pub struct VarChar<B> { /* private fields */ }Expand description
Binds a byte array as Variadic sized character data. It can not be used for columnar bulk fetches, but if the buffer type is stack allocated it can be utilized in row wise bulk fetches.
Meaningful instantiations of this type are:
self::VarCharSlice- immutable borrowed parameter.self::VarCharSliceMut- mutable borrowed input / output parameterself::VarCharArray- stack allocated owned input / output parameterself::VarCharBox- heap allocated owned input /output parameter
Implementations§
source§impl VarChar<Box<[u8], Global>>
impl VarChar<Box<[u8], Global>>
sourcepub fn from_string(val: String) -> Self
pub fn from_string(val: String) -> Self
Create an owned parameter containing the character data from the passed string.
source§impl<B> VarChar<B>where
B: Borrow<[u8]>,
impl<B> VarChar<B>where
B: Borrow<[u8]>,
sourcepub fn from_buffer(buffer: B, indicator: Indicator) -> Self
pub fn from_buffer(buffer: B, indicator: Indicator) -> Self
Creates a new instance from an existing buffer. Should the indicator be NoTotal or indicate
a length longer than buffer, the last element in the buffer must be nul (\0).
Examples found in repository?
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
pub fn null() -> Self {
// We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
// which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
// ODBC driver.
Self::from_buffer(Box::new([0]), Indicator::Null)
}
/// Create an owned parameter containing the character data from the passed string.
pub fn from_string(val: String) -> Self {
Self::from_vec(val.into_bytes())
}
/// Create a VarChar box from a `Vec`.
pub fn from_vec(val: Vec<u8>) -> Self {
let indicator = Indicator::Length(val.len());
let buffer = val.into_boxed_slice();
Self::from_buffer(buffer, indicator)
}
}
impl<B> VarChar<B>
where
B: Borrow<[u8]>,
{
/// Creates a new instance from an existing buffer. Should the indicator be `NoTotal` or indicate
/// a length longer than buffer, the last element in the buffer must be nul (`\0`).
pub fn from_buffer(buffer: B, indicator: Indicator) -> Self {
let buf = buffer.borrow();
match indicator {
Indicator::Null => (),
Indicator::NoTotal => {
if buf.is_empty() || *buf.last().unwrap() != 0 {
panic!("Truncated value must be terminated with zero.")
}
}
Indicator::Length(len) => {
if len > buf.len() && (buf.is_empty() || *buf.last().unwrap() != 0) {
panic!("Truncated value must be terminated with zero.")
}
}
};
Self {
buffer,
indicator: indicator.to_isize(),
}
}
/// Returns the binary representation of the string, excluding the terminating zero or `None` in
/// case the indicator is `NULL_DATA`.
pub fn as_bytes(&self) -> Option<&[u8]> {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => None,
Indicator::NoTotal => Some(&slice[..(slice.len() - 1)]),
Indicator::Length(len) => {
if self.is_complete() {
Some(&slice[..len])
} else {
Some(&slice[..(slice.len() - 1)])
}
}
}
}
/// Call this method to ensure that the entire field content did fit into the buffer. If you
/// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
/// method is false to read all the data.
///
/// ```
/// use odbc_api::{CursorRow, parameter::VarCharArray, Error, handles::Statement};
///
/// fn process_large_text(
/// col_index: u16,
/// row: &mut CursorRow<'_>
/// ) -> Result<(), Error>{
/// let mut buf = VarCharArray::<512>::NULL;
/// row.get_data(col_index, &mut buf)?;
/// while !buf.is_complete() {
/// // Process bytes in stream without allocation. We can assume repeated calls to
/// // get_data do not return `None` since it would have done so on the first call.
