pub struct TextColumn<C> { /* private fields */ }
Expand description

A buffer intended to be bound to a column of a cursor. Elements of the buffer will contain a variable amount of characters up to a maximum string length. Since most SQL types have a string representation this buffer can be bound to a column of almost any type, ODBC driver and driver manager should take care of the conversion. Since elements of this type have variable length an indicator buffer needs to be bound, whether the column is nullable or not, and therefore does not matter for this buffer.

Character type C is intended to be either u8 or u16.

Implementations§

This will allocate a value and indicator buffer for batch_size elements. Each value may have a maximum length of max_str_len. This implies that max_str_len is increased by one in order to make space for the null terminating zero at the end of strings. Uses a fallibale allocation for creating the buffer. In applications often the max_str_len size of the buffer, might be directly inspired by the maximum size of the type, as reported, by ODBC. Which might get exceedingly large for types like VARCHAR(MAX)

Examples found in repository?
src/buffers/columnar.rs (line 303)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    pub fn for_cursor(
        batch_size: usize,
        cursor: &mut impl ResultSetMetadata,
        max_str_limit: Option<usize>,
    ) -> Result<TextRowSet, Error> {
        let buffers = utf8_display_sizes(cursor)?
            .enumerate()
            .map(|(buffer_index, reported_len)| {
                let buffer_index = buffer_index as u16;
                let col_index = buffer_index + 1;
                let max_str_len = reported_len?;
                let buffer = if let Some(upper_bound) = max_str_limit {
                    let max_str_len = if max_str_len == 0 {
                        upper_bound
                    } else {
                        min(max_str_len, upper_bound)
                    };
                    TextColumn::new(batch_size, max_str_len)
                } else {
                    TextColumn::try_new(batch_size, max_str_len).map_err(|source| {
                        Error::TooLargeColumnBufferSize {
                            buffer_index,
                            num_elements: source.num_elements,
                            element_size: source.element_size,
                        }
                    })?
                };

                Ok((col_index, buffer))
            })
            .collect::<Result<_, _>>()?;
        Ok(TextRowSet {
            row_capacity: batch_size,
            num_rows: Box::new(0),
            columns: buffers,
        })
    }

    /// Creates a text buffer large enough to hold `batch_size` rows with one column for each item
    /// `max_str_lengths` of respective size.
    pub fn from_max_str_lens(
        row_capacity: usize,
        max_str_lengths: impl IntoIterator<Item = usize>,
    ) -> Result<Self, Error> {
        let buffers = max_str_lengths
            .into_iter()
            .enumerate()
            .map(|(index, max_str_len)| {
                Ok((
                    (index + 1).try_into().unwrap(),
                    TextColumn::try_new(row_capacity, max_str_len)
                        .map_err(|source| source.add_context(index.try_into().unwrap()))?,
                ))
            })
            .collect::<Result<_, _>>()?;
        Ok(TextRowSet {
            row_capacity,
            num_rows: Box::new(0),
            columns: buffers,
        })
    }
More examples
Hide additional examples
src/buffers/any_buffer.rs (line 93)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    fn impl_from_desc(
        max_rows: usize,
        desc: BufferDesc,
        fallible_allocations: bool,
    ) -> Result<Self, TooLargeBufferSize> {
        let buffer = match desc {
            BufferDesc::Binary { length } => {
                if fallible_allocations {
                    AnyBuffer::Binary(BinColumn::try_new(max_rows, length)?)
                } else {
                    AnyBuffer::Binary(BinColumn::new(max_rows, length))
                }
            }
            BufferDesc::Text { max_str_len } => {
                if fallible_allocations {
                    AnyBuffer::Text(TextColumn::try_new(max_rows, max_str_len)?)
                } else {
                    AnyBuffer::Text(TextColumn::new(max_rows, max_str_len))
                }
            }
            BufferDesc::WText { max_str_len } => {
                if fallible_allocations {
                    AnyBuffer::WText(TextColumn::try_new(max_rows, max_str_len)?)
                } else {
                    AnyBuffer::WText(TextColumn::new(max_rows, max_str_len))
                }
            }
            BufferDesc::Date { nullable: false } => {
                AnyBuffer::Date(vec![Date::default(); max_rows])
            }
            BufferDesc::Time { nullable: false } => {
                AnyBuffer::Time(vec![Time::default(); max_rows])
            }
            BufferDesc::Timestamp { nullable: false } => {
                AnyBuffer::Timestamp(vec![Timestamp::default(); max_rows])
            }
            BufferDesc::F64 { nullable: false } => AnyBuffer::F64(vec![f64::default(); max_rows]),
            BufferDesc::F32 { nullable: false } => AnyBuffer::F32(vec![f32::default(); max_rows]),
            BufferDesc::I8 { nullable: false } => AnyBuffer::I8(vec![i8::default(); max_rows]),
            BufferDesc::I16 { nullable: false } => AnyBuffer::I16(vec![i16::default(); max_rows]),
            BufferDesc::I32 { nullable: false } => AnyBuffer::I32(vec![i32::default(); max_rows]),
            BufferDesc::I64 { nullable: false } => AnyBuffer::I64(vec![i64::default(); max_rows]),
            BufferDesc::U8 { nullable: false } => AnyBuffer::U8(vec![u8::default(); max_rows]),
            BufferDesc::Bit { nullable: false } => AnyBuffer::Bit(vec![Bit::default(); max_rows]),
            BufferDesc::Date { nullable: true } => {
                AnyBuffer::NullableDate(OptDateColumn::new(max_rows))
            }
            BufferDesc::Time { nullable: true } => {
                AnyBuffer::NullableTime(OptTimeColumn::new(max_rows))
            }
            BufferDesc::Timestamp { nullable: true } => {
                AnyBuffer::NullableTimestamp(OptTimestampColumn::new(max_rows))
            }
            BufferDesc::F64 { nullable: true } => {
                AnyBuffer::NullableF64(OptF64Column::new(max_rows))
            }
            BufferDesc::F32 { nullable: true } => {
                AnyBuffer::NullableF32(OptF32Column::new(max_rows))
            }
            BufferDesc::I8 { nullable: true } => AnyBuffer::NullableI8(OptI8Column::new(max_rows)),
            BufferDesc::I16 { nullable: true } => {
                AnyBuffer::NullableI16(OptI16Column::new(max_rows))
            }
            BufferDesc::I32 { nullable: true } => {
                AnyBuffer::NullableI32(OptI32Column::new(max_rows))
            }
            BufferDesc::I64 { nullable: true } => {
                AnyBuffer::NullableI64(OptI64Column::new(max_rows))
            }
            BufferDesc::U8 { nullable: true } => AnyBuffer::NullableU8(OptU8Column::new(max_rows)),
            BufferDesc::Bit { nullable: true } => {
                AnyBuffer::NullableBit(OptBitColumn::new(max_rows))
            }
        };
        Ok(buffer)
    }

This will allocate a value and indicator buffer for batch_size elements. Each value may have a maximum length of max_str_len. This implies that max_str_len is increased by one in order to make space for the null terminating zero at the end of strings. All indicators are set to crate::sys::NULL_DATA by default.

