1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/// Cryptographic backbone of the Transit protocol
///
/// This handles the encrypted handshakes during connection setup, then provides
/// a simple "encrypt/decrypt" abstraction that will be used for all messages.
use super::*;
use crate::Key;
use async_trait::async_trait;
use futures::future::BoxFuture;
use std::sync::Arc;

/// Private, because we try multiple handshakes and only
/// one needs to succeed
#[derive(Debug, thiserror::Error)]
#[non_exhaustive]
pub(super) enum TransitHandshakeError {
    #[error("Handshake failed")]
    HandshakeFailed,
    #[error("Relay handshake failed")]
    RelayHandshakeFailed,
    #[error("Malformed peer address")]
    BadAddress(
        #[from]
        #[source]
        std::net::AddrParseError,
    ),
    #[error("Noise cryptography error")]
    NoiseCrypto(
        #[from]
        #[source]
        noise_protocol::Error,
    ),
    #[error("Decryption error")]
    Decryption,
    #[error("IO error")]
    IO(
        #[from]
        #[source]
        std::io::Error,
    ),
}

impl From<()> for TransitHandshakeError {
    fn from(_: ()) -> Self {
        Self::Decryption
    }
}

/// Helper method for handshake: read a fixed number of bytes and make sure they are as expected
async fn read_expect(
    socket: &mut (dyn futures::io::AsyncRead + Unpin + Send),
    expected: &[u8],
) -> Result<(), TransitHandshakeError> {
    let mut buffer = vec![0u8; expected.len()];
    socket.read_exact(&mut buffer).await?;
    ensure!(buffer == expected, TransitHandshakeError::HandshakeFailed);
    Ok(())
}

/// Helper method: read a four bytes length prefix then the appropriate number of bytes
async fn read_transit_message(
    socket: &mut (dyn futures::io::AsyncRead + Unpin + Send),
) -> Result<Vec<u8>, std::io::Error> {
    // 1. read 4 bytes from the stream. This represents the length of the encrypted packet.
    let length = {
        let mut length_arr: [u8; 4] = [0; 4];
        socket.read_exact(&mut length_arr[..]).await?;
        u32::from_be_bytes(length_arr) as usize
    };

    // 2. read that many bytes into an array (or a vector?)
    let mut buffer = Vec::with_capacity(length);
    let len = socket.take(length as u64).read_to_end(&mut buffer).await?;
    use std::io::{Error, ErrorKind};
    ensure!(
        len == length,
        Error::new(ErrorKind::UnexpectedEof, "failed to read whole message")
    );
    Ok(buffer)
}

/// Helper method: write the message length then the message
async fn write_transit_message(
    socket: &mut (dyn futures::io::AsyncWrite + Unpin + Send),
    message: &[u8],
) -> Result<(), std::io::Error> {
    // send the encrypted record
    socket
        .write_all(&(message.len() as u32).to_be_bytes())
        .await?;
    socket.write_all(message).await
}

/// The Transit protocol has the property that the last message of the handshake is from the leader
/// and confirms the usage of that specific connection. This trait represents that specific type state.
pub(super) trait TransitCryptoInitFinalizer: Send {
    fn handshake_finalize(
        self: Box<Self>,
        socket: &mut TcpStream,
    ) -> BoxFuture<Result<DynTransitCrypto, TransitHandshakeError>>;
}

/// Due to poorly chosen abstractions elsewhere, the [`TransitCryptoInitFinalizer`] trait is also
/// used by the follower side. Since it is a no-op there, simply implement the trait for the result.
impl TransitCryptoInitFinalizer for DynTransitCrypto {
    fn handshake_finalize(
        self: Box<Self>,
        _socket: &mut TcpStream,
    ) -> BoxFuture<Result<DynTransitCrypto, TransitHandshakeError>> {
        Box::pin(futures::future::ready(Ok(*self)))
    }
}

/// Do a handshake. Multiple handshakes can be started from one instance on multiple streams.
#[async_trait]
pub(super) trait TransitCryptoInit: Send + Sync {
    // Yes, this method returns a nested future. TODO explain
    async fn handshake_leader(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError>;
    async fn handshake_follower(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError>;
}

/// The classic Transit cryptography backend, powered by libsodium's "Secretbox" API.
///
/// The handshake looks like this (leader perspective):
/// ```text
/// -> transit sender ${transit_key.derive("transit_sender)")} ready\n\n
/// <- transit receiver ${transit_key.derive("transit_receiver")} ready\n\n
/// -> go\n
/// ```
pub struct SecretboxInit {
    pub key: Arc<Key<TransitKey>>,
}

#[async_trait]
impl TransitCryptoInit for SecretboxInit {
    async fn handshake_leader(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        // 9. create record keys
        let rkey = self
            .key
            .derive_subkey_from_purpose("transit_record_receiver_key");
        let skey = self
            .key
            .derive_subkey_from_purpose("transit_record_sender_key");

        // for transmit mode, send send_handshake_msg and compare.
        // the received message with send_handshake_msg
        socket
            .write_all(
                format!(
                    "transit sender {} ready\n\n",
                    self.key
                        .derive_subkey_from_purpose::<crate::GenericKey