/// process_text_slice(buf.as_bytes().unwrap());
/// }
/// Ok(())
/// }
///
/// fn process_text_slice(text: &[u8]) { /*...*/}
///
/// ```
pub fn is_complete(&self) -> bool {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => true,
Indicator::NoTotal => false,
Indicator::Length(len) => {
len < slice.len() || slice.is_empty() || *slice.last().unwrap() != 0
}
}
}
/// Read access to the underlying ODBC indicator. After data has been fetched the indicator
/// value is set to the length the buffer should have had, excluding the terminating zero. It
/// may also be `NULL_DATA` to indicate `NULL` or `NO_TOTAL` which tells us the data source
/// does not know how big the buffer must be to hold the complete value. `NO_TOTAL` implies that
/// the content of the current buffer is valid up to its maximum capacity.
pub fn indicator(&self) -> Indicator {
Indicator::from_isize(self.indicator)
}
}
impl<B> VarChar<B>
where
B: Borrow<[u8]>,
{
/// Call this method to reset the indicator to a value which matches the length returned by the
/// [`Self::as_bytes`] method. This is useful if you want to insert values into the database
/// despite the fact, that they might have been truncated. Otherwise the behaviour of databases
/// in this situation is driver specific. Some drivers insert up to the terminating zero, others
/// detect the truncation and throw an error.
pub fn hide_truncation(&mut self) {
if !self.is_complete() {
self.indicator = (self.buffer.borrow().len() - 1).try_into().unwrap();
}
}
}
unsafe impl<B> CData for VarChar<B>
where
B: Borrow<[u8]>,
{
fn cdata_type(&self) -> CDataType {
CDataType::Char
}
fn indicator_ptr(&self) -> *const isize {
&self.indicator as *const isize
}
fn value_ptr(&self) -> *const c_void {
self.buffer.borrow().as_ptr() as *const c_void
}
fn buffer_length(&self) -> isize {
// This is the maximum buffer length, but it is NOT the length of an instance of Self due to
// the missing size of the indicator value. As such the buffer length can not be used to
// correctly index a columnar buffer of Self.
self.buffer.borrow().len().try_into().unwrap()
}
}
impl<B> HasDataType for VarChar<B>
where
B: Borrow<[u8]>,
{
fn data_type(&self) -> DataType {
// Since we might use as an input buffer, we report the full buffer length in the type and
// do not deduct 1 for the terminating zero.
DataType::Varchar {
length: self.buffer.borrow().len(),
}
}
}
unsafe impl<B> CDataMut for VarChar<B>
where
B: BorrowMut<[u8]>,
{
fn mut_indicator_ptr(&mut self) -> *mut isize {
&mut self.indicator as *mut isize
}
fn mut_value_ptr(&mut self) -> *mut c_void {
self.buffer.borrow_mut().as_mut_ptr() as *mut c_void
}
}
/// Binds a byte array as a VarChar input parameter.
///
/// While a byte array can provide us with a pointer to the start of the array and the length of the
/// array itself, it can not provide us with a pointer to the length of the buffer. So to bind
/// strings which are not zero terminated we need to store the length in a separate value.
///
/// This type is created if `into_parameter` of the `IntoParameter` trait is called on a `&str`.
///
/// # Example
///
/// ```no_run
/// use odbc_api::{Environment, IntoParameter};
///
/// let env = Environment::new()?;
///
/// let mut conn = env.connect("YourDatabase", "SA", "My@Test@Password1")?;
/// if let Some(cursor) = conn.execute(
/// "SELECT year FROM Birthdays WHERE name=?;",
/// &"Bernd".into_parameter())?
/// {
/// // Use cursor to process query results.
/// };
/// # Ok::<(), odbc_api::Error>(())
/// ```
pub type VarCharSlice<'a> = VarChar<&'a [u8]>;
impl<'a> VarCharSlice<'a> {
/// Indicates missing data
pub const NULL: Self = Self {
// We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
// which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
// ODBC driver.
buffer: &[0],
indicator: NULL_DATA,
};
/// Constructs a new VarChar containing the text in the specified buffer.
