Struct magic_wormhole::Key

source ·
pub struct Key<P: KeyPurpose>(pub Box<Key>, _);
Expand description

The symmetric encryption key used to communicate with the other side.

You don’t need to do any crypto, but you might need it to derive subkeys for sub-protocols.

Tuple Fields§

§0: Box<Key>

Implementations§

Derive the sub-key used for transit

This one’s a bit special, since the Wormhole’s AppID is included in the purpose. Different kinds of applications can’t talk to each other, not even accidentally, by design.

The new key is derived with the "{appid}/transit-key" purpose.

Examples found in repository?
src/transfer.rs (line 471)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    pub async fn accept<F, G, W>(
        mut self,
        transit_handler: G,
        progress_handler: F,
        content_handler: &mut W,
        cancel: impl Future<Output = ()>,
    ) -> Result<(), TransferError>
    where
        F: FnMut(u64, u64) + 'static,
        G: FnOnce(transit::TransitInfo, std::net::SocketAddr),
        W: AsyncWrite + Unpin,
    {
        let run = Box::pin(async {
            // send file ack.
            debug!("Sending ack");
            self.wormhole
                .send_json(&PeerMessage::file_ack("ok"))
                .await?;

            let (mut transit, info, addr) = self
                .connector
                .follower_connect(
                    self.wormhole
                        .key()
                        .derive_transit_key(self.wormhole.appid()),
                    self.their_abilities,
                    self.their_hints.clone(),
                )
                .await?;
            transit_handler(info, addr);

            debug!("Beginning file transfer");
            v1::tcp_file_receive(
                &mut transit,
                self.filesize,
                progress_handler,
                content_handler,
            )
            .await?;
            Ok(())
        });

        futures::pin_mut!(cancel);
        let result = crate::util::cancellable_2(run, cancel).await;
        handle_run_result(self.wormhole, result).await
    }
More examples
Hide additional examples
src/transfer/v1.rs (line 81)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
pub async fn send_file<F, N, G, H>(
    mut wormhole: Wormhole,
    relay_hints: Vec<transit::RelayHint>,
    file: &mut F,
    file_name: N,
    file_size: u64,
    transit_abilities: transit::Abilities,
    transit_handler: G,
    progress_handler: H,
    cancel: impl Future<Output = ()>,
) -> Result<(), TransferError>
where
    F: AsyncRead + Unpin,
    N: Into<PathBuf>,
    G: FnOnce(transit::TransitInfo, std::net::SocketAddr),
    H: FnMut(u64, u64) + 'static,
{
    let run = Box::pin(async {
        let connector = transit::init(transit_abilities, None, relay_hints).await?;

        // We want to do some transit
        debug!("Sending transit message '{:?}", connector.our_hints());
        wormhole
            .send_json(&PeerMessage::transit(
                *connector.our_abilities(),
                (**connector.our_hints()).clone(),
            ))
            .await?;

        // Send file offer message.
        debug!("Sending file offer");
        wormhole
            .send_json(&PeerMessage::offer_file(file_name, file_size))
            .await?;

        // Wait for their transit response
        let (their_abilities, their_hints): (transit::Abilities, transit::Hints) =
            match wormhole.receive_json().await?? {
                PeerMessage::Transit(transit) => {
                    debug!("Received transit message: {:?}", transit);
                    (transit.abilities_v1, transit.hints_v1)
                },
                PeerMessage::Error(err) => {
                    bail!(TransferError::PeerError(err));
                },
                other => {
                    bail!(TransferError::unexpected_message("transit", other))
                },
            };

        {
            // Wait for file_ack
            let fileack_msg = wormhole.receive_json().await??;
            debug!("Received file ack message: {:?}", fileack_msg);

            match fileack_msg {
                PeerMessage::Answer(Answer::FileAck(msg)) => {
                    ensure!(msg == "ok", TransferError::AckError);
                },
                PeerMessage::Error(err) => {
                    bail!(TransferError::PeerError(err));
                },
                _ => {
                    bail!(TransferError::unexpected_message(
                        "answer/file_ack",
                        fileack_msg
                    ));
                },
            }
        }

        let (mut transit, info, addr) = connector
            .leader_connect(
                wormhole.key().derive_transit_key(wormhole.appid()),
                their_abilities,
                Arc::new(their_hints),
            )
            .await?;
        transit_handler(info, addr);

        debug!("Beginning file transfer");

