#[repr(C)]pub struct SCNPhysicsHingeJoint { /* private fields */ }SCNPhysicsBehavior only.Expand description
SCNPhysicsHingeJoint makes two bodies to move like they are connected by a hinge. It is for example suitable for doors, chains…
See also Apple’s documentation
Implementations§
Source§impl SCNPhysicsHingeJoint
impl SCNPhysicsHingeJoint
pub unsafe fn jointWithBodyA_axisA_anchorA_bodyB_axisB_anchorB( body_a: &SCNPhysicsBody, axis_a: SCNVector3, anchor_a: SCNVector3, body_b: &SCNPhysicsBody, axis_b: SCNVector3, anchor_b: SCNVector3, ) -> Retained<Self>
SCNPhysicsBody and SceneKitTypes and objc2-core-foundation only.pub unsafe fn jointWithBody_axis_anchor( body: &SCNPhysicsBody, axis: SCNVector3, anchor: SCNVector3, ) -> Retained<Self>
SCNPhysicsBody and SceneKitTypes and objc2-core-foundation only.pub unsafe fn bodyA(&self) -> Retained<SCNPhysicsBody>
SCNPhysicsBody only.pub unsafe fn axisA(&self) -> SCNVector3
SceneKitTypes and objc2-core-foundation only.Sourcepub unsafe fn setAxisA(&self, axis_a: SCNVector3)
Available on crate features SceneKitTypes and objc2-core-foundation only.
pub unsafe fn setAxisA(&self, axis_a: SCNVector3)
SceneKitTypes and objc2-core-foundation only.Setter for axisA.
pub unsafe fn anchorA(&self) -> SCNVector3
SceneKitTypes and objc2-core-foundation only.Sourcepub unsafe fn setAnchorA(&self, anchor_a: SCNVector3)
Available on crate features SceneKitTypes and objc2-core-foundation only.
pub unsafe fn setAnchorA(&self, anchor_a: SCNVector3)
SceneKitTypes and objc2-core-foundation only.Setter for anchorA.
pub unsafe fn bodyB(&self) -> Option<Retained<SCNPhysicsBody>>
SCNPhysicsBody only.pub unsafe fn axisB(&self) -> SCNVector3
SceneKitTypes and objc2-core-foundation only.Sourcepub unsafe fn setAxisB(&self, axis_b: SCNVector3)
Available on crate features SceneKitTypes and objc2-core-foundation only.
pub unsafe fn setAxisB(&self, axis_b: SCNVector3)
SceneKitTypes and objc2-core-foundation only.Setter for axisB.
pub unsafe fn anchorB(&self) -> SCNVector3
SceneKitTypes and objc2-core-foundation only.Sourcepub unsafe fn setAnchorB(&self, anchor_b: SCNVector3)
Available on crate features SceneKitTypes and objc2-core-foundation only.
pub unsafe fn setAnchorB(&self, anchor_b: SCNVector3)
SceneKitTypes and objc2-core-foundation only.Setter for anchorB.
Methods from Deref<Target = NSObject>§
Sourcepub fn doesNotRecognizeSelector(&self, sel: Sel) -> !
pub fn doesNotRecognizeSelector(&self, sel: Sel) -> !
Handle messages the object doesn’t recognize.
See Apple’s documentation for details.
Methods from Deref<Target = AnyObject>§
Sourcepub fn class(&self) -> &'static AnyClass
pub fn class(&self) -> &'static AnyClass
Dynamically find the class of this object.
§Panics
May panic if the object is invalid (which may be the case for objects
returned from unavailable init/new methods).
§Example
Check that an instance of NSObject has the precise class NSObject.
use objc2::ClassType;
use objc2::runtime::NSObject;
let obj = NSObject::new();
assert_eq!(obj.class(), NSObject::class());Sourcepub unsafe fn get_ivar<T>(&self, name: &str) -> &Twhere
T: Encode,
👎Deprecated: this is difficult to use correctly, use Ivar::load instead.
pub unsafe fn get_ivar<T>(&self, name: &str) -> &Twhere
T: Encode,
Ivar::load instead.Use Ivar::load instead.
§Safety
The object must have an instance variable with the given name, and it
must be of type T.
See Ivar::load_ptr for details surrounding this.
Sourcepub fn downcast_ref<T>(&self) -> Option<&T>where
T: DowncastTarget,
pub fn downcast_ref<T>(&self) -> Option<&T>where
T: DowncastTarget,
Attempt to downcast the object to a class of type T.
This is the reference-variant. Use Retained::downcast if you want
to convert a retained object to another type.
§Mutable classes
Some classes have immutable and mutable variants, such as NSString
and NSMutableString.
When some Objective-C API signature says it gives you an immutable class, it generally expects you to not mutate that, even though it may technically be mutable “under the hood”.
So using this method to convert a NSString to a NSMutableString,
while not unsound, is generally frowned upon unless you created the
string yourself, or the API explicitly documents the string to be
mutable.