///
/// Caveat: This constructor is going to create a truncated value in case the input slice ends
/// with `nul`. Should you want to insert an actual string those payload ends with `nul` into
/// the database you need a buffer one byte longer than the string. You can instantiate such a
/// value using [`Self::from_buffer`].
pub fn new(value: &'a [u8]) -> Self {
Self::from_buffer(value, Indicator::Length(value.len()))
}More examples
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
pub fn get_text(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
// Utilize all of the allocated buffer. We must make sure buffer can at least hold the
// terminating zero. We do a bit more than that though, to avoid to many repeated calls to
// get_data.
buf.resize(max(256, buf.capacity()), 0);
// We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
// accumulated value size. This variable keeps track of the number of bytes we added with
// the next call to get_data.
let mut fetch_size = buf.len();
let mut target = VarCharSliceMut::from_buffer(buf.as_mut_slice(), Indicator::Null);
// Fetch binary data into buffer.
self.get_data(col_or_param_num, &mut target)?;
let not_null = loop {
match target.indicator() {
// Value is `NULL`. We are done here.
Indicator::Null => {
buf.clear();
break false;
}
// We do not know how large the value is. Let's fetch the data with repeated calls
// to get_data.
Indicator::NoTotal => {
let old_len = buf.len();
// Use an exponential strategy for increasing buffer size.
buf.resize(old_len * 2, 0);
let buf_extend = &mut buf[(old_len - 1)..];
fetch_size = buf_extend.len();
target = VarCharSliceMut::from_buffer(buf_extend, Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
// We did get the complete value, including the terminating zero. Let's resize the
// buffer to match the retrieved value exactly (excluding terminating zero).
Indicator::Length(len) if len < fetch_size => {
// Since the indicator refers to value length without terminating zero, this
// also implicitly drops the terminating zero at the end of the buffer.
let shrink_by = fetch_size - len;
buf.resize(buf.len() - shrink_by, 0);
break true;
}
// We did not get all of the value in one go, but the data source has been friendly
// enough to tell us how much is missing.
Indicator::Length(len) => {
let still_missing = len - fetch_size + 1;
let old_len = buf.len();
buf.resize(old_len + still_missing, 0);
let buf_extend = &mut buf[(old_len - 1)..];
fetch_size = buf_extend.len();
target = VarCharSliceMut::from_buffer(buf_extend, Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
}
};
Ok(not_null)
}sourcepub fn as_bytes(&self) -> Option<&[u8]>
pub fn as_bytes(&self) -> Option<&[u8]>
Returns the binary representation of the string, excluding the terminating zero or None in
case the indicator is NULL_DATA.
sourcepub fn is_complete(&self) -> bool
pub fn is_complete(&self) -> bool
Call this method to ensure that the entire field content did fit into the buffer. If you
retrieve a field using crate::CursorRow::get_data, you can repeat the call until this
method is false to read all the data.
use odbc_api::{CursorRow, parameter::VarCharArray, Error, handles::Statement};
fn process_large_text(
col_index: u16,
row: &mut CursorRow<'_>
) -> Result<(), Error>{
let mut buf = VarCharArray::<512>::NULL;
row.get_data(col_index, &mut buf)?;
while !buf.is_complete() {
// Process bytes in stream without allocation. We can assume repeated calls to
// get_data do not return `None` since it would have done so on the first call.
process_text_slice(buf.as_bytes().unwrap());
}
Ok(())
}
fn process_text_slice(text: &[u8]) { /*...*/}
Examples found in repository?
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
pub fn as_bytes(&self) -> Option<&[u8]> {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => None,
Indicator::NoTotal => Some(&slice[..(slice.len() - 1)]),
Indicator::Length(len) => {
if self.is_complete() {
Some(&slice[..len])
} else {
Some(&slice[..(slice.len() - 1)])
}
}
}
}
/// Call this method to ensure that the entire field content did fit into the buffer. If you
/// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
/// method is false to read all the data.
