pub enum DataType {
Show 23 variants Unknown, Char { length: usize, }, WChar { length: usize, }, Numeric { precision: usize, scale: i16, }, Decimal { precision: usize, scale: i16, }, Integer, SmallInt, Float { precision: usize, }, Real, Double, Varchar { length: usize, }, WVarchar { length: usize, }, LongVarchar { length: usize, }, LongVarbinary { length: usize, }, Date, Time { precision: i16, }, Timestamp { precision: i16, }, BigInt, TinyInt, Bit, Varbinary { length: usize, }, Binary { length: usize, }, Other { data_type: SqlDataType, column_size: usize, decimal_digits: i16, },
}
Expand description

The relational type of the column. Think of it as the type used in the CREATE TABLE statement then creating the database.

There might be a mismatch between the types supported by your database and the types defined in ODBC. E.g. ODBC does not have a timestamp with timezone type, theras Postgersql and Microsoft SQL Server both have one. In such cases it is up to the specific ODBC driver what happens. Microsoft SQL Server return a custom type, with its meaning specific to that driver. PostgreSQL identifies that column as an ordinary ODBC timestamp. Enumeration over valid SQL Data Types supported by ODBC

Variants§

§

Unknown

The type is not known.

§

Char

Fields

§length: usize

Column size in characters (excluding terminating zero).

Char(n). Character string of fixed length.

§

WChar

Fields

§length: usize

Column size in characters (excluding terminating zero).

NChar(n). Character string of fixed length.

§

Numeric

Fields

§precision: usize

Total number of digits.

§scale: i16

Number of decimal digits.

`Numeric(p,s). Signed, exact, numeric value with a precision p and scale s (1 <= p <= 15; s <= p)

§

Decimal

Fields

§precision: usize

Total number of digits.

§scale: i16

Number of decimal digits.

Decimal(p,s). Signed, exact, numeric value with a precision of at least p and scale s. The maximum precision is driver-defined. (1 <= p <= 15; s <= p)

§

Integer

Integer. 32 Bit Integer

§

SmallInt

Smallint. 16 Bit Integer

§

Float

Fields

§precision: usize

Float(p). Signed, approximate, numeric value with a binary precision of at least p. The maximum precision is driver-defined.

Depending on the implementation binary precision is either 24 (f32) or 53 (f64).

§

Real

Real. Signed, approximate, numeric value with a binary precision 24 (zero or absolute value 10^-38] to 10^38).

§

Double

Double Precision. Signed, approximate, numeric value with a binary precision 53 (zero or absolute value 10^-308 to 10^308).

§

Varchar

Fields

§length: usize

Maximum length of the character string (excluding terminating zero). Wether this length is to be interpreted as bytes or Codepoints is ambigious and depends on the datasource.

E.g. For Microsoft SQL Server this is the binary length, theras for a MariaDB this refers to codepoints in case of UTF-8 encoding. If you need the binary size query the octet length for that column instead.

To find out how to interpret this value for a particular datasource you can use the odbcsv command line tool list-columns subcommand and query a Varchar column. If the buffer/octet length matches the column size, you can interpret this as the byte length.

Varchar(n). Variable length character string.

§

WVarchar

Fields

§length: usize

Maximum length of the character string (excluding terminating zero).

NVARCHAR(n). Variable length character string. Indicates the use of wide character strings and use of UCS2 encoding on the side of the database.

§

LongVarchar

Fields

§length: usize

Maximum length of the character string (excluding terminating zero). Maximum size depends on the capabilities of the driver and datasource. E.g. its 2^31 - 1 for MSSQL.

TEXT. Variable length characeter string for long text objects.

§

LongVarbinary

Fields

§length: usize

Maximum length of the binary data. Maximum size depends on the capabilities of the driver and datasource.

BLOB. Variable length data for long binary objects.

§

Date

Date. Year, month, and day fields, conforming to the rules of the Gregorian calendar.

§

Time

Fields

§precision: i16

Number of radix ten digits used to represent the timestamp after the decimal points. E.g. Milliseconds would be represented by precision 3, Microseconds by 6 and Nanoseconds by 9.

Time. Hour, minute, and second fields, with valid values for hours of 00 to 23, valid values for minutes of 00 to 59, and valid values for seconds of 00 to 61. Precision p indicates the seconds precision.