        // 11. send the file as encrypted records.
        let checksum = v1::send_records(&mut transit, file, file_size, progress_handler).await?;

        // 13. wait for the transit ack with sha256 sum from the peer.
        debug!("sent file. Waiting for ack");
        let transit_ack = transit.receive_record().await?;
        let transit_ack_msg = serde_json::from_slice::<TransitAck>(&transit_ack)?;
        ensure!(
            transit_ack_msg.sha256 == hex::encode(checksum),
            TransferError::Checksum
        );
        debug!("Transfer complete!");

        Ok(())
    });

    futures::pin_mut!(cancel);
    let result = crate::util::cancellable_2(run, cancel).await;
    super::handle_run_result(wormhole, result).await
}

pub async fn send_folder<N, M, G, H>(
    mut wormhole: Wormhole,
    relay_hints: Vec<transit::RelayHint>,
    folder_path: N,
    folder_name: M,
    transit_abilities: transit::Abilities,
    transit_handler: G,
    progress_handler: H,
    cancel: impl Future<Output = ()>,
) -> Result<(), TransferError>
where
    N: Into<PathBuf>,
    M: Into<PathBuf>,
    G: FnOnce(transit::TransitInfo, std::net::SocketAddr),
    H: FnMut(u64, u64) + 'static,
{
    let run = Box::pin(async {
        let connector = transit::init(transit_abilities, None, relay_hints).await?;
        let folder_path = folder_path.into();

        if !folder_path.is_dir() {
            panic!(
                "You should only call this method with directory paths, but '{}' is not",
                folder_path.display()
            );
        }

        // We want to do some transit
        debug!("Sending transit message '{:?}", connector.our_hints());
        wormhole
            .send_json(&PeerMessage::transit(
                *connector.our_abilities(),
                (**connector.our_hints()).clone(),
            ))
            .await?;

        // use sha2::{digest::FixedOutput, Digest, Sha256};

        /* Helper struct stolen from https://docs.rs/count-write/0.1.0 */
        struct CountWrite<W> {
            inner: W,
            count: u64,
        }

        impl<W: std::io::Write> std::io::Write for CountWrite<W> {
            fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
                let written = self.inner.write(buf)?;
                self.count += written as u64;
                Ok(written)
            }

            fn flush(&mut self) -> std::io::Result<()> {
                self.inner.flush()
            }
        }

        /* We need to know the length of what we are going to send in advance. So we build the
         * tar file once, stream it into the void, and the second time we stream it over the
         * wire. Also hashing for future reference.
         */
        log::info!("Calculating the size of '{}'", folder_path.display());
        let folder_path2 = folder_path.clone();
        let (length, sha256sum_initial) = {
            let mut hasher = Sha256::new();
            let mut counter = CountWrite {
                inner: &mut hasher,
                count: 0,
            };
            let mut builder = async_tar::Builder::new(futures::io::AllowStdIo::new(&mut counter));

            builder.mode(async_tar::HeaderMode::Deterministic);
            builder.follow_symlinks(false);
            /* A hasher should never fail writing */
            builder.append_dir_all("", folder_path2).await.unwrap();
            builder.finish().await.unwrap();

            std::mem::drop(builder);
            let count = counter.count;
            std::mem::drop(counter);
            (count, hasher.finalize_fixed())
        };

        // Send file offer message.
        debug!("Sending file offer");
        wormhole
            .send_json(&PeerMessage::offer_file(folder_name, length))
            .await?;

        // Wait for their transit response
        let (their_abilities, their_hints): (transit::Abilities, transit::Hints) =
            match wormhole.receive_json().await?? {
                PeerMessage::Transit(transit) => {
                    debug!("received transit message: {:?}", transit);
                    (transit.abilities_v1, transit.hints_v1)
                },
                PeerMessage::Error(err) => {
                    bail!(TransferError::PeerError(err));
                },
                other => {
                    bail!(TransferError::unexpected_message("transit", other));
                },
            };

        // Wait for file_ack
        match wormhole.receive_json().await?? {
            PeerMessage::Answer(Answer::FileAck(msg)) => {
                ensure!(msg == "ok", TransferError::AckError);
            },
            PeerMessage::Error(err) => {
                bail!(TransferError::PeerError(err));
            },
            other => {
                bail!(TransferError::unexpected_message("answer/file_ack", other));
            },
        }

        let (mut transit, info, addr) = connector
            .leader_connect(
                wormhole.key().derive_transit_key(wormhole.appid()),
                their_abilities,
                Arc::new(their_hints),
            )
            .await?;
        transit_handler(info, addr);

        debug!("Beginning file transfer");