Examples found in repository?
src/prepared.rs (line 166)
159
160
161
162
163
164
165
166
167
168
169
170
    pub fn into_text_inserter(
        self,
        capacity: usize,
        max_str_len: impl IntoIterator<Item = usize>,
    ) -> Result<ColumnarBulkInserter<S, TextColumn<u8>>, Error> {
        let max_str_len = max_str_len.into_iter();
        let parameter_buffers = max_str_len
            .map(|max_str_len| TextColumn::new(capacity, max_str_len))
            .collect();
        // Text Columns are created with NULL as default, which is valid for insertion.
        unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
    }
More examples
Hide additional examples
src/buffers/columnar.rs (line 301)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    pub fn for_cursor(
        batch_size: usize,
        cursor: &mut impl ResultSetMetadata,
        max_str_limit: Option<usize>,
    ) -> Result<TextRowSet, Error> {
        let buffers = utf8_display_sizes(cursor)?
            .enumerate()
            .map(|(buffer_index, reported_len)| {
                let buffer_index = buffer_index as u16;
                let col_index = buffer_index + 1;
                let max_str_len = reported_len?;
                let buffer = if let Some(upper_bound) = max_str_limit {
                    let max_str_len = if max_str_len == 0 {
                        upper_bound
                    } else {
                        min(max_str_len, upper_bound)
                    };
                    TextColumn::new(batch_size, max_str_len)
                } else {
                    TextColumn::try_new(batch_size, max_str_len).map_err(|source| {
                        Error::TooLargeColumnBufferSize {
                            buffer_index,
                            num_elements: source.num_elements,
                            element_size: source.element_size,
                        }
                    })?
                };

                Ok((col_index, buffer))
            })
            .collect::<Result<_, _>>()?;
        Ok(TextRowSet {
            row_capacity: batch_size,
            num_rows: Box::new(0),
            columns: buffers,
        })
    }
src/buffers/any_buffer.rs (line 95)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    fn impl_from_desc(
        max_rows: usize,
        desc: BufferDesc,
        fallible_allocations: bool,
    ) -> Result<Self, TooLargeBufferSize> {
        let buffer = match desc {
            BufferDesc::Binary { length } => {
                if fallible_allocations {
                    AnyBuffer::Binary(BinColumn::try_new(max_rows, length)?)
                } else {
                    AnyBuffer::Binary(BinColumn::new(max_rows, length))
                }
            }
            BufferDesc::Text { max_str_len } => {
                if fallible_allocations {
                    AnyBuffer::Text(TextColumn::try_new(max_rows, max_str_len)?)
                } else {
                    AnyBuffer::Text(TextColumn::new(max_rows, max_str_len))
                }
            }
            BufferDesc::WText { max_str_len } => {
                if fallible_allocations {
                    AnyBuffer::WText(TextColumn::try_new(max_rows, max_str_len)?)
                } else {
                    AnyBuffer::WText(TextColumn::new(max_rows, max_str_len))
                }
            }
            BufferDesc::Date { nullable: false } => {
                AnyBuffer::Date(vec![Date::default(); max_rows])
            }
            BufferDesc::Time { nullable: false } => {
                AnyBuffer::Time(vec![Time::default(); max_rows])
            }
            BufferDesc::Timestamp { nullable: false } => {
                AnyBuffer::Timestamp(vec![Timestamp::default(); max_rows])
            }
            BufferDesc::F64 { nullable: false } => AnyBuffer::F64(vec![f64::default(); max_rows]),
            BufferDesc::F32 { nullable: false } => AnyBuffer::F32(vec![f32::default(); max_rows]),
            BufferDesc::I8 { nullable: false } => AnyBuffer::I8(vec![i8::default(); max_rows]),
            BufferDesc::I16 { nullable: false } => AnyBuffer::I16(vec![i16::default(); max_rows]),
            BufferDesc::I32 { nullable: false } => AnyBuffer::I32(vec![i32::default(); max_rows]),
            BufferDesc::I64 { nullable: false } => AnyBuffer::I64(vec![i64::default(); max_rows]),
            BufferDesc::U8 { nullable: false } => AnyBuffer::U8(vec![u8::default(); max_rows]),
            BufferDesc::Bit { nullable: false } => AnyBuffer::Bit(vec![Bit::default(); max_rows]),
            BufferDesc::Date { nullable: true } => {
                AnyBuffer::NullableDate(OptDateColumn::new(max_rows))
            }
            BufferDesc::Time { nullable: true } => {
                AnyBuffer::NullableTime(OptTimeColumn::new(max_rows))
            }
            BufferDesc::Timestamp { nullable: true } => {
                AnyBuffer::NullableTimestamp(OptTimestampColumn::new(max_rows))
            }
            BufferDesc::F64 { nullable: true } => {
                AnyBuffer::NullableF64(OptF64Column::new(max_rows))
            }
            BufferDesc::F32 { nullable: true } => {
                AnyBuffer::NullableF32(OptF32Column::new(max_rows))
            }
            BufferDesc::I8 { nullable: true } => AnyBuffer::NullableI8(OptI8Column::new(max_rows)),
            BufferDesc::I16 { nullable: true } => {
                AnyBuffer::NullableI16(OptI16Column::new(max_rows))
            }
            BufferDesc::I32 { nullable: true } => {
                AnyBuffer::NullableI32(OptI32Column::new(max_rows))
            }
            BufferDesc::I64 { nullable: true } => {
                AnyBuffer::NullableI64(OptI64Column::new(max_rows))
            }
            BufferDesc::U8 { nullable: true } => AnyBuffer::NullableU8(OptU8Column::new(max_rows)),
            BufferDesc::Bit { nullable: true } => {
                AnyBuffer::NullableBit(OptBitColumn::new(max_rows))
            }
        };
        Ok(buffer)
    }

Bytes of string at the specified position. Includes interior nuls, but excludes the terminating nul.