§

Timestamp

Fields

§precision: i16

Number of radix ten digits used to represent the timestamp after the decimal points. E.g. Milliseconds would be represented by precision 3, Microseconds by 6 and Nanoseconds by 9.

Timestamp. Year, month, day, hour, minute, and second fields, with valid values as defined for the Date and Time variants.

§

BigInt

BIGINT. Exact numeric value with precision 19 (if signed) or 20 (if unsigned) and scale 0 (signed: -2^63 <= n <= 2^63 - 1, unsigned: 0 <= n <= 2^64 - 1). Has no corresponding type in SQL-92.

§

TinyInt

TINYINT. Exact numeric value with precision 3 and scale 0 (signed: -128 <= n <= 127, unsigned: 0 <= n <= 255)

§

Bit

BIT. Single bit binary data.

§

Varbinary

Fields

§length: usize

VARBINARY(n). Type for variable sized binary data.

§

Binary

Fields

§length: usize

BINARY(n). Type for fixed sized binary data.

§

Other

Fields

§data_type: SqlDataType

Type of the column

§column_size: usize

Size of column element

§decimal_digits: i16

Decimal digits returned for the column element. Exact meaning if any depends on the data_type field.

The driver returned a type, but it is not among the other types of these enumeration. This is a catchall, in case the library is incomplete, or the data source supports custom or non-standard types.

Implementations§

This constructor is useful to create an instance of the enumeration using values returned by ODBC Api calls like SQLDescribeCol, rather than just initializing a variant directly.

Examples found in repository?
src/handles/statement.rs (line 292)
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    fn describe_col(
        &self,
        column_number: u16,
        column_description: &mut ColumnDescription,
    ) -> SqlResult<()> {
        let name = &mut column_description.name;
        // Use maximum available capacity.
        name.resize(name.capacity(), 0);
        let mut name_length: i16 = 0;
        let mut data_type = SqlDataType::UNKNOWN_TYPE;
        let mut column_size = 0;
        let mut decimal_digits = 0;
        let mut nullable = odbc_sys::Nullability::UNKNOWN;

        let res = unsafe {
            sql_describe_col(
                self.as_sys(),
                column_number,
                mut_buf_ptr(name),
                clamp_small_int(name.len()),
                &mut name_length,
                &mut data_type,
                &mut column_size,
                &mut decimal_digits,
                &mut nullable,
            )
            .into_sql_result("SQLDescribeCol")
        };

        if res.is_err() {
            return res;
        }

        column_description.nullability = Nullability::new(nullable);

        if name_length + 1 > clamp_small_int(name.len()) {
            // Buffer is to small to hold name, retry with larger buffer
            name.resize(name_length as usize + 1, 0);
            self.describe_col(column_number, column_description)
        } else {
            name.resize(name_length as usize, 0);
            column_description.data_type = DataType::new(data_type, column_size, decimal_digits);
            res
        }
    }

    /// Executes a statement, using the current values of the parameter marker variables if any
    /// parameters exist in the statement. SQLExecDirect is the fastest way to submit an SQL
    /// statement for one-time execution.
    ///
    /// # Safety
    ///
    /// While `self` as always guaranteed to be a valid allocated handle, this function may
    /// dereference bound parameters. It is the callers responsibility to ensure these are still
    /// valid. One strategy is to reset potentially invalid parameters right before the call using
    /// `reset_parameters`.
    ///
    /// # Return
    ///
    /// * [`SqlResult::NeedData`] if execution requires additional data from delayed parameters.
    /// * [`SqlResult::NoData`] if a searched update or delete statement did not affect any rows at
    ///   the data source.
    unsafe fn exec_direct(&mut self, statement: &SqlText) -> SqlResult<()> {
        sql_exec_direc(
            self.as_sys(),
            statement.ptr(),
            statement.len_char().try_into().unwrap(),
        )
        .into_sql_result("SQLExecDirect")
    }

    /// Close an open cursor.
    fn close_cursor(&mut self) -> SqlResult<()> {
        unsafe { SQLCloseCursor(self.as_sys()) }.into_sql_result("SQLCloseCursor")
    }