        /* Inspired by https://github.com/RustCrypto/traits/pull/1159/files */
        pub struct HashWriter<D: sha2::digest::Update, W: futures::io::AsyncWrite + Unpin> {
            writer: W,
            hasher: D,
        }

        use std::{
            pin::Pin,
            task::{Context, Poll},
        };
        impl<D: sha2::digest::Update + Unpin, W: futures::io::AsyncWrite + Unpin>
            futures::io::AsyncWrite for HashWriter<D, W>
        {
            fn poll_write(
                mut self: Pin<&mut Self>,
                cx: &mut Context<'_>,
                buf: &[u8],
            ) -> Poll<std::io::Result<usize>> {
                // log::debug!("Poll write, {}", buf.len());
                match Pin::new(&mut self.writer).poll_write(cx, buf) {
                    Poll::Ready(Ok(n)) => {
                        self.hasher.update(&buf[..n]);
                        Poll::Ready(Ok(n))
                    },
                    res => res,
                }
            }

            fn poll_flush(
                mut self: Pin<&mut Self>,
                cx: &mut Context<'_>,
            ) -> Poll<std::io::Result<()>> {
                // log::debug!("Poll flush");
                Pin::new(&mut self.writer).poll_flush(cx)
            }

            fn poll_close(
                mut self: Pin<&mut Self>,
                cx: &mut Context<'_>,
            ) -> Poll<std::io::Result<()>> {
                // log::debug!("Poll close");
                Pin::new(&mut self.writer).poll_close(cx)
            }
        }

        // 11. send the file as encrypted records.
        let (mut reader, writer) = futures_ringbuf::RingBuffer::new(4096).split();

        let file_sender = async_std::task::spawn(async move {
            let mut hash_writer = HashWriter {
                writer,
                hasher: Sha256::new(),
            };
            let mut builder = async_tar::Builder::new(&mut hash_writer);

            builder.mode(async_tar::HeaderMode::Deterministic);
            builder.follow_symlinks(false);
            builder.append_dir_all("", folder_path).await?;
            builder.finish().await?;
            std::mem::drop(builder);

            hash_writer.flush().await?;
            hash_writer.close().await?;
            let hasher = hash_writer.hasher;

            std::io::Result::Ok(hasher.finalize_fixed())
        });

        let (checksum, sha256sum) =
            match v1::send_records(&mut transit, &mut reader, length, progress_handler).await {
                Ok(checksum) => (checksum, file_sender.await?),
                Err(err) => {
                    log::debug!("Some more error {err}");
                    if let Some(Err(err)) = file_sender.cancel().await {
                        log::warn!("Error in background task: {err}");
                    }
                    return Err(err);
                },
            };

        /* Check if the hash sum still matches what we advertized. Otherwise, tell the other side and bail out */
        ensure!(
            sha256sum == sha256sum_initial,
            TransferError::FilesystemSkew
        );

        // 13. wait for the transit ack with sha256 sum from the peer.
        debug!("sent file. Waiting for ack");
        let transit_ack = transit.receive_record().await?;
        let transit_ack_msg = serde_json::from_slice::<TransitAck>(&transit_ack)?;
        ensure!(
            transit_ack_msg.sha256 == hex::encode(checksum),
            TransferError::Checksum
        );
        debug!("Transfer complete!");

        Ok(())
    });

    futures::pin_mut!(cancel);
    let result = crate::util::cancellable_2(run, cancel).await;
    super::handle_run_result(wormhole, result).await
}
Examples found in repository?
src/core.rs (line 247)
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    pub async fn connect_custom(
        mut server: RendezvousServer,
        appid: AppID,
        password: String,
        app_versions: impl serde::Serialize + Send + Sync + 'static,
    ) -> Result<Self, WormholeError> {
        /* Send PAKE */
        let (pake_state, pake_msg_ser) = key::make_pake(&password, &appid);
        server.send_peer_message(Phase::PAKE, pake_msg_ser).await?;

