[−][src]Type Definition opencv::types::PtrOfANN_MLP
type PtrOfANN_MLP = Ptr<dyn ANN_MLP>;
Implementations
impl PtrOfANN_MLP[src]
pub fn as_raw_PtrOfANN_MLP(&self) -> *const c_void[src]
pub fn as_raw_mut_PtrOfANN_MLP(&mut self) -> *mut c_void[src]
Trait Implementations
impl ANN_MLP for PtrOfANN_MLP[src]
fn as_raw_ANN_MLP(&self) -> *const c_void[src]
fn as_raw_mut_ANN_MLP(&mut self) -> *mut c_void[src]
fn set_train_method(
&mut self,
method: i32,
param1: f64,
param2: f64
) -> Result<()>[src]
&mut self,
method: i32,
param1: f64,
param2: f64
) -> Result<()>
fn get_train_method(&self) -> Result<i32>[src]
fn set_activation_function(
&mut self,
typ: i32,
param1: f64,
param2: f64
) -> Result<()>[src]
&mut self,
typ: i32,
param1: f64,
param2: f64
) -> Result<()>
fn set_layer_sizes(&mut self, _layer_sizes: &dyn ToInputArray) -> Result<()>[src]
fn get_layer_sizes(&self) -> Result<Mat>[src]
fn get_term_criteria(&self) -> Result<TermCriteria>[src]
fn set_term_criteria(&mut self, val: TermCriteria) -> Result<()>[src]
fn get_backprop_weight_scale(&self) -> Result<f64>[src]
fn set_backprop_weight_scale(&mut self, val: f64) -> Result<()>[src]
fn get_backprop_momentum_scale(&self) -> Result<f64>[src]
fn set_backprop_momentum_scale(&mut self, val: f64) -> Result<()>[src]
fn get_rprop_dw0(&self) -> Result<f64>[src]
fn set_rprop_dw0(&mut self, val: f64) -> Result<()>[src]
fn get_rprop_dw_plus(&self) -> Result<f64>[src]
fn set_rprop_dw_plus(&mut self, val: f64) -> Result<()>[src]
fn get_rprop_dw_minus(&self) -> Result<f64>[src]
fn set_rprop_dw_minus(&mut self, val: f64) -> Result<()>[src]
fn get_rprop_dw_min(&self) -> Result<f64>[src]
fn set_rprop_dw_min(&mut self, val: f64) -> Result<()>[src]
fn get_rprop_dw_max(&self) -> Result<f64>[src]
fn set_rprop_dw_max(&mut self, val: f64) -> Result<()>[src]
fn get_anneal_initial_t(&self) -> Result<f64>[src]
fn set_anneal_initial_t(&mut self, val: f64) -> Result<()>[src]
fn get_anneal_final_t(&self) -> Result<f64>[src]
fn set_anneal_final_t(&mut self, val: f64) -> Result<()>[src]
fn get_anneal_cooling_ratio(&self) -> Result<f64>[src]
fn set_anneal_cooling_ratio(&mut self, val: f64) -> Result<()>[src]
fn get_anneal_ite_per_step(&self) -> Result<i32>[src]
fn set_anneal_ite_per_step(&mut self, val: i32) -> Result<()>[src]
fn set_anneal_energy_rng(&mut self, rng: &RNG) -> Result<()>[src]
fn get_weights(&self, layer_idx: i32) -> Result<Mat>[src]
impl AlgorithmTrait for PtrOfANN_MLP[src]
fn as_raw_Algorithm(&self) -> *const c_void[src]
fn as_raw_mut_Algorithm(&mut self) -> *mut c_void[src]
fn clear(&mut self) -> Result<()>[src]
fn write(&self, fs: &mut FileStorage) -> Result<()>[src]
fn write_with_name(&self, fs: &Ptr<FileStorage>, name: &str) -> Result<()>[src]
fn read(&mut self, fn_: &FileNode) -> Result<()>[src]
fn empty(&self) -> Result<bool>[src]
fn save(&self, filename: &str) -> Result<()>[src]
fn get_default_name(&self) -> Result<String>[src]
impl StatModel for PtrOfANN_MLP[src]
fn as_raw_StatModel(&self) -> *const c_void[src]
fn as_raw_mut_StatModel(&mut self) -> *mut c_void[src]
fn get_var_count(&self) -> Result<i32>[src]
fn empty(&self) -> Result<bool>[src]
fn is_trained(&self) -> Result<bool>[src]
fn is_classifier(&self) -> Result<bool>[src]
fn train_with_data(
&mut self,
train_data: &Ptr<dyn TrainData>,
flags: i32
) -> Result<bool>[src]
&mut self,
train_data: &Ptr<dyn TrainData>,
flags: i32
) -> Result<bool>
fn train(
&mut self,
samples: &dyn ToInputArray,
layout: i32,
responses: &dyn ToInputArray
) -> Result<bool>[src]
&mut self,
samples: &dyn ToInputArray,
layout: i32,
responses: &dyn ToInputArray
) -> Result<bool>
fn calc_error(
&self,
data: &Ptr<dyn TrainData>,
test: bool,
resp: &mut dyn ToOutputArray
) -> Result<f32>[src]
&self,
data: &Ptr<dyn TrainData>,
test: bool,
resp: &mut dyn ToOutputArray
) -> Result<f32>
fn predict(
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>[src]
&self,
samples: &dyn ToInputArray,
results: &mut dyn ToOutputArray,
flags: i32
) -> Result<f32>