See Apple’s documentation on mutability and on
isKindOfClass: for more details.
§Generic classes
Objective-C generics are called “lightweight generics”, and that’s because they aren’t exposed in the runtime. This makes it impossible to safely downcast to generic collections, so this is disallowed by this method.
You can, however, safely downcast to generic collections where all the
type-parameters are AnyObject.
§Panics
This works internally by calling isKindOfClass:. That means that the
object must have the instance method of that name, and an exception
will be thrown (if CoreFoundation is linked) or the process will abort
if that is not the case. In the vast majority of cases, you don’t need
to worry about this, since both root objects NSObject and
NSProxy implement this method.
§Examples
Cast an NSString back and forth from NSObject.
use objc2::rc::Retained;
use objc2_foundation::{NSObject, NSString};
let obj: Retained<NSObject> = NSString::new().into_super();
let string = obj.downcast_ref::<NSString>().unwrap();
// Or with `downcast`, if we do not need the object afterwards
let string = obj.downcast::<NSString>().unwrap();Try (and fail) to cast an NSObject to an NSString.
use objc2_foundation::{NSObject, NSString};
let obj = NSObject::new();
assert!(obj.downcast_ref::<NSString>().is_none());Try to cast to an array of strings.
use objc2_foundation::{NSArray, NSObject, NSString};
let arr = NSArray::from_retained_slice(&[NSObject::new()]);
// This is invalid and doesn't type check.
let arr = arr.downcast_ref::<NSArray<NSString>>();This fails to compile, since it would require enumerating over the array to ensure that each element is of the desired type, which is a performance pitfall.
Downcast when processing each element instead.
use objc2_foundation::{NSArray, NSObject, NSString};
let arr = NSArray::from_retained_slice(&[NSObject::new()]);
for elem in arr {
if let Some(data) = elem.downcast_ref::<NSString>() {
// handle `data`
}
}Trait Implementations§
Source§impl AsRef<AnyObject> for SCNPhysicsHingeJoint
impl AsRef<AnyObject> for SCNPhysicsHingeJoint
Source§impl AsRef<NSObject> for SCNPhysicsHingeJoint
impl AsRef<NSObject> for SCNPhysicsHingeJoint
Source§impl AsRef<SCNPhysicsBehavior> for SCNPhysicsHingeJoint
impl AsRef<SCNPhysicsBehavior> for SCNPhysicsHingeJoint
Source§fn as_ref(&self) -> &SCNPhysicsBehavior
fn as_ref(&self) -> &SCNPhysicsBehavior
Source§impl Borrow<AnyObject> for SCNPhysicsHingeJoint
impl Borrow<AnyObject> for SCNPhysicsHingeJoint
Source§impl Borrow<NSObject> for SCNPhysicsHingeJoint
impl Borrow<NSObject> for SCNPhysicsHingeJoint
Source§impl Borrow<SCNPhysicsBehavior> for SCNPhysicsHingeJoint
impl Borrow<SCNPhysicsBehavior> for SCNPhysicsHingeJoint
Source§fn borrow(&self) -> &SCNPhysicsBehavior
fn borrow(&self) -> &SCNPhysicsBehavior
Source§impl ClassType for SCNPhysicsHingeJoint
impl ClassType for SCNPhysicsHingeJoint
Source§const NAME: &'static str = "SCNPhysicsHingeJoint"
const NAME: &'static str = "SCNPhysicsHingeJoint"
Source§type Super = SCNPhysicsBehavior
type Super = SCNPhysicsBehavior
Source§type ThreadKind = <<SCNPhysicsHingeJoint as ClassType>::Super as ClassType>::ThreadKind
type ThreadKind = <<SCNPhysicsHingeJoint as ClassType>::Super as ClassType>::ThreadKind
Source§impl Debug for SCNPhysicsHingeJoint
impl Debug for SCNPhysicsHingeJoint
Source§impl Deref for SCNPhysicsHingeJoint
impl Deref for SCNPhysicsHingeJoint
Source§impl Hash for SCNPhysicsHingeJoint
impl Hash for SCNPhysicsHingeJoint
Source§impl Message for SCNPhysicsHingeJoint
impl Message for SCNPhysicsHingeJoint
Source§impl NSCoding for SCNPhysicsHingeJoint
impl NSCoding for SCNPhysicsHingeJoint
Source§impl NSObjectProtocol for SCNPhysicsHingeJoint
impl NSObjectProtocol for SCNPhysicsHingeJoint
Source§fn isEqual(&self, other: Option<&AnyObject>) -> bool
fn isEqual(&self, other: Option<&AnyObject>) -> bool
Source§fn hash(&self) -> usize
fn hash(&self) -> usize
Source§fn isKindOfClass(&self, cls: &AnyClass) -> bool
fn isKindOfClass(&self, cls: &AnyClass) -> bool
Source§fn is_kind_of<T>(&self) -> bool
fn is_kind_of<T>(&self) -> bool
isKindOfClass directly, or cast your objects with AnyObject::downcast_ref