        /* Receive PAKE */
        let peer_pake = key::extract_pake_msg(&server.next_peer_message_some().await?.body)?;
        let key = pake_state
            .finish(&peer_pake)
            .map_err(|_| WormholeError::PakeFailed)
            .map(|key| *secretbox::Key::from_slice(&key))?;

        /* Send versions message */
        let mut versions = key::VersionsMessage::new();
        versions.set_app_versions(serde_json::to_value(&app_versions).unwrap());
        let (version_phase, version_msg) = key::build_version_msg(server.side(), &key, &versions);
        server.send_peer_message(version_phase, version_msg).await?;
        let peer_version = server.next_peer_message_some().await?;

        /* Handle received message */
        let versions: key::VersionsMessage = peer_version
            .decrypt(&key)
            .ok_or(WormholeError::PakeFailed)
            .and_then(|plaintext| {
                serde_json::from_slice(&plaintext).map_err(WormholeError::ProtocolJson)
            })?;

        let peer_version = versions.app_versions;

        if server.needs_nameplate_release() {
            server.release_nameplate().await?;
        }

        log::info!("Found peer on the rendezvous server.");

        /* We are now fully initialized! Up and running! :tada: */
        Ok(Self {
            server,
            appid,
            phase: 0,
            key: key::Key::new(key.into()),
            verifier: Box::new(key::derive_verifier(&key)),
            our_version: Box::new(app_versions),
            peer_version,
        })
    }
Examples found in repository?
src/core/key.rs (line 57)
51
52
53
54
55
56
57
58
59
60
61
62
    pub fn derive_transit_key(&self, appid: &AppID) -> Key<crate::transit::TransitKey> {
        let transit_purpose = format!("{}/transit-key", &*appid);

        let derived_key = self.derive_subkey_from_purpose(&transit_purpose);
        trace!(
            "Input key: {}, Transit key: {}, Transit purpose: '{}'",
            self.to_hex(),
            derived_key.to_hex(),
            &transit_purpose
        );
        derived_key
    }
More examples
Hide additional examples
src/transit.rs (line 1449)
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
async fn handshake_exchange(
    is_leader: bool,
    tside: Arc<String>,
    socket: TcpStream,
    host_type: &TransitInfo,
    cryptor: &dyn crypto::TransitCryptoInit,
    key: Arc<Key<TransitKey>>,
) -> Result<HandshakeResult, crypto::TransitHandshakeError> {
    /* Set proper read and write timeouts. This will temporarily set the socket into blocking mode :/ */
    // https://github.com/async-rs/async-std/issues/499
    let socket = std::net::TcpStream::try_from(socket)
        .expect("Internal error: this should not fail because we never cloned the socket");
    socket.set_write_timeout(Some(std::time::Duration::from_secs(120)))?;
    socket.set_read_timeout(Some(std::time::Duration::from_secs(120)))?;
    let mut socket: TcpStream = socket.into();

    if host_type != &TransitInfo::Direct {
        log::trace!("initiating relay handshake");

        let sub_key = key.derive_subkey_from_purpose::<crate::GenericKey>("transit_relay_token");
        socket
            .write_all(format!("please relay {} for side {}\n", sub_key.to_hex(), tside).as_bytes())
            .await?;
        let mut rx = [0u8; 3];
        socket.read_exact(&mut rx).await?;
        let ok_msg: [u8; 3] = *b"ok\n";
        ensure!(
            ok_msg == rx,
            crypto::TransitHandshakeError::RelayHandshakeFailed
        );
    }

    let finalizer = if is_leader {
        cryptor.handshake_leader(&mut socket).await?
    } else {
        cryptor.handshake_follower(&mut socket).await?
    };

    Ok((socket, finalizer))
}
src/transit/crypto.rs (line 161)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    async fn handshake_leader(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        // 9. create record keys
        let rkey = self
            .key
            .derive_subkey_from_purpose("transit_record_receiver_key");
        let skey = self
            .key
            .derive_subkey_from_purpose("transit_record_sender_key");