    /// Send an SQL statement to the data source for preparation. The application can include one or
    /// more parameter markers in the SQL statement. To include a parameter marker, the application
    /// embeds a question mark (?) into the SQL string at the appropriate position.
    fn prepare(&mut self, statement: &SqlText) -> SqlResult<()> {
        unsafe {
            sql_prepare(
                self.as_sys(),
                statement.ptr(),
                statement.len_char().try_into().unwrap(),
            )
        }
        .into_sql_result("SQLPrepare")
    }

    /// Executes a statement prepared by `prepare`. After the application processes or discards the
    /// results from a call to `execute`, the application can call SQLExecute again with new
    /// parameter values.
    ///
    /// # Safety
    ///
    /// While `self` as always guaranteed to be a valid allocated handle, this function may
    /// dereference bound parameters. It is the callers responsibility to ensure these are still
    /// valid. One strategy is to reset potentially invalid parameters right before the call using
    /// `reset_parameters`.
    ///
    /// # Return
    ///
    /// * [`SqlResult::NeedData`] if execution requires additional data from delayed parameters.
    /// * [`SqlResult::NoData`] if a searched update or delete statement did not affect any rows at
    ///   the data source.
    unsafe fn execute(&mut self) -> SqlResult<()> {
        SQLExecute(self.as_sys()).into_sql_result("SQLExecute")
    }

    /// Number of columns in result set.
    ///
    /// Can also be used to check, whether or not a result set has been created at all.
    fn num_result_cols(&self) -> SqlResult<i16> {
        let mut out: i16 = 0;
        unsafe { SQLNumResultCols(self.as_sys(), &mut out) }
            .into_sql_result("SQLNumResultCols")
            .on_success(|| out)
    }

    /// Number of placeholders of a prepared query.
    fn num_params(&self) -> SqlResult<u16> {
        let mut out: i16 = 0;
        unsafe { SQLNumParams(self.as_sys(), &mut out) }
            .into_sql_result("SQLNumParams")
            .on_success(|| out.try_into().unwrap())
    }

    /// Sets the batch size for bulk cursors, if retrieving many rows at once.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to ensure that buffers bound using `bind_col` can hold the
    /// specified amount of rows.
    unsafe fn set_row_array_size(&mut self, size: usize) -> SqlResult<()> {
        assert!(size > 0);
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::RowArraySize,
            size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    /// Specifies the number of values for each parameter. If it is greater than 1, the data and
    /// indicator buffers of the statement point to arrays. The cardinality of each array is equal
    /// to the value of this field.
    ///
    /// # Safety
    ///
    /// The bound buffers must at least hold the number of elements specified in this call then the
    /// statement is executed.
    unsafe fn set_paramset_size(&mut self, size: usize) -> SqlResult<()> {
        assert!(size > 0);
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::ParamsetSize,
            size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    /// Sets the binding type to columnar binding for batch cursors.
    ///
    /// Any Positive number indicates a row wise binding with that row length. `0` indicates a
    /// columnar binding.
    ///
    /// # Safety
    ///
    /// It is the callers responsibility to ensure that the bound buffers match the memory layout
    /// specified by this function.
    unsafe fn set_row_bind_type(&mut self, row_size: usize) -> SqlResult<()> {
        sql_set_stmt_attr(
            self.as_sys(),
            StatementAttribute::RowBindType,
            row_size as Pointer,
            0,
        )
        .into_sql_result("SQLSetStmtAttr")
    }

    fn set_metadata_id(&mut self, metadata_id: bool) -> SqlResult<()> {
        unsafe {
            sql_set_stmt_attr(
                self.as_sys(),
                StatementAttribute::MetadataId,
                metadata_id as usize as Pointer,
                0,
            )
            .into_sql_result("SQLSetStmtAttr")
        }
    }

    /// Enables or disables asynchronous execution for this statement handle. If asynchronous
    /// execution is not enabled on connection level it is disabled by default and everything is
    /// executed synchronously.
    ///
    /// This is equivalent to stetting `SQL_ATTR_ASYNC_ENABLE` in the bare C API.
    ///
    /// See
    /// <https://docs.microsoft.com/en-us/sql/odbc/reference/develop-app/executing-statements-odbc>
    fn set_async_enable(&mut self, on: bool) -> SqlResult<()> {
        unsafe {
            sql_set_stmt_attr(
                self.as_sys(),
                StatementAttribute::AsyncEnable,
                on as usize as Pointer,
                0,
            )
            .into_sql_result("SQLSetStmtAttr")
        }
    }

