pub struct ColumnarBulkInserter<S, C> { /* private fields */ }
Expand description

Can be used to execute a statement with bulk array paramters. Contrary to its name any statement with parameters can be executed, not only INSERT however inserting large amounts of data in batches is the primary intended usecase.

Binding new buffers is quite expensive in ODBC, so the parameter buffers are reused for each batch (so the pointers bound to the statment stay valid). So we copy each batch of data into the buffers already bound first rather than binding user defined buffer. Often the data might need to be transformed anyway, so the copy is no actual overhead. Once the buffers are filled with a batch, we send the data.

Implementations§

Users are not encouraged to call this directly.

Safety
  • Statement is expected to be a perpared statement.
  • Parameters must all be valid for insertion. An example for an invalid parameter would be a text buffer with a cell those indiactor value exceeds the maximum element length. This can happen after when truncation occurs then writing into a buffer.
Examples found in repository?
src/prepared.rs (line 117)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    pub unsafe fn unchecked_bind_columnar_array_parameters<C>(
        self,
        parameter_buffers: Vec<C>,
    ) -> Result<ColumnarBulkInserter<S, C>, Error>
    where
        C: ColumnBuffer + HasDataType,
    {
        // We know that statement is a prepared statement.
        ColumnarBulkInserter::new(self.into_statement(), parameter_buffers)
    }

    /// Use this to insert rows of string input into the database.
    ///
    /// ```
    /// use odbc_api::{Connection, Error};
    ///
    /// fn insert_text<'e>(connection: Connection<'e>) -> Result<(), Error>{
    ///     // Insert six rows of text with two columns each into the database in batches of 3. In a
    ///     // real usecase you are likely to achieve a better results with a higher batch size.
    ///
    ///     // Note the two `?` used as placeholders for the parameters.
    ///     let prepared = connection.prepare("INSERT INTO NationalDrink (country, drink) VALUES (?, ?)")?;
    ///     // We assume both parameter inputs never exceed 50 bytes.
    ///     let mut prebound = prepared.into_text_inserter(3, [50, 50])?;
    ///     
    ///     // A cell is an option to byte. We could use `None` to represent NULL but we have no
    ///     // need to do that in this example.
    ///     let as_cell = |s: &'static str| { Some(s.as_bytes()) } ;
    ///
    ///     // First batch of values
    ///     prebound.append(["England", "Tea"].into_iter().map(as_cell))?;
    ///     prebound.append(["Germany", "Beer"].into_iter().map(as_cell))?;
    ///     prebound.append(["Russia", "Vodka"].into_iter().map(as_cell))?;
    ///
    ///     // Execute statement using values bound in buffer.
    ///     prebound.execute()?;
    ///     // Clear buffer contents, otherwise the previous values would stay in the buffer.
    ///     prebound.clear();
    ///
    ///     // Second batch of values
    ///     prebound.append(["India", "Tea"].into_iter().map(as_cell))?;
    ///     prebound.append(["France", "Wine"].into_iter().map(as_cell))?;
    ///     prebound.append(["USA", "Cola"].into_iter().map(as_cell))?;
    ///
    ///     // Send second batch to the database
    ///     prebound.execute()?;
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn into_text_inserter(
        self,
        capacity: usize,
        max_str_len: impl IntoIterator<Item = usize>,
    ) -> Result<ColumnarBulkInserter<S, TextColumn<u8>>, Error> {
        let max_str_len = max_str_len.into_iter();
        let parameter_buffers = max_str_len
            .map(|max_str_len| TextColumn::new(capacity, max_str_len))
            .collect();
        // Text Columns are created with NULL as default, which is valid for insertion.
        unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
    }

    /// A [`crate::ColumnarBulkInserter`] which takes ownership of both the statement and the bound
    /// array parameter buffers.
    ///
    /// ```no_run
    /// use odbc_api::{Connection, Error, IntoParameter, buffers::BufferDesc};
    ///
    /// fn insert_birth_years(
    ///     conn: &Connection,
    ///     names: &[&str],
    ///     years: &[i16]
    /// ) -> Result<(), Error> {
    ///     // All columns must have equal length.
    ///     assert_eq!(names.len(), years.len());
    ///
    ///     let prepared = conn.prepare("INSERT INTO Birthdays (name, year) VALUES (?, ?)")?;
    ///
    ///     // Create a columnar buffer which fits the input parameters.
    ///     let buffer_description = [
    ///         BufferDesc::Text { max_str_len: 255 },
    ///         BufferDesc::I16 { nullable: false },
    ///     ];
    ///     // The capacity must be able to hold at least the largest batch. We do everything in one
    ///     // go, so we set it to the length of the input parameters.
    ///     let capacity = names.len();
    ///     // Allocate memory for the array column parameters and bind it to the statement.
    ///     let mut prebound = prepared.into_column_inserter(capacity, buffer_description)?;
    ///     // Length of this batch
    ///     prebound.set_num_rows(capacity);
    ///
    ///
    ///     // Fill the buffer with values column by column
    ///     let mut col = prebound
    ///         .column_mut(0)
    ///         .as_text_view()
    ///         .expect("We know the name column to hold text.");
    ///
    ///     for (index, name) in names.iter().enumerate() {
    ///         col.set_cell(index, Some(name.as_bytes()));
    ///     }
    ///
    ///     let col = prebound
    ///         .column_mut(1)
    ///         .as_slice::<i16>()
    ///         .expect("We know the year column to hold i16.");
    ///     col.copy_from_slice(years);
    ///
    ///     prebound.execute()?;
    ///     Ok(())
    /// }
    /// ```
    pub fn into_column_inserter(
        self,
        capacity: usize,
        descriptions: impl IntoIterator<Item = BufferDesc>,
    ) -> Result<ColumnarBulkInserter<S, AnyBuffer>, Error> {
        let parameter_buffers = descriptions
            .into_iter()
            .map(|desc| AnyBuffer::from_desc(capacity, desc))
            .collect();
        unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
    }