        // for transmit mode, send send_handshake_msg and compare.
        // the received message with send_handshake_msg
        socket
            .write_all(
                format!(
                    "transit sender {} ready\n\n",
                    self.key
                        .derive_subkey_from_purpose::<crate::GenericKey>("transit_sender")
                        .to_hex()
                )
                .as_bytes(),
            )
            .await?;

        let expected_rx_handshake = format!(
            "transit receiver {} ready\n\n",
            self.key
                .derive_subkey_from_purpose::<crate::GenericKey>("transit_receiver")
                .to_hex()
        );
        assert_eq!(expected_rx_handshake.len(), 89);
        read_expect(socket, expected_rx_handshake.as_bytes()).await?;

        struct Finalizer {
            skey: Key<TransitTxKey>,
            rkey: Key<TransitRxKey>,
        }

        impl TransitCryptoInitFinalizer for Finalizer {
            fn handshake_finalize(
                self: Box<Self>,
                socket: &mut TcpStream,
            ) -> BoxFuture<Result<DynTransitCrypto, TransitHandshakeError>> {
                Box::pin(async move {
                    socket.write_all(b"go\n").await?;

                    Ok::<_, TransitHandshakeError>((
                        Box::new(SecretboxCryptoEncrypt {
                            skey: self.skey,
                            snonce: Default::default(),
                        }) as Box<dyn TransitCryptoEncrypt>,
                        Box::new(SecretboxCryptoDecrypt {
                            rkey: self.rkey,
                            rnonce: Default::default(),
                        }) as Box<dyn TransitCryptoDecrypt>,
                    ))
                })
            }
        }

        Ok(Box::new(Finalizer { skey, rkey }))
    }

    async fn handshake_follower(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        // 9. create record keys
        /* The order here is correct. The "sender" and "receiver" side are a misnomer and should be called
         * "leader" and "follower" instead. As a follower, we use the leader key for receiving and our
         * key for sending.
         */
        let rkey = self
            .key
            .derive_subkey_from_purpose("transit_record_sender_key");
        let skey = self
            .key
            .derive_subkey_from_purpose("transit_record_receiver_key");

        // for receive mode, send receive_handshake_msg and compare.
        // the received message with send_handshake_msg
        socket
            .write_all(
                format!(
                    "transit receiver {} ready\n\n",
                    self.key
                        .derive_subkey_from_purpose::<crate::GenericKey>("transit_receiver")
                        .to_hex(),
                )
                .as_bytes(),
            )
            .await?;

        let expected_tx_handshake = format!(
            "transit sender {} ready\n\ngo\n",
            self.key
                .derive_subkey_from_purpose::<crate::GenericKey>("transit_sender")
                .to_hex(),
        );
        assert_eq!(expected_tx_handshake.len(), 90);
        read_expect(socket, expected_tx_handshake.as_bytes()).await?;

        Ok(Box::new((
            Box::new(SecretboxCryptoEncrypt {
                skey,
                snonce: Default::default(),
            }) as Box<dyn TransitCryptoEncrypt>,
            Box::new(SecretboxCryptoDecrypt {
                rkey,
                rnonce: Default::default(),
            }) as Box<dyn TransitCryptoDecrypt>,
        )) as Box<dyn TransitCryptoInitFinalizer>)
    }

Derive a new sub-key from this one

Examples found in repository?
src/core/key.rs (line 54)
51
52
53
54
55
56
57
58
59
60
61
62
    pub fn derive_transit_key(&self, appid: &AppID) -> Key<crate::transit::TransitKey> {
        let transit_purpose = format!("{}/transit-key", &*appid);

        let derived_key = self.derive_subkey_from_purpose(&transit_purpose);
        trace!(
            "Input key: {}, Transit key: {}, Transit purpose: '{}'",
            self.to_hex(),
            derived_key.to_hex(),
            &transit_purpose
        );
        derived_key
    }
More examples
Hide additional examples
src/transit.rs (line 1447)
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
async fn handshake_exchange(
    is_leader: bool,
    tside: Arc<String>,
    socket: TcpStream,
    host_type: &TransitInfo,
    cryptor: &dyn crypto::TransitCryptoInit,
    key: Arc<Key<TransitKey>>,
) -> Result<HandshakeResult, crypto::TransitHandshakeError> {
    /* Set proper read and write timeouts. This will temporarily set the socket into blocking mode :/ */
    // https://github.com/async-rs/async-std/issues/499
    let socket = std::net::TcpStream::try_from(socket)
        .expect("Internal error: this should not fail because we never cloned the socket");
    socket.set_write_timeout(Some(std::time::Duration::from_secs(120)))?;
    socket.set_read_timeout(Some(std::time::Duration::from_secs(120)))?;
    let mut socket: TcpStream = socket.into();

    if host_type != &TransitInfo::Direct {
        log::trace!("initiating relay handshake");