    /// Binds a buffer holding an input parameter to a parameter marker in an SQL statement. This
    /// specialized version takes a constant reference to parameter, but is therefore limited to
    /// binding input parameters. See [`Statement::bind_parameter`] for the version which can bind
    /// input and output parameters.
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &(impl HasDataType + CData + ?Sized),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds a buffer holding a single parameter to a parameter marker in an SQL statement. To bind
    /// input parameters using constant references see [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_parameter(
        &mut self,
        parameter_number: u16,
        input_output_type: ParamType,
        parameter: &mut (impl CDataMut + HasDataType),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            input_output_type,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            parameter.mut_indicator_ptr(),
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds an input stream to a parameter marker in an SQL statement. Use this to stream large
    /// values at statement execution time. To bind preallocated constant buffers see
    /// [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_delayed_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &mut (impl DelayedInput + HasDataType),
    ) -> SqlResult<()> {
        let paramater_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            paramater_type.data_type(),
            paramater_type.column_size(),
            paramater_type.decimal_digits(),
            parameter.stream_ptr(),
            0,
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// `true` if a given column in a result set is unsigned or not a numeric type, `false`
    /// otherwise.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn is_unsigned_column(&self, column_number: u16) -> SqlResult<bool> {
        unsafe { self.numeric_col_attribute(Desc::Unsigned, column_number) }.map(|out| match out {
            0 => false,
            1 => true,
            _ => panic!("Unsigned column attribute must be either 0 or 1."),
        })
    }

    /// Returns a number identifying the SQL type of the column in the result set.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::Type, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// The concise data type. For the datetime and interval data types, this field returns the
    /// concise data type; for example, `TIME` or `INTERVAL_YEAR`.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_concise_type(&self, column_number: u16) -> SqlResult<SqlDataType> {
        unsafe { self.numeric_col_attribute(Desc::ConciseType, column_number) }
            .map(|ret| SqlDataType(ret.try_into().unwrap()))
    }

    /// Returns the size in bytes of the columns. For variable sized types the maximum size is
    /// returned, excluding a terminating zero.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_octet_length(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::OctetLength, column_number) }
    }

    /// Maximum number of characters required to display data from the column.
    ///
    /// `column_number`: Index of the column, starting at 1.
    fn col_display_size(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::DisplaySize, column_number) }
    }

    /// Precision of the column.
    ///
    /// Denotes the applicable precision. For data types SQL_TYPE_TIME, SQL_TYPE_TIMESTAMP, and all
    /// the interval data types that represent a time interval, its value is the applicable
    /// precision of the fractional seconds component.
    fn col_precision(&self, column_number: u16) -> SqlResult<isize> {
        unsafe { self.numeric_col_attribute(Desc::Precision, column_number) }
    }

    /// The applicable scale for a numeric data type. For DECIMAL and NUMERIC data types, this is
    /// the defined scale. It is undefined for all other data types.
    fn col_scale(&self, column_number: u16) -> SqlResult<Len> {
        unsafe { self.numeric_col_attribute(Desc::Scale, column_number) }
    }

    /// The column alias, if it applies. If the column alias does not apply, the column name is
    /// returned. If there is no column name or a column alias, an empty string is returned.
    fn col_name(&self, column_number: u16, buffer: &mut Vec<SqlChar>) -> SqlResult<()> {
        // String length in bytes, not characters. Terminating zero is excluded.
        let mut string_length_in_bytes: i16 = 0;
        // Let's utilize all of `buf`s capacity.
        buffer.resize(buffer.capacity(), 0);
        unsafe {
            let mut res = sql_col_attribute(
                self.as_sys(),
                column_number,
                Desc::Name,
                mut_buf_ptr(buffer) as Pointer,
                binary_length(buffer).try_into().unwrap(),
                &mut string_length_in_bytes as *mut i16,
                null_mut(),
            )
            .into_sql_result("SQLColAttribute");

            if res.is_err() {
                return res;
            }

            if is_truncated_bin(buffer, string_length_in_bytes.try_into().unwrap()) {
                // If we could rely on every ODBC driver sticking to the specifcation it would
                // probably best to resize by `string_length_in_bytes / 2 + 1`. Yet e.g. SQLite
                // seems to report the length in characters, so to work with a wide range of DB
                // systems, and since buffers for names are not expected to become super large we
                // ommit the division by two here.
                buffer.resize((string_length_in_bytes + 1).try_into().unwrap(), 0);