    /// A [`crate::ColumnarBulkInserter`] which has ownership of the bound array parameter buffers
    /// and borrows the statement. For most usecases [`Self::into_any_column_inserter`] is what you
    /// want to use, yet on some instances you may want to bind new paramater buffers to the same
    /// prepared statement. E.g. to grow the capacity dynamicaly during insertions with several
    /// chunks. In such usecases you may only want to borrow the prepared statemnt, so it can be
    /// reused with a different set of parameter buffers.
    pub fn column_inserter(
        &mut self,
        capacity: usize,
        descriptions: impl IntoIterator<Item = BufferDesc>,
    ) -> Result<ColumnarBulkInserter<StatementRef<'_>, AnyBuffer>, Error> {
        let stmt = self.statement.as_stmt_ref();

        let parameter_buffers = descriptions
            .into_iter()
            .map(|desc| AnyBuffer::from_desc(capacity, desc))
            .collect();
        unsafe { ColumnarBulkInserter::new(stmt, parameter_buffers) }
    }

Execute the prepared statement, with the parameters bound

Sets the number of rows in the buffer to zero.

Number of valid rows in the buffer

Set number of valid rows in the buffer. Must not be larger than the batch size. If the specified number than the number of valid rows currently held by the buffer additional they will just hold the value previously assigned to them. Therfore if extending the number of valid rows users should take care to assign values to these rows. However, even if not assigend it is always guaranteed that every cell is valid for insertion and will not cause out of bounds access down in the ODBC driver. Therfore this method is safe. You can set the number of valid rows before or after filling values into the buffer, but you must do so before executing the query.

Use this method to gain write access to the actual column data.

Parameters
  • buffer_index: Please note that the buffer index is not identical to the ODBC column index. For once it is zero based. It also indexes the buffer bound, and not the columns of the output result set. This is important, because not every column needs to be bound. Some columns may simply be ignored. That being said, if every column of the output is bound in the buffer, in the same order in which they are enumerated in the result set, the relationship between column index and buffer index is buffer_index = column_index - 1.
Example

This method is intend to be called if using ColumnarBulkInserter for column wise bulk inserts.

use odbc_api::{Connection, Error, buffers::BufferDesc};

fn insert_birth_years(conn: &Connection, names: &[&str], years: &[i16])
    -> Result<(), Error>
{

    // All columns must have equal length.
    assert_eq!(names.len(), years.len());
    // Prepare the insert statement
    let prepared = conn.prepare("INSERT INTO Birthdays (name, year) VALUES (?, ?)")?;
    // Create a columnar buffer which fits the input parameters.
    let buffer_description = [
        BufferDesc::Text { max_str_len: 255 },
        BufferDesc::I16 { nullable: false },
    ];
    // Here we do everything in one batch. So the capacity is the number of input
    // parameters.
    let capacity = names.len();
    let mut prebound = prepared.into_column_inserter(capacity, buffer_description)?;
    // Set number of input rows in the current batch.
    prebound.set_num_rows(names.len());
    // Fill the buffer with values column by column

    // Fill names
    let mut col = prebound
        .column_mut(0)
        .as_text_view()
        .expect("We know the name column to hold text.");
    for (index, name) in names.iter().map(|s| Some(s.as_bytes())).enumerate() {
        col.set_cell(index, name);
    }

    // Fill birth years
    let mut col = prebound
        .column_mut(1)
        .as_slice::<i16>()
        .expect("We know the year column to hold i16.");
    col.copy_from_slice(years);

    // Execute the prepared statment with the bound array parameters. Sending the values to
    // the database.
    prebound.execute()?;
    Ok(())
}

Maximum number of rows the buffer can hold at once.

Takes one element from the iterator for each internal column buffer and appends it to the end of the buffer. Should a cell of the row be too large for the associated column buffer, the column buffer will be reallocated with 1.2 times its size, and rebound to the statement.

This method panics if it is tried to insert elements beyond batch size. It will also panic if row does not contain at least one item for each internal column buffer.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.