The column buffer does not know how many elements were in the last row group, and therefore can not guarantee the accessed element to be valid and in a defined state. It also can not panic on accessing an undefined element. It will panic however if row_index is larger or equal to the maximum number of elements in the buffer.

Examples found in repository?
src/buffers/text_column.rs (line 293)
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    pub unsafe fn ustr_at(&self, row_index: usize) -> Option<&U16Str> {
        self.value_at(row_index).map(U16Str::from_slice)
    }
}

unsafe impl<C: 'static> ColumnBuffer for TextColumn<C>
where
    TextColumn<C>: CDataMut + HasDataType,
{
    type View<'a> = TextColumnView<'a, C>;

    fn view(&self, valid_rows: usize) -> TextColumnView<'_, C> {
        TextColumnView {
            num_rows: valid_rows,
            col: self,
        }
    }

    fn fill_default(&mut self, from: usize, to: usize) {
        self.fill_null(from, to)
    }

    /// Maximum number of text strings this column may hold.
    fn capacity(&self) -> usize {
        self.indicators.len()
    }
}

/// Allows read only access to the valid part of a text column.
///
/// You may ask, why is this type required, should we not just be able to use `&TextColumn`? The
/// problem with `TextColumn` is, that it is a buffer, but it has no idea how many of its members
/// are actually valid, and have been returned with the last row group of the the result set. That
/// number is maintained on the level of the entire column buffer. So a text column knows the number
/// of valid rows, in addition to holding a reference to the buffer, in order to guarantee, that
/// every element acccessed through it, is valid.
#[derive(Debug, Clone, Copy)]
pub struct TextColumnView<'c, C> {
    num_rows: usize,
    col: &'c TextColumn<C>,
}

impl<'c, C> TextColumnView<'c, C> {
    /// The number of valid elements in the text column.
    pub fn len(&self) -> usize {
        self.num_rows
    }

    /// True if, and only if there are no valid rows in the column buffer.
    pub fn is_empty(&self) -> bool {
        self.num_rows == 0
    }

    /// Slice of text at the specified row index without terminating zero.
    pub fn get(&self, index: usize) -> Option<&'c [C]> {
        self.col.value_at(index)
    }

    /// Iterator over the valid elements of the text buffer
    pub fn iter(&self) -> TextColumnIt<'c, C> {
        TextColumnIt {
            pos: 0,
            num_rows: self.num_rows,
            col: self.col,
        }
    }

    /// Length of value at the specified position. This is different from an indicator as it refers
    /// to the length of the value in the buffer, not to the length of the value in the datasource.
    /// The two things are different for truncated values.
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        if row_index >= self.num_rows {
            panic!("Row index points beyond the range of valid values.")
        }
        self.col.content_length_at(row_index)
    }

    /// Provides access to the raw underlying value buffer. Normal applications should have little
    /// reason to call this method. Yet it may be useful for writing bindings which copy directly
    /// from the ODBC in memory representation into other kinds of buffers.
    ///
    /// The buffer contains the bytes for every non null valid element, padded to the maximum string
    /// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
    /// terminating zero at the end of each string. For the actual value length call
    /// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
    pub fn raw_value_buffer(&self) -> &'c [C] {
        self.col.raw_value_buffer(self.num_rows)
    }

    pub fn max_len(&self) -> usize {
        self.col.max_len()
    }
}

unsafe impl<'a, C: 'static> BoundInputSlice<'a> for TextColumn<C> {
    type SliceMut = TextColumnSliceMut<'a, C>;

    unsafe fn as_view_mut(
        &'a mut self,
        parameter_index: u16,
        stmt: StatementRef<'a>,
    ) -> Self::SliceMut {
        TextColumnSliceMut {
            column: self,
            stmt,
            parameter_index,
        }
    }
}

/// A view to a mutable array parameter text buffer, which allows for filling the buffer with
/// values.
pub struct TextColumnSliceMut<'a, C> {
    column: &'a mut TextColumn<C>,
    // Needed to rebind the column in case of resize
    stmt: StatementRef<'a>,
    // Also needed to rebind the column in case of resize
    parameter_index: u16,
}

impl<'a, C> TextColumnSliceMut<'a, C>
where
    C: Default + Copy,
{
    /// Sets the value of the buffer at index at Null or the specified binary Text. This method will
    /// panic on out of bounds index, or if input holds a text which is larger than the maximum
    /// allowed element length. `element` must be specified without the terminating zero.
    pub fn set_cell(&mut self, row_index: usize, element: Option<&[C]>) {
        self.column.set_value(row_index, element)
    }

    /// Ensures that the buffer is large enough to hold elements of `element_length`. Does nothing
    /// if the buffer is already large enough. Otherwise it will reallocate and rebind the buffer.
    /// The first `num_rows_to_copy_elements` will be copied from the old value buffer to the new
    /// one. This makes this an extremly expensive operation.
    pub fn ensure_max_element_length(
        &mut self,
        element_length: usize,
        num_rows_to_copy: usize,
    ) -> Result<(), Error>
    where
        TextColumn<C>: HasDataType + CData,
    {
        // Column buffer is not large enough to hold the element. We must allocate a larger buffer
        // in order to hold it. This invalidates the pointers previously bound to the statement. So
        // we rebind them.
        if element_length > self.column.max_len() {
            let new_max_str_len = element_length;
            self.column
                .resize_max_str(new_max_str_len, num_rows_to_copy);
            unsafe {
                self.stmt
                    .bind_input_parameter(self.parameter_index, self.column)
                    .into_result(&self.stmt)?
            }
        }
        Ok(())
    }

    /// Can be used to set a value at a specific row index without performing a memcopy on an input
    /// slice and instead provides direct access to the underlying buffer.
    ///
    /// In situations there the memcopy can not be avoided anyway [`Self::set_cell`] is likely to
    /// be more convenient. This method is very useful if you want to `write!` a string value to the
    /// buffer and the binary (**!**) length of the formatted string is known upfront.
    ///
    /// # Example: Write timestamp to text column.
    ///
    /// ```
    /// use odbc_api::buffers::TextColumnSliceMut;
    /// use std::io::Write;
    ///
    /// /// Writes times formatted as hh::mm::ss.fff
    /// fn write_time(
    ///     col: &mut TextColumnSliceMut<u8>,
    ///     index: usize,
    ///     hours: u8,
    ///     minutes: u8,
    ///     seconds: u8,
    ///     milliseconds: u16)
    /// {
    ///     write!(
    ///         col.set_mut(index, 12),
    ///         "{:02}:{:02}:{:02}.{:03}",
    ///         hours, minutes, seconds, milliseconds
    ///     ).unwrap();
    /// }
    /// ```
    pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C] {
        self.column.set_mut(index, length)
    }
}