                res = sql_col_attribute(
                    self.as_sys(),
                    column_number,
                    Desc::Name,
                    mut_buf_ptr(buffer) as Pointer,
                    binary_length(buffer).try_into().unwrap(),
                    &mut string_length_in_bytes as *mut i16,
                    null_mut(),
                )
                .into_sql_result("SQLColAttribute");
            }
            // Resize buffer to exact string length without terminal zero
            resize_to_fit_without_tz(buffer, string_length_in_bytes.try_into().unwrap());

            res
        }
    }

    /// # Safety
    ///
    /// It is the callers responsibility to ensure that `attribute` refers to a numeric attribute.
    unsafe fn numeric_col_attribute(&self, attribute: Desc, column_number: u16) -> SqlResult<Len> {
        let mut out: Len = 0;
        sql_col_attribute(
            self.as_sys(),
            column_number,
            attribute,
            null_mut(),
            0,
            null_mut(),
            &mut out as *mut Len,
        )
        .into_sql_result("SQLColAttribute")
        .on_success(|| out)
    }

    /// Sets the SQL_DESC_COUNT field of the APD to 0, releasing all parameter buffers set for the
    /// given StatementHandle.
    fn reset_parameters(&mut self) -> SqlResult<()> {
        unsafe {
            SQLFreeStmt(self.as_sys(), FreeStmtOption::ResetParams).into_sql_result("SQLFreeStmt")
        }
    }

    /// Describes parameter marker associated with a prepared SQL statement.
    ///
    /// # Parameters
    ///
    /// * `parameter_number`: Parameter marker number ordered sequentially in increasing parameter
    ///   order, starting at 1.
    fn describe_param(&self, parameter_number: u16) -> SqlResult<ParameterDescription> {
        let mut data_type = SqlDataType::UNKNOWN_TYPE;
        let mut parameter_size = 0;
        let mut decimal_digits = 0;
        let mut nullable = odbc_sys::Nullability::UNKNOWN;
        unsafe {
            SQLDescribeParam(
                self.as_sys(),
                parameter_number,
                &mut data_type,
                &mut parameter_size,
                &mut decimal_digits,
                &mut nullable,
            )
        }
        .into_sql_result("SQLDescribeParam")
        .on_success(|| ParameterDescription {
            data_type: DataType::new(data_type, parameter_size, decimal_digits),
            nullable: Nullability::new(nullable),
        })
    }

The associated data_type discriminator for this variant.

Examples found in repository?
src/handles/statement.rs (line 488)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    unsafe fn bind_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &(impl HasDataType + CData + ?Sized),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds a buffer holding a single parameter to a parameter marker in an SQL statement. To bind
    /// input parameters using constant references see [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_parameter(
        &mut self,
        parameter_number: u16,
        input_output_type: ParamType,
        parameter: &mut (impl CDataMut + HasDataType),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            input_output_type,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            parameter.mut_indicator_ptr(),
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds an input stream to a parameter marker in an SQL statement. Use this to stream large
    /// values at statement execution time. To bind preallocated constant buffers see
    /// [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_delayed_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &mut (impl DelayedInput + HasDataType),
    ) -> SqlResult<()> {
        let paramater_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            paramater_type.data_type(),
            paramater_type.column_size(),
            paramater_type.decimal_digits(),
            parameter.stream_ptr(),
            0,
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

Return the column size, as it is required to bind the data type as a parameter. This implies