///
/// ```
/// use odbc_api::{CursorRow, parameter::VarCharArray, Error, handles::Statement};
///
/// fn process_large_text(
/// col_index: u16,
/// row: &mut CursorRow<'_>
/// ) -> Result<(), Error>{
/// let mut buf = VarCharArray::<512>::NULL;
/// row.get_data(col_index, &mut buf)?;
/// while !buf.is_complete() {
/// // Process bytes in stream without allocation. We can assume repeated calls to
/// // get_data do not return `None` since it would have done so on the first call.
/// process_text_slice(buf.as_bytes().unwrap());
/// }
/// Ok(())
/// }
///
/// fn process_text_slice(text: &[u8]) { /*...*/}
///
/// ```
pub fn is_complete(&self) -> bool {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => true,
Indicator::NoTotal => false,
Indicator::Length(len) => {
len < slice.len() || slice.is_empty() || *slice.last().unwrap() != 0
}
}
}
/// Read access to the underlying ODBC indicator. After data has been fetched the indicator
/// value is set to the length the buffer should have had, excluding the terminating zero. It
/// may also be `NULL_DATA` to indicate `NULL` or `NO_TOTAL` which tells us the data source
/// does not know how big the buffer must be to hold the complete value. `NO_TOTAL` implies that
/// the content of the current buffer is valid up to its maximum capacity.
pub fn indicator(&self) -> Indicator {
Indicator::from_isize(self.indicator)
}
}
impl<B> VarChar<B>
where
B: Borrow<[u8]>,
{
/// Call this method to reset the indicator to a value which matches the length returned by the
/// [`Self::as_bytes`] method. This is useful if you want to insert values into the database
/// despite the fact, that they might have been truncated. Otherwise the behaviour of databases
/// in this situation is driver specific. Some drivers insert up to the terminating zero, others
/// detect the truncation and throw an error.
pub fn hide_truncation(&mut self) {
if !self.is_complete() {
self.indicator = (self.buffer.borrow().len() - 1).try_into().unwrap();
}
}sourcepub fn indicator(&self) -> Indicator
pub fn indicator(&self) -> Indicator
Read access to the underlying ODBC indicator. After data has been fetched the indicator
value is set to the length the buffer should have had, excluding the terminating zero. It
may also be NULL_DATA to indicate NULL or NO_TOTAL which tells us the data source
does not know how big the buffer must be to hold the complete value. NO_TOTAL implies that
the content of the current buffer is valid up to its maximum capacity.
Examples found in repository?
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
pub fn as_bytes(&self) -> Option<&[u8]> {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => None,
Indicator::NoTotal => Some(&slice[..(slice.len() - 1)]),
Indicator::Length(len) => {
if self.is_complete() {
Some(&slice[..len])
} else {
Some(&slice[..(slice.len() - 1)])
}
}
}
}
/// Call this method to ensure that the entire field content did fit into the buffer. If you
/// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
/// method is false to read all the data.
///
/// ```
/// use odbc_api::{CursorRow, parameter::VarCharArray, Error, handles::Statement};
///
/// fn process_large_text(
/// col_index: u16,
/// row: &mut CursorRow<'_>
/// ) -> Result<(), Error>{
/// let mut buf = VarCharArray::<512>::NULL;
/// row.get_data(col_index, &mut buf)?;
/// while !buf.is_complete() {
/// // Process bytes in stream without allocation. We can assume repeated calls to
/// // get_data do not return `None` since it would have done so on the first call.
/// process_text_slice(buf.as_bytes().unwrap());
/// }
/// Ok(())
/// }
///
/// fn process_text_slice(text: &[u8]) { /*...*/}
///
/// ```
pub fn is_complete(&self) -> bool {
let slice = self.buffer.borrow();
match self.indicator() {
Indicator::Null => true,
Indicator::NoTotal => false,
Indicator::Length(len) => {
len < slice.len() || slice.is_empty() || *slice.last().unwrap() != 0
}
}
}More examples
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
pub fn get_text(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
// Utilize all of the allocated buffer. We must make sure buffer can at least hold the
// terminating zero. We do a bit more than that though, to avoid to many repeated calls to
// get_data.
buf.resize(max(256, buf.capacity()), 0);
// We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
// accumulated value size. This variable keeps track of the number of bytes we added with
// the next call to get_data.
let mut fetch_size = buf.len();
let mut target = VarCharSliceMut::from_buffer(buf.as_mut_slice(), Indicator::Null);
// Fetch binary data into buffer.
self.get_data(col_or_param_num, &mut target)?;
let not_null = loop {
match target.indicator() {
// Value is `NULL`. We are done here.