/// Iterator over a text column. See [`TextColumnView::iter`]
#[derive(Debug)]
pub struct TextColumnIt<'c, C> {
    pos: usize,
    num_rows: usize,
    col: &'c TextColumn<C>,
}

impl<'c, C> TextColumnIt<'c, C> {
    fn next_impl(&mut self) -> Option<Option<&'c [C]>> {
        if self.pos == self.num_rows {
            None
        } else {
            let ret = Some(self.col.value_at(self.pos));
            self.pos += 1;
            ret
        }
    }
More examples
Hide additional examples
src/buffers/columnar.rs (line 349)
347
348
349
350
    pub fn at(&self, buffer_index: usize, row_index: usize) -> Option<&[u8]> {
        assert!(row_index < *self.num_rows);
        self.columns[buffer_index].1.value_at(row_index)
    }

Maximum length of elements

Examples found in repository?
src/buffers/text_column.rs (line 382)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    pub fn max_len(&self) -> usize {
        self.col.max_len()
    }
}

unsafe impl<'a, C: 'static> BoundInputSlice<'a> for TextColumn<C> {
    type SliceMut = TextColumnSliceMut<'a, C>;

    unsafe fn as_view_mut(
        &'a mut self,
        parameter_index: u16,
        stmt: StatementRef<'a>,
    ) -> Self::SliceMut {
        TextColumnSliceMut {
            column: self,
            stmt,
            parameter_index,
        }
    }
}

/// A view to a mutable array parameter text buffer, which allows for filling the buffer with
/// values.
pub struct TextColumnSliceMut<'a, C> {
    column: &'a mut TextColumn<C>,
    // Needed to rebind the column in case of resize
    stmt: StatementRef<'a>,
    // Also needed to rebind the column in case of resize
    parameter_index: u16,
}

impl<'a, C> TextColumnSliceMut<'a, C>
where
    C: Default + Copy,
{
    /// Sets the value of the buffer at index at Null or the specified binary Text. This method will
    /// panic on out of bounds index, or if input holds a text which is larger than the maximum
    /// allowed element length. `element` must be specified without the terminating zero.
    pub fn set_cell(&mut self, row_index: usize, element: Option<&[C]>) {
        self.column.set_value(row_index, element)
    }

    /// Ensures that the buffer is large enough to hold elements of `element_length`. Does nothing
    /// if the buffer is already large enough. Otherwise it will reallocate and rebind the buffer.
    /// The first `num_rows_to_copy_elements` will be copied from the old value buffer to the new
    /// one. This makes this an extremly expensive operation.
    pub fn ensure_max_element_length(
        &mut self,
        element_length: usize,
        num_rows_to_copy: usize,
    ) -> Result<(), Error>
    where
        TextColumn<C>: HasDataType + CData,
    {
        // Column buffer is not large enough to hold the element. We must allocate a larger buffer
        // in order to hold it. This invalidates the pointers previously bound to the statement. So
        // we rebind them.
        if element_length > self.column.max_len() {
            let new_max_str_len = element_length;
            self.column
                .resize_max_str(new_max_str_len, num_rows_to_copy);
            unsafe {
                self.stmt
                    .bind_input_parameter(self.parameter_index, self.column)
                    .into_result(&self.stmt)?
            }
        }
        Ok(())
    }
More examples
Hide additional examples
src/buffers/columnar.rs (line 385)
384
385
386
    pub fn max_len(&self, buf_index: usize) -> usize {
        self.columns[buf_index].1.max_len()
    }

Indicator value at the specified position. Useful to detect truncation of data.

The column buffer does not know how many elements were in the last row group, and therefore can not guarantee the accessed element to be valid and in a defined state. It also can not panic on accessing an undefined element. It will panic however if row_index is larger or equal to the maximum number of elements in the buffer.

Examples found in repository?
src/buffers/columnar.rs (line 380)
378
379
380
381
    pub fn indicator_at(&self, buf_index: usize, row_index: usize) -> Indicator {
        assert!(row_index < *self.num_rows);
        self.columns[buf_index].1.indicator_at(row_index)
    }
More examples
Hide additional examples
src/buffers/text_column.rs (line 126)
125
126
127
128
129
130
131
132
133
134
135
136
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        match self.indicator_at(row_index) {
            Indicator::Null => None,
            // Seen no total in the wild then binding shorter buffer to fixed sized CHAR in MSSQL.
            Indicator::NoTotal => Some(self.max_str_len),
            Indicator::Length(length_in_bytes) => {
                let length_in_chars = length_in_bytes / size_of::<C>();
                let length = min(self.max_str_len, length_in_chars);
                Some(length)
            }
        }
    }

Length of value at the specified position. This is different from an indicator as it refers to the length of the value in the buffer, not to the length of the value in the datasource. The two things are different for truncated values.

Examples found in repository?
src/buffers/text_column.rs (line 101)
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    pub fn value_at(&self, row_index: usize) -> Option<&[C]> {
        self.content_length_at(row_index).map(|length| {
            let offset = row_index * (self.max_str_len + 1);
            &self.values[offset..offset + length]
        })
    }

    /// Maximum length of elements
    pub fn max_len(&self) -> usize {
        self.max_str_len
    }

    /// Indicator value at the specified position. Useful to detect truncation of data.
    ///
    /// The column buffer does not know how many elements were in the last row group, and therefore
    /// can not guarantee the accessed element to be valid and in a defined state. It also can not
    /// panic on accessing an undefined element. It will panic however if `row_index` is larger or
    /// equal to the maximum number of elements in the buffer.
    pub fn indicator_at(&self, row_index: usize) -> Indicator {
        Indicator::from_isize(self.indicators[row_index])
    }