Examples found in repository?
src/handles/statement.rs (line 489)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    unsafe fn bind_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &(impl HasDataType + CData + ?Sized),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds a buffer holding a single parameter to a parameter marker in an SQL statement. To bind
    /// input parameters using constant references see [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_parameter(
        &mut self,
        parameter_number: u16,
        input_output_type: ParamType,
        parameter: &mut (impl CDataMut + HasDataType),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            input_output_type,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            parameter.mut_indicator_ptr(),
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds an input stream to a parameter marker in an SQL statement. Use this to stream large
    /// values at statement execution time. To bind preallocated constant buffers see
    /// [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_delayed_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &mut (impl DelayedInput + HasDataType),
    ) -> SqlResult<()> {
        let paramater_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            paramater_type.data_type(),
            paramater_type.column_size(),
            paramater_type.decimal_digits(),
            parameter.stream_ptr(),
            0,
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }
More examples
Hide additional examples
src/result_set_metadata.rs (line 166)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    fn col_data_type(&mut self, column_number: u16) -> Result<DataType, Error> {
        let stmt = self.as_stmt_ref();
        let kind = stmt.col_concise_type(column_number).into_result(&stmt)?;
        let dt = match kind {
            SqlDataType::UNKNOWN_TYPE => DataType::Unknown,
            SqlDataType::EXT_VAR_BINARY => DataType::Varbinary {
                length: self.col_octet_length(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_LONG_VAR_BINARY => DataType::LongVarbinary {
                length: self.col_octet_length(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_BINARY => DataType::Binary {
                length: self.col_octet_length(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_W_VARCHAR => DataType::WVarchar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_W_CHAR => DataType::WChar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_LONG_VARCHAR => DataType::LongVarchar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::CHAR => DataType::Char {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::VARCHAR => DataType::Varchar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::NUMERIC => DataType::Numeric {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
                scale: self.col_scale(column_number)?.try_into().unwrap(),
            },
            SqlDataType::DECIMAL => DataType::Decimal {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
                scale: self.col_scale(column_number)?.try_into().unwrap(),
            },
            SqlDataType::INTEGER => DataType::Integer,
            SqlDataType::SMALLINT => DataType::SmallInt,
            SqlDataType::FLOAT => DataType::Float {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
            },
            SqlDataType::REAL => DataType::Real,
            SqlDataType::DOUBLE => DataType::Double,
            SqlDataType::DATE => DataType::Date,
            SqlDataType::TIME => DataType::Time {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
            },
            SqlDataType::TIMESTAMP => DataType::Timestamp {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_BIG_INT => DataType::BigInt,
            SqlDataType::EXT_TINY_INT => DataType::TinyInt,
            SqlDataType::EXT_BIT => DataType::Bit,
            other => {
                let mut column_description = ColumnDescription::default();
                self.describe_col(column_number, &mut column_description)?;
                DataType::Other {
                    data_type: other,
                    column_size: column_description.data_type.column_size(),
                    decimal_digits: column_description.data_type.decimal_digits(),
                }
            }
        };
        Ok(dt)
    }

Return the number of decimal digits as required to bind the data type as a parameter.

Examples found in repository?
src/handles/statement.rs (line 490)
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    unsafe fn bind_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &(impl HasDataType + CData + ?Sized),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds a buffer holding a single parameter to a parameter marker in an SQL statement. To bind
    /// input parameters using constant references see [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_parameter(
        &mut self,
        parameter_number: u16,
        input_output_type: ParamType,
        parameter: &mut (impl CDataMut + HasDataType),
    ) -> SqlResult<()> {
        let parameter_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            input_output_type,
            parameter.cdata_type(),
            parameter_type.data_type(),
            parameter_type.column_size(),
            parameter_type.decimal_digits(),
            parameter.value_ptr() as *mut c_void,
            parameter.buffer_length(),
            parameter.mut_indicator_ptr(),
        )
        .into_sql_result("SQLBindParameter")
    }