Indicator::Null => {
buf.clear();
break false;
}
// We do not know how large the value is. Let's fetch the data with repeated calls
// to get_data.
Indicator::NoTotal => {
let old_len = buf.len();
// Use an exponential strategy for increasing buffer size.
buf.resize(old_len * 2, 0);
let buf_extend = &mut buf[(old_len - 1)..];
fetch_size = buf_extend.len();
target = VarCharSliceMut::from_buffer(buf_extend, Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
// We did get the complete value, including the terminating zero. Let's resize the
// buffer to match the retrieved value exactly (excluding terminating zero).
Indicator::Length(len) if len < fetch_size => {
// Since the indicator refers to value length without terminating zero, this
// also implicitly drops the terminating zero at the end of the buffer.
let shrink_by = fetch_size - len;
buf.resize(buf.len() - shrink_by, 0);
break true;
}
// We did not get all of the value in one go, but the data source has been friendly
// enough to tell us how much is missing.
Indicator::Length(len) => {
let still_missing = len - fetch_size + 1;
let old_len = buf.len();
buf.resize(old_len + still_missing, 0);
let buf_extend = &mut buf[(old_len - 1)..];
fetch_size = buf_extend.len();
target = VarCharSliceMut::from_buffer(buf_extend, Indicator::Null);
self.get_data(col_or_param_num, &mut target)?;
}
}
};
Ok(not_null)
}source§impl<B> VarChar<B>where
B: Borrow<[u8]>,
impl<B> VarChar<B>where
B: Borrow<[u8]>,
sourcepub fn hide_truncation(&mut self)
pub fn hide_truncation(&mut self)
Call this method to reset the indicator to a value which matches the length returned by the
Self::as_bytes method. This is useful if you want to insert values into the database
despite the fact, that they might have been truncated. Otherwise the behaviour of databases
in this situation is driver specific. Some drivers insert up to the terminating zero, others
detect the truncation and throw an error.
source§impl<'a> VarChar<&'a [u8]>
impl<'a> VarChar<&'a [u8]>
sourcepub fn new(value: &'a [u8]) -> Self
pub fn new(value: &'a [u8]) -> Self
Constructs a new VarChar containing the text in the specified buffer.
Caveat: This constructor is going to create a truncated value in case the input slice ends
with nul. Should you want to insert an actual string those payload ends with nul into
the database you need a buffer one byte longer than the string. You can instantiate such a
value using Self::from_buffer.
Trait Implementations§
source§impl<B> CData for VarChar<B>where
B: Borrow<[u8]>,
impl<B> CData for VarChar<B>where
B: Borrow<[u8]>,
source§fn cdata_type(&self) -> CDataType
fn cdata_type(&self) -> CDataType
fetch, the driver converts the data to this type. When it sends data to
the source, the driver converts the data from this type.source§fn indicator_ptr(&self) -> *const isize
fn indicator_ptr(&self) -> *const isize
source§fn value_ptr(&self) -> *const c_void
fn value_ptr(&self) -> *const c_void
cdata_type.source§fn buffer_length(&self) -> isize
fn buffer_length(&self) -> isize
CStr.source§impl<B> CDataMut for VarChar<B>where
B: BorrowMut<[u8]>,
impl<B> CDataMut for VarChar<B>where
B: BorrowMut<[u8]>,
source§fn mut_indicator_ptr(&mut self) -> *mut isize
fn mut_indicator_ptr(&mut self) -> *mut isize
source§fn mut_value_ptr(&mut self) -> *mut c_void
fn mut_value_ptr(&mut self) -> *mut c_void
cdata_type.