    /// Length of value at the specified position. This is different from an indicator as it refers
    /// to the length of the value in the buffer, not to the length of the value in the datasource.
    /// The two things are different for truncated values.
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        match self.indicator_at(row_index) {
            Indicator::Null => None,
            // Seen no total in the wild then binding shorter buffer to fixed sized CHAR in MSSQL.
            Indicator::NoTotal => Some(self.max_str_len),
            Indicator::Length(length_in_bytes) => {
                let length_in_chars = length_in_bytes / size_of::<C>();
                let length = min(self.max_str_len, length_in_chars);
                Some(length)
            }
        }
    }

    /// Changes the maximum string length the buffer can hold. This operation is useful if you find
    /// an unexpected large input string during insertion.
    ///
    /// This is however costly, as not only does the new buffer have to be allocated, but all values
    /// have to copied from the old to the new buffer.
    ///
    /// This method could also be used to reduce the maximum string length, which would truncate
    /// strings in the process.
    ///
    /// This method does not adjust indicator buffers as these might hold values larger than the
    /// maximum string length.
    ///
    /// # Parameters
    ///
    /// * `new_max_str_len`: New maximum string length without terminating zero.
    /// * `num_rows`: Number of valid rows currently stored in this buffer.
    pub fn resize_max_str(&mut self, new_max_str_len: usize, num_rows: usize)
    where
        C: Default + Copy,
    {
        debug!(
            "Rebinding text column buffer with {} elements. Maximum string length {} => {}",
            num_rows, self.max_str_len, new_max_str_len
        );

        let batch_size = self.indicators.len();
        // Allocate a new buffer large enough to hold a batch of strings with maximum length.
        let mut new_values = vec![C::default(); (new_max_str_len + 1) * batch_size];
        // Copy values from old to new buffer.
        let max_copy_length = min(self.max_str_len, new_max_str_len);
        for ((&indicator, old_value), new_value) in self
            .indicators
            .iter()
            .zip(self.values.chunks_exact_mut(self.max_str_len + 1))
            .zip(new_values.chunks_exact_mut(new_max_str_len + 1))
            .take(num_rows)
        {
            match Indicator::from_isize(indicator) {
                Indicator::Null => (),
                Indicator::NoTotal => {
                    // There is no good choice here in case we are expanding the buffer. Since
                    // NO_TOTAL indicates that we use the entire buffer, but in truth it would now
                    // be padded with 0. I currently cannot think of any use case there it would
                    // matter.
                    new_value[..max_copy_length].clone_from_slice(&old_value[..max_copy_length]);
                }
                Indicator::Length(num_bytes_len) => {
                    let num_bytes_to_copy = min(num_bytes_len / size_of::<C>(), max_copy_length);
                    new_value[..num_bytes_to_copy].copy_from_slice(&old_value[..num_bytes_to_copy]);
                }
            }
        }
        self.values = new_values;
        self.max_str_len = new_max_str_len;
    }

    /// Sets the value of the buffer at index at Null or the specified binary Text. This method will
    /// panic on out of bounds index, or if input holds a text which is larger than the maximum
    /// allowed element length. `input` must be specified without the terminating zero.
    pub fn set_value(&mut self, index: usize, input: Option<&[C]>)
    where
        C: Default + Copy,
    {
        if let Some(input) = input {
            self.set_mut(index, input.len()).copy_from_slice(input);
        } else {
            self.indicators[index] = NULL_DATA;
        }
    }

    /// Can be used to set a value at a specific row index without performing a memcopy on an input
    /// slice and instead provides direct access to the underlying buffer.
    ///
    /// In situations there the memcopy can not be avoided anyway [`Self::set_value`] is likely to
    /// be more convenient. This method is very useful if you want to `write!` a string value to the
    /// buffer and the binary (**!**) length of the formatted string is known upfront.
    ///
    /// # Example: Write timestamp to text column.
    ///
    /// ```
    /// use odbc_api::buffers::TextColumn;
    /// use std::io::Write;
    ///
    /// /// Writes times formatted as hh::mm::ss.fff
    /// fn write_time(
    ///     col: &mut TextColumn<u8>,
    ///     index: usize,
    ///     hours: u8,
    ///     minutes: u8,
    ///     seconds: u8,
    ///     milliseconds: u16)
    /// {
    ///     write!(
    ///         col.set_mut(index, 12),
    ///         "{:02}:{:02}:{:02}.{:03}",
    ///         hours, minutes, seconds, milliseconds
    ///     ).unwrap();
    /// }
    /// ```
    pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C]
    where
        C: Default,
    {
        if length > self.max_str_len {
            panic!(
                "Tried to insert a value into a text buffer which is larger than the maximum \
                allowed string length for the buffer."
            );
        }
        self.indicators[index] = (length * size_of::<C>()).try_into().unwrap();
        let start = (self.max_str_len + 1) * index;
        let end = start + length;
        // Let's insert a terminating zero at the end to be on the safe side, in case the ODBC
        // driver would not care about the value in the index buffer and only look for the
        // terminating zero.
        self.values[end] = C::default();
        &mut self.values[start..end]
    }

    /// Fills the column with NULL, between From and To
    pub fn fill_null(&mut self, from: usize, to: usize) {
        for index in from..to {
            self.indicators[index] = NULL_DATA;
        }
    }

    /// Provides access to the raw underlying value buffer. Normal applications should have little
    /// reason to call this method. Yet it may be useful for writing bindings which copy directly
    /// from the ODBC in memory representation into other kinds of buffers.
    ///
    /// The buffer contains the bytes for every non null valid element, padded to the maximum string
    /// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
    /// terminating zero at the end of each string. For the actual value length call
    /// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
    pub fn raw_value_buffer(&self, num_valid_rows: usize) -> &[C] {
        &self.values[..(self.max_str_len + 1) * num_valid_rows]
    }

    /// The maximum number of rows the TextColumn can hold.
    pub fn row_capacity(&self) -> usize {
        self.values.len()
    }
}

impl WCharColumn {
    /// The string slice at the specified position as `U16Str`. Includes interior nuls, but excludes
    /// the terminating nul.
    ///
    /// # Safety
    ///
    /// The column buffer does not know how many elements were in the last row group, and therefore
    /// can not guarantee the accessed element to be valid and in a defined state. It also can not
    /// panic on accessing an undefined element. It will panic however if `row_index` is larger or
    /// equal to the maximum number of elements in the buffer.
    pub unsafe fn ustr_at(&self, row_index: usize) -> Option<&U16Str> {
        self.value_at(row_index).map(U16Str::from_slice)
    }
}

unsafe impl<C: 'static> ColumnBuffer for TextColumn<C>
where
    TextColumn<C>: CDataMut + HasDataType,
{
    type View<'a> = TextColumnView<'a, C>;

    fn view(&self, valid_rows: usize) -> TextColumnView<'_, C> {
        TextColumnView {
            num_rows: valid_rows,
            col: self,
        }
    }

    fn fill_default(&mut self, from: usize, to: usize) {
        self.fill_null(from, to)
    }