    /// Binds an input stream to a parameter marker in an SQL statement. Use this to stream large
    /// values at statement execution time. To bind preallocated constant buffers see
    /// [`Statement::bind_input_parameter`].
    ///
    /// See <https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlbindparameter-function>.
    ///
    /// # Safety
    ///
    /// * It is up to the caller to ensure the lifetimes of the bound parameters.
    /// * Calling this function may influence other statements that share the APD.
    unsafe fn bind_delayed_input_parameter(
        &mut self,
        parameter_number: u16,
        parameter: &mut (impl DelayedInput + HasDataType),
    ) -> SqlResult<()> {
        let paramater_type = parameter.data_type();
        SQLBindParameter(
            self.as_sys(),
            parameter_number,
            ParamType::Input,
            parameter.cdata_type(),
            paramater_type.data_type(),
            paramater_type.column_size(),
            paramater_type.decimal_digits(),
            parameter.stream_ptr(),
            0,
            // We cast const to mut here, but we specify the input_output_type as input.
            parameter.indicator_ptr() as *mut isize,
        )
        .into_sql_result("SQLBindParameter")
    }
More examples
Hide additional examples
src/result_set_metadata.rs (line 167)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    fn col_data_type(&mut self, column_number: u16) -> Result<DataType, Error> {
        let stmt = self.as_stmt_ref();
        let kind = stmt.col_concise_type(column_number).into_result(&stmt)?;
        let dt = match kind {
            SqlDataType::UNKNOWN_TYPE => DataType::Unknown,
            SqlDataType::EXT_VAR_BINARY => DataType::Varbinary {
                length: self.col_octet_length(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_LONG_VAR_BINARY => DataType::LongVarbinary {
                length: self.col_octet_length(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_BINARY => DataType::Binary {
                length: self.col_octet_length(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_W_VARCHAR => DataType::WVarchar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_W_CHAR => DataType::WChar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_LONG_VARCHAR => DataType::LongVarchar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::CHAR => DataType::Char {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::VARCHAR => DataType::Varchar {
                length: self.col_display_size(column_number)?.try_into().unwrap(),
            },
            SqlDataType::NUMERIC => DataType::Numeric {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
                scale: self.col_scale(column_number)?.try_into().unwrap(),
            },
            SqlDataType::DECIMAL => DataType::Decimal {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
                scale: self.col_scale(column_number)?.try_into().unwrap(),
            },
            SqlDataType::INTEGER => DataType::Integer,
            SqlDataType::SMALLINT => DataType::SmallInt,
            SqlDataType::FLOAT => DataType::Float {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
            },
            SqlDataType::REAL => DataType::Real,
            SqlDataType::DOUBLE => DataType::Double,
            SqlDataType::DATE => DataType::Date,
            SqlDataType::TIME => DataType::Time {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
            },
            SqlDataType::TIMESTAMP => DataType::Timestamp {
                precision: self.col_precision(column_number)?.try_into().unwrap(),
            },
            SqlDataType::EXT_BIG_INT => DataType::BigInt,
            SqlDataType::EXT_TINY_INT => DataType::TinyInt,
            SqlDataType::EXT_BIT => DataType::Bit,
            other => {
                let mut column_description = ColumnDescription::default();
                self.describe_col(column_number, &mut column_description)?;
                DataType::Other {
                    data_type: other,
                    column_size: column_description.data_type.column_size(),
                    decimal_digits: column_description.data_type.decimal_digits(),
                }
            }
        };
        Ok(dt)
    }

The maximum number of characters needed to display data in character form.

See: https://docs.microsoft.com/en-us/sql/odbc/reference/appendixes/display-size

Examples found in repository?
src/handles/data_type.rs (line 373)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    pub fn utf8_len(&self) -> Option<usize> {
        match self {
            // One character may need up to four bytes to be represented in utf-8.
            DataType::Varchar { length }
            | DataType::WVarchar { length }
            | DataType::WChar { length }
            | DataType::Char { length } => Some(length * 4),
            other => other.display_size(),
        }
    }

