = f_and_g;
42 let mut solver = SpectralProjectedGradient::new(
43 tol,
44 x0.clone(),
45 &mut oracle_for_init,
46 lower_bound.clone(),
47 upper_bound.clone(),
48 );
49
50 let max_iter_solver = 100;
52 let max_iter_line_search = 20;
53
54 println!("=== Spectral Projected Gradient (SPG) Example ===");
55 println!("Objective: f(x,y) = x^2 + y^2 + exp(x^2 + y^2) (convex)");
56 println!("Global minimum: (0, 0) with f(0,0) = 1");
57 println!("Constraints: -1 <= x <= 1, -1 <= y <= 1");
58 println!("Starting point: {:?}", x0);
59 println!("Lower bounds: {:?}", lower_bound);
60 println!("Upper bounds: {:?}", upper_bound);
61 println!("Tolerance: {}", tol);
62 println!();
63
64 match solver.minimize(
65 &mut ls,
66 f_and_g,
67 max_iter_solver,
68 max_iter_line_search,
69 None,
70 ) {
71 Ok(()) => {
72 let x = solver.x();
73 let eval = f_and_g(x);
74 println!("✅ Optimization completed successfully!");
75 println!("Final iterate: {:?}", x);
76 println!("Function value: {:.6}", eval.f());
77 println!("Gradient norm: {:.6}", eval.g().norm());
78 println!("Iterations: {}", solver.k());
79
80 println!("Constraint satisfaction:");
82 for i in 0..x.len() {
83 println!(
84 " x[{}] = {:.6} (bounds: [{:.1}, {:.1}])",
85 i, x[i], lower_bound[i], upper_bound[i]
86 );
87 }
88
89 let true_min = DVector::from_vec(vec![0.0, 0.0]);
91 let distance_to_min = (x - true_min).norm();
92 println!("Distance to true minimum: {:.6}", distance_to_min);
93 println!("Expected function value: 1.0");
94
95 println!("SPG properties:");
97 println!(" - Uses spectral step length estimation");
98 println!(" - Handles box constraints efficiently");
99 println!(" - Often faster than standard projected gradient");
100 }
101 Err(e) => {
102 println!("❌ Optimization failed: {:?}", e);
103 }
104 }
105}