    /// Maximum number of text strings this column may hold.
    fn capacity(&self) -> usize {
        self.indicators.len()
    }
}

/// Allows read only access to the valid part of a text column.
///
/// You may ask, why is this type required, should we not just be able to use `&TextColumn`? The
/// problem with `TextColumn` is, that it is a buffer, but it has no idea how many of its members
/// are actually valid, and have been returned with the last row group of the the result set. That
/// number is maintained on the level of the entire column buffer. So a text column knows the number
/// of valid rows, in addition to holding a reference to the buffer, in order to guarantee, that
/// every element acccessed through it, is valid.
#[derive(Debug, Clone, Copy)]
pub struct TextColumnView<'c, C> {
    num_rows: usize,
    col: &'c TextColumn<C>,
}

impl<'c, C> TextColumnView<'c, C> {
    /// The number of valid elements in the text column.
    pub fn len(&self) -> usize {
        self.num_rows
    }

    /// True if, and only if there are no valid rows in the column buffer.
    pub fn is_empty(&self) -> bool {
        self.num_rows == 0
    }

    /// Slice of text at the specified row index without terminating zero.
    pub fn get(&self, index: usize) -> Option<&'c [C]> {
        self.col.value_at(index)
    }

    /// Iterator over the valid elements of the text buffer
    pub fn iter(&self) -> TextColumnIt<'c, C> {
        TextColumnIt {
            pos: 0,
            num_rows: self.num_rows,
            col: self.col,
        }
    }

    /// Length of value at the specified position. This is different from an indicator as it refers
    /// to the length of the value in the buffer, not to the length of the value in the datasource.
    /// The two things are different for truncated values.
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        if row_index >= self.num_rows {
            panic!("Row index points beyond the range of valid values.")
        }
        self.col.content_length_at(row_index)
    }

Changes the maximum string length the buffer can hold. This operation is useful if you find an unexpected large input string during insertion.

This is however costly, as not only does the new buffer have to be allocated, but all values have to copied from the old to the new buffer.

This method could also be used to reduce the maximum string length, which would truncate strings in the process.

This method does not adjust indicator buffers as these might hold values larger than the maximum string length.

Parameters
  • new_max_str_len: New maximum string length without terminating zero.
  • num_rows: Number of valid rows currently stored in this buffer.
Examples found in repository?
src/buffers/text_column.rs (line 441)
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    pub fn ensure_max_element_length(
        &mut self,
        element_length: usize,
        num_rows_to_copy: usize,
    ) -> Result<(), Error>
    where
        TextColumn<C>: HasDataType + CData,
    {
        // Column buffer is not large enough to hold the element. We must allocate a larger buffer
        // in order to hold it. This invalidates the pointers previously bound to the statement. So
        // we rebind them.
        if element_length > self.column.max_len() {
            let new_max_str_len = element_length;
            self.column
                .resize_max_str(new_max_str_len, num_rows_to_copy);
            unsafe {
                self.stmt
                    .bind_input_parameter(self.parameter_index, self.column)
                    .into_result(&self.stmt)?
            }
        }
        Ok(())
    }

Sets the value of the buffer at index at Null or the specified binary Text. This method will panic on out of bounds index, or if input holds a text which is larger than the maximum allowed element length. input must be specified without the terminating zero.

Examples found in repository?
src/buffers/text_column.rs (line 420)
419
420
421
    pub fn set_cell(&mut self, row_index: usize, element: Option<&[C]>) {
        self.column.set_value(row_index, element)
    }
More examples
Hide additional examples
src/columnar_bulk_inserter.rs (line 254)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    pub fn append<'b>(
        &mut self,
        mut row: impl Iterator<Item = Option<&'b [u8]>>,
    ) -> Result<(), Error>
    where
        S: AsStatementRef,
    {
        if self.capacity == self.parameter_set_size {
            panic!("Trying to insert elements into TextRowSet beyond batch size.")
        }

        let mut col_index = 1;
        for column in &mut self.parameters {
            let text = row.next().expect(
                "Row passed to TextRowSet::append must contain one element for each column.",
            );
            if let Some(text) = text {
                unsafe {
                    column
                        .as_view_mut(col_index, self.statement.as_stmt_ref())
                        .ensure_max_element_length(text.len(), self.parameter_set_size)?;
                }
                column.set_value(self.parameter_set_size, Some(text));
            } else {
                column.set_value(self.parameter_set_size, None);
            }
            col_index += 1;
        }

        self.parameter_set_size += 1;

        Ok(())
    }

Can be used to set a value at a specific row index without performing a memcopy on an input slice and instead provides direct access to the underlying buffer.

In situations there the memcopy can not be avoided anyway Self::set_value is likely to be more convenient. This method is very useful if you want to write! a string value to the buffer and the binary (!) length of the formatted string is known upfront.

Example: Write timestamp to text column.
use odbc_api::buffers::TextColumn;
use std::io::Write;

/// Writes times formatted as hh::mm::ss.fff
fn write_time(
    col: &mut TextColumn<u8>,
    index: usize,
    hours: u8,
    minutes: u8,
    seconds: u8,
    milliseconds: u16)
{
    write!(
        col.set_mut(index, 12),
        "{:02}:{:02}:{:02}.{:03}",
        hours, minutes, seconds, milliseconds
    ).unwrap();
}
Examples found in repository?
src/buffers/text_column.rs (line 202)
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    pub fn set_value(&mut self, index: usize, input: Option<&[C]>)
    where
        C: Default + Copy,
    {
        if let Some(input) = input {
            self.set_mut(index, input.len()).copy_from_slice(input);
        } else {
            self.indicators[index] = NULL_DATA;
        }
    }