    /// The maximum length of the UTF-16 representation in 2-Byte characters.
    ///
    /// ```
    /// use odbc_api::DataType;
    /// // Character set data types length is multiplied by two.
    /// assert_eq!(DataType::Varchar { length: 10 }.utf16_len(), Some(20));
    /// assert_eq!(DataType::Char { length: 10 }.utf16_len(), Some(20));
    /// assert_eq!(DataType::WVarchar { length: 10 }.utf16_len(), Some(20));
    /// assert_eq!(DataType::WChar { length: 10 }.utf16_len(), Some(20));
    /// // For other types return value is identical to display size as they are assumed to be
    /// // entirely representable with ASCII characters.
    /// assert_eq!(DataType::Numeric { precision: 10, scale: 3}.utf16_len(), Some(10 + 2));
    /// ```
    pub fn utf16_len(&self) -> Option<usize> {
        match self {
            // One character may need up to two u16 to be represented in utf-16.
            DataType::Varchar { length }
            | DataType::WVarchar { length }
            | DataType::WChar { length }
            | DataType::Char { length } => Some(length * 2),
            other => other.display_size(),
        }
    }
More examples
Hide additional examples
src/buffers/description.rs (line 144)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    pub fn from_data_type(data_type: DataType, nullable: bool) -> Option<Self> {
        let buffer_desc = match data_type {
            DataType::Numeric { precision, scale }
            | DataType::Decimal { precision, scale } if scale == 0 && precision < 3 => BufferDesc::I8 { nullable },
            DataType::Numeric { precision, scale }
            | DataType::Decimal { precision, scale } if scale == 0 && precision < 10 => BufferDesc::I32 { nullable },
            DataType::Numeric { precision, scale }
            | DataType::Decimal { precision, scale } if scale == 0 && precision < 19 => BufferDesc::I64 { nullable },
            DataType::Integer => BufferDesc::I32 { nullable },
            DataType::SmallInt => BufferDesc::I16 { nullable },
            DataType::Float { precision: 0..=24 } | DataType::Real => BufferDesc::F32 { nullable },
            DataType::Float { precision: 25..=53 } |DataType::Double => BufferDesc::F64 { nullable },
            DataType::Date => BufferDesc::Date { nullable },
            DataType::Time { precision: 0 } => BufferDesc::Time { nullable },
            DataType::Timestamp { precision: _ } => BufferDesc::Timestamp { nullable },
            DataType::BigInt => BufferDesc::I64 { nullable },
            DataType::TinyInt => BufferDesc::I8 { nullable },
            DataType::Bit => BufferDesc::Bit { nullable },
            DataType::Varbinary { length }
            | DataType::Binary { length  }
            | DataType::LongVarbinary { length } => BufferDesc::Binary { length },
            DataType::Varchar { length }
            | DataType::WVarchar { length }
            // Currently no special buffers for fixed lengths text implemented.
            | DataType::WChar {length }
            | DataType::Char { length }
            | DataType::LongVarchar { length } => BufferDesc::Text { max_str_len : length },
            // Specialized buffers for Numeric and decimal are not yet supported.
            | DataType::Numeric { precision: _, scale: _ }
            | DataType::Decimal { precision: _, scale: _ }
            | DataType::Time { precision: _ } => BufferDesc::Text { max_str_len: data_type.display_size().unwrap() },
            DataType::Unknown
            | DataType::Float { precision: _ }
            | DataType::Other { data_type: _, column_size: _, decimal_digits: _ } => return None,
        };
        Some(buffer_desc)
    }

The maximum length of the UTF-8 representation in bytes.

use odbc_api::DataType;
// Character set data types length is multiplied by four.
assert_eq!(DataType::Varchar { length: 10 }.utf8_len(), Some(40));
assert_eq!(DataType::Char { length: 10 }.utf8_len(), Some(40));
assert_eq!(DataType::WVarchar { length: 10 }.utf8_len(), Some(40));
assert_eq!(DataType::WChar { length: 10 }.utf8_len(), Some(40));
// For other types return value is identical to display size as they are assumed to be
// entirely representable with ASCII characters.
assert_eq!(DataType::Numeric { precision: 10, scale: 3}.utf8_len(), Some(10 + 2));
Examples found in repository?
src/result_set_metadata.rs (line 191)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
pub fn utf8_display_sizes(
    metadata: &mut impl ResultSetMetadata,
) -> Result<impl Iterator<Item = Result<usize, Error>> + '_, Error> {
    let num_cols: u16 = metadata.num_result_cols()?.try_into().unwrap();
    let it = (1..(num_cols + 1)).map(move |col_index| {
        // Ask driver for buffer length
        let max_str_len = if let Some(encoded_len) = metadata.col_data_type(col_index)?.utf8_len() {
            encoded_len
        } else {
            metadata.col_display_size(col_index)? as usize
        };
        Ok(max_str_len)
    });
    Ok(it)
}

The maximum length of the UTF-16 representation in 2-Byte characters.

use odbc_api::DataType;
// Character set data types length is multiplied by two.
assert_eq!(DataType::Varchar { length: 10 }.utf16_len(), Some(20));
assert_eq!(DataType::Char { length: 10 }.utf16_len(), Some(20));
assert_eq!(DataType::WVarchar { length: 10 }.utf16_len(), Some(20));
assert_eq!(DataType::WChar { length: 10 }.utf16_len(), Some(20));
// For other types return value is identical to display size as they are assumed to be
// entirely representable with ASCII characters.
assert_eq!(DataType::Numeric { precision: 10, scale: 3}.utf16_len(), Some(10 + 2));

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.