        let sub_key = key.derive_subkey_from_purpose::<crate::GenericKey>("transit_relay_token");
        socket
            .write_all(format!("please relay {} for side {}\n", sub_key.to_hex(), tside).as_bytes())
            .await?;
        let mut rx = [0u8; 3];
        socket.read_exact(&mut rx).await?;
        let ok_msg: [u8; 3] = *b"ok\n";
        ensure!(
            ok_msg == rx,
            crypto::TransitHandshakeError::RelayHandshakeFailed
        );
    }

    let finalizer = if is_leader {
        cryptor.handshake_leader(&mut socket).await?
    } else {
        cryptor.handshake_follower(&mut socket).await?
    };

    Ok((socket, finalizer))
}
src/transit/crypto.rs (line 148)
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    async fn handshake_leader(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        // 9. create record keys
        let rkey = self
            .key
            .derive_subkey_from_purpose("transit_record_receiver_key");
        let skey = self
            .key
            .derive_subkey_from_purpose("transit_record_sender_key");

        // for transmit mode, send send_handshake_msg and compare.
        // the received message with send_handshake_msg
        socket
            .write_all(
                format!(
                    "transit sender {} ready\n\n",
                    self.key
                        .derive_subkey_from_purpose::<crate::GenericKey>("transit_sender")
                        .to_hex()
                )
                .as_bytes(),
            )
            .await?;

        let expected_rx_handshake = format!(
            "transit receiver {} ready\n\n",
            self.key
                .derive_subkey_from_purpose::<crate::GenericKey>("transit_receiver")
                .to_hex()
        );
        assert_eq!(expected_rx_handshake.len(), 89);
        read_expect(socket, expected_rx_handshake.as_bytes()).await?;

        struct Finalizer {
            skey: Key<TransitTxKey>,
            rkey: Key<TransitRxKey>,
        }

        impl TransitCryptoInitFinalizer for Finalizer {
            fn handshake_finalize(
                self: Box<Self>,
                socket: &mut TcpStream,
            ) -> BoxFuture<Result<DynTransitCrypto, TransitHandshakeError>> {
                Box::pin(async move {
                    socket.write_all(b"go\n").await?;

                    Ok::<_, TransitHandshakeError>((
                        Box::new(SecretboxCryptoEncrypt {
                            skey: self.skey,
                            snonce: Default::default(),
                        }) as Box<dyn TransitCryptoEncrypt>,
                        Box::new(SecretboxCryptoDecrypt {
                            rkey: self.rkey,
                            rnonce: Default::default(),
                        }) as Box<dyn TransitCryptoDecrypt>,
                    ))
                })
            }
        }

        Ok(Box::new(Finalizer { skey, rkey }))
    }

    async fn handshake_follower(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        // 9. create record keys
        /* The order here is correct. The "sender" and "receiver" side are a misnomer and should be called
         * "leader" and "follower" instead. As a follower, we use the leader key for receiving and our
         * key for sending.
         */
        let rkey = self
            .key
            .derive_subkey_from_purpose("transit_record_sender_key");
        let skey = self
            .key
            .derive_subkey_from_purpose("transit_record_receiver_key");

        // for receive mode, send receive_handshake_msg and compare.
        // the received message with send_handshake_msg
        socket
            .write_all(
                format!(
                    "transit receiver {} ready\n\n",
                    self.key
                        .derive_subkey_from_purpose::<crate::GenericKey>("transit_receiver")
                        .to_hex(),
                )
                .as_bytes(),
            )
            .await?;

        let expected_tx_handshake = format!(
            "transit sender {} ready\n\ngo\n",
            self.key
                .derive_subkey_from_purpose::<crate::GenericKey>("transit_sender")
                .to_hex(),
        );
        assert_eq!(expected_tx_handshake.len(), 90);
        read_expect(socket, expected_tx_handshake.as_bytes()).await?;

        Ok(Box::new((
            Box::new(SecretboxCryptoEncrypt {
                skey,
                snonce: Default::default(),
            }) as Box<dyn TransitCryptoEncrypt>,
            Box::new(SecretboxCryptoDecrypt {
                rkey,
                rnonce: Default::default(),
            }) as Box<dyn TransitCryptoDecrypt>,
        )) as Box<dyn TransitCryptoInitFinalizer>)
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
The resulting type after dereferencing.
Dereferences the value.
Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Should always be Self
The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.