    /// Can be used to set a value at a specific row index without performing a memcopy on an input
    /// slice and instead provides direct access to the underlying buffer.
    ///
    /// In situations there the memcopy can not be avoided anyway [`Self::set_value`] is likely to
    /// be more convenient. This method is very useful if you want to `write!` a string value to the
    /// buffer and the binary (**!**) length of the formatted string is known upfront.
    ///
    /// # Example: Write timestamp to text column.
    ///
    /// ```
    /// use odbc_api::buffers::TextColumn;
    /// use std::io::Write;
    ///
    /// /// Writes times formatted as hh::mm::ss.fff
    /// fn write_time(
    ///     col: &mut TextColumn<u8>,
    ///     index: usize,
    ///     hours: u8,
    ///     minutes: u8,
    ///     seconds: u8,
    ///     milliseconds: u16)
    /// {
    ///     write!(
    ///         col.set_mut(index, 12),
    ///         "{:02}:{:02}:{:02}.{:03}",
    ///         hours, minutes, seconds, milliseconds
    ///     ).unwrap();
    /// }
    /// ```
    pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C]
    where
        C: Default,
    {
        if length > self.max_str_len {
            panic!(
                "Tried to insert a value into a text buffer which is larger than the maximum \
                allowed string length for the buffer."
            );
        }
        self.indicators[index] = (length * size_of::<C>()).try_into().unwrap();
        let start = (self.max_str_len + 1) * index;
        let end = start + length;
        // Let's insert a terminating zero at the end to be on the safe side, in case the ODBC
        // driver would not care about the value in the index buffer and only look for the
        // terminating zero.
        self.values[end] = C::default();
        &mut self.values[start..end]
    }

    /// Fills the column with NULL, between From and To
    pub fn fill_null(&mut self, from: usize, to: usize) {
        for index in from..to {
            self.indicators[index] = NULL_DATA;
        }
    }

    /// Provides access to the raw underlying value buffer. Normal applications should have little
    /// reason to call this method. Yet it may be useful for writing bindings which copy directly
    /// from the ODBC in memory representation into other kinds of buffers.
    ///
    /// The buffer contains the bytes for every non null valid element, padded to the maximum string
    /// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
    /// terminating zero at the end of each string. For the actual value length call
    /// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
    pub fn raw_value_buffer(&self, num_valid_rows: usize) -> &[C] {
        &self.values[..(self.max_str_len + 1) * num_valid_rows]
    }

    /// The maximum number of rows the TextColumn can hold.
    pub fn row_capacity(&self) -> usize {
        self.values.len()
    }
}

impl WCharColumn {
    /// The string slice at the specified position as `U16Str`. Includes interior nuls, but excludes
    /// the terminating nul.
    ///
    /// # Safety
    ///
    /// The column buffer does not know how many elements were in the last row group, and therefore
    /// can not guarantee the accessed element to be valid and in a defined state. It also can not
    /// panic on accessing an undefined element. It will panic however if `row_index` is larger or
    /// equal to the maximum number of elements in the buffer.
    pub unsafe fn ustr_at(&self, row_index: usize) -> Option<&U16Str> {
        self.value_at(row_index).map(U16Str::from_slice)
    }
}

unsafe impl<C: 'static> ColumnBuffer for TextColumn<C>
where
    TextColumn<C>: CDataMut + HasDataType,
{
    type View<'a> = TextColumnView<'a, C>;

    fn view(&self, valid_rows: usize) -> TextColumnView<'_, C> {
        TextColumnView {
            num_rows: valid_rows,
            col: self,
        }
    }

    fn fill_default(&mut self, from: usize, to: usize) {
        self.fill_null(from, to)
    }

    /// Maximum number of text strings this column may hold.
    fn capacity(&self) -> usize {
        self.indicators.len()
    }
}

/// Allows read only access to the valid part of a text column.
///
/// You may ask, why is this type required, should we not just be able to use `&TextColumn`? The
/// problem with `TextColumn` is, that it is a buffer, but it has no idea how many of its members
/// are actually valid, and have been returned with the last row group of the the result set. That
/// number is maintained on the level of the entire column buffer. So a text column knows the number
/// of valid rows, in addition to holding a reference to the buffer, in order to guarantee, that
/// every element acccessed through it, is valid.
#[derive(Debug, Clone, Copy)]
pub struct TextColumnView<'c, C> {
    num_rows: usize,
    col: &'c TextColumn<C>,
}

impl<'c, C> TextColumnView<'c, C> {
    /// The number of valid elements in the text column.
    pub fn len(&self) -> usize {
        self.num_rows
    }

    /// True if, and only if there are no valid rows in the column buffer.
    pub fn is_empty(&self) -> bool {
        self.num_rows == 0
    }

    /// Slice of text at the specified row index without terminating zero.
    pub fn get(&self, index: usize) -> Option<&'c [C]> {
        self.col.value_at(index)
    }

    /// Iterator over the valid elements of the text buffer
    pub fn iter(&self) -> TextColumnIt<'c, C> {
        TextColumnIt {
            pos: 0,
            num_rows: self.num_rows,
            col: self.col,
        }
    }

    /// Length of value at the specified position. This is different from an indicator as it refers
    /// to the length of the value in the buffer, not to the length of the value in the datasource.
    /// The two things are different for truncated values.
    pub fn content_length_at(&self, row_index: usize) -> Option<usize> {
        if row_index >= self.num_rows {
            panic!("Row index points beyond the range of valid values.")
        }
        self.col.content_length_at(row_index)
    }

    /// Provides access to the raw underlying value buffer. Normal applications should have little
    /// reason to call this method. Yet it may be useful for writing bindings which copy directly
    /// from the ODBC in memory representation into other kinds of buffers.
    ///
    /// The buffer contains the bytes for every non null valid element, padded to the maximum string
    /// length. The content of the padding bytes is undefined. Usually ODBC drivers write a
    /// terminating zero at the end of each string. For the actual value length call
    /// [`Self::content_length_at`]. Any element starts at index * ([`Self::max_len`] + 1).
    pub fn raw_value_buffer(&self) -> &'c [C] {
        self.col.raw_value_buffer(self.num_rows)
    }

    pub fn max_len(&self) -> usize {
        self.col.max_len()
    }
}

unsafe impl<'a, C: 'static> BoundInputSlice<'a> for TextColumn<C> {
    type SliceMut = TextColumnSliceMut<'a, C>;

    unsafe fn as_view_mut(
        &'a mut self,
        parameter_index: u16,
        stmt: StatementRef<'a>,
    ) -> Self::SliceMut {
        TextColumnSliceMut {
            column: self,
            stmt,
            parameter_index,
        }
    }
}

/// A view to a mutable array parameter text buffer, which allows for filling the buffer with
/// values.
pub struct TextColumnSliceMut<'a, C> {
    column: &'a mut TextColumn<C>,
    // Needed to rebind the column in case of resize
    stmt: StatementRef<'a>,
    // Also needed to rebind the column in case of resize
    parameter_index: u16,
}

impl<'a, C> TextColumnSliceMut<'a, C>
where
    C: Default + Copy,
{
    /// Sets the value of the buffer at index at Null or the specified binary Text. This method will
    /// panic on out of bounds index, or if input holds a text which is larger than the maximum
    /// allowed element length. `element` must be specified without the terminating zero.
    pub fn set_cell(&mut self, row_index: usize, element: Option<&[C]>) {
        self.column.set_value(row_index, element)
    }

    /// Ensures that the buffer is large enough to hold elements of `element_length`. Does nothing
    /// if the buffer is already large enough. Otherwise it will reallocate and rebind the buffer.
    /// The first `num_rows_to_copy_elements` will be copied from the old value buffer to the new
    /// one. This makes this an extremly expensive operation.
    pub fn ensure_max_element_length(
        &mut self,
        element_length: usize,
        num_rows_to_copy: usize,
    ) -> Result<(), Error>
    where
        TextColumn<C>: HasDataType + CData,
    {
        // Column buffer is not large enough to hold the element. We must allocate a larger buffer
        // in order to hold it. This invalidates the pointers previously bound to the statement. So
        // we rebind them.
        if element_length > self.column.max_len() {
            let new_max_str_len = element_length;
            self.column
                .resize_max_str(new_max_str_len, num_rows_to_copy);
            unsafe {
                self.stmt
                    .bind_input_parameter(self.parameter_index, self.column)
                    .into_result(&self.stmt)?
            }
        }
        Ok(())
    }

    /// Can be used to set a value at a specific row index without performing a memcopy on an input
    /// slice and instead provides direct access to the underlying buffer.
    ///
    /// In situations there the memcopy can not be avoided anyway [`Self::set_cell`] is likely to
    /// be more convenient. This method is very useful if you want to `write!` a string value to the
    /// buffer and the binary (**!**) length of the formatted string is known upfront.
    ///
    /// # Example: Write timestamp to text column.
    ///
    /// ```
    /// use odbc_api::buffers::TextColumnSliceMut;
    /// use std::io::Write;
    ///
    /// /// Writes times formatted as hh::mm::ss.fff
    /// fn write_time(
    ///     col: &mut TextColumnSliceMut<u8>,
    ///     index: usize,
    ///     hours: u8,
    ///     minutes: u8,
    ///     seconds: u8,
    ///     milliseconds: u16)
    /// {
    ///     write!(
    ///         col.set_mut(index, 12),
    ///         "{:02}:{:02}:{:02}.{:03}",
    ///         hours, minutes, seconds, milliseconds
    ///     ).unwrap();
    /// }
    /// ```
    pub fn set_mut(&mut self, index: usize, length: usize) -> &mut [C] {
        self.column.set_mut(index, length)
    }

Fills the column with NULL, between From and To

Examples found in repository?
src/buffers/text_column.rs (line 311)
310
311
312
    fn fill_default(&mut self, from: usize, to: usize) {
        self.fill_null(from, to)
    }
More examples
Hide additional examples
src/buffers/any_buffer.rs (line 609)
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
    fn fill_default(&mut self, from: usize, to: usize) {
        match self {
            AnyBuffer::Binary(col) => col.fill_null(from, to),
            AnyBuffer::Text(col) => col.fill_null(from, to),
            AnyBuffer::WText(col) => col.fill_null(from, to),
            AnyBuffer::Date(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::Time(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::Timestamp(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::F64(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::F32(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::I8(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::I16(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::I32(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::I64(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::U8(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::Bit(col) => Self::fill_default_slice(&mut col[from..to]),
            AnyBuffer::NullableDate(col) => col.fill_null(from, to),
            AnyBuffer::NullableTime(col) => col.fill_null(from, to),
            AnyBuffer::NullableTimestamp(col) => col.fill_null(from, to),
            AnyBuffer::NullableF64(col) => col.fill_null(from, to),
            AnyBuffer::NullableF32(col) => col.fill_null(from, to),
            AnyBuffer::NullableI8(col) => col.fill_null(from, to),
            AnyBuffer::NullableI16(col) => col.fill_null(from, to),
            AnyBuffer::NullableI32(col) => col.fill_null(from, to),
            AnyBuffer::NullableI64(col) => col.fill_null(from, to),
            AnyBuffer::NullableU8(col) => col.fill_null(from, to),
            AnyBuffer::NullableBit(col) => col.fill_null(from, to),
        }
    }

Provides access to the raw underlying value buffer. Normal applications should have little reason to call this method. Yet it may be useful for writing bindings which copy directly from the ODBC in memory representation into other kinds of buffers.

The buffer contains the bytes for every non null valid element, padded to the maximum string length. The content of the padding bytes is undefined. Usually ODBC drivers write a terminating zero at the end of each string. For the actual value length call Self::content_length_at. Any element starts at index * (Self::max_len + 1).

Examples found in repository?
src/buffers/text_column.rs (line 378)
377
378
379
    pub fn raw_value_buffer(&self) -> &'c [C] {
        self.col.raw_value_buffer(self.num_rows)
    }

The maximum number of rows the TextColumn can hold.

The string slice at the specified position as U16Str. Includes interior nuls, but excludes the terminating nul.

Safety

The column buffer does not know how many elements were in the last row group, and therefore can not guarantee the accessed element to be valid and in a defined state. It also can not panic on accessing an undefined element. It will panic however if row_index is larger or equal to the maximum number of elements in the buffer.

Trait Implementations§

Intended to allow for modifying buffer contents, while leaving the bound parameter buffers valid.
Obtain a mutable view on a parameter buffer in order to change the parameter value(s) submitted when executing the statement. Read more

Maximum number of text strings this column may hold.

Immutable view on the column data. Used in safe abstractions. User must not be able to access uninitialized or invalid memory of the buffer through this interface.
Num rows may not exceed the actually amount of valid num_rows filled be the ODBC API. The column buffer does not know how many elements were in the last row group, and therefore can not guarantee the accessed element to be valid and in a defined state. It also can not panic on accessing an undefined element.
Fills the column with the default representation of values, between from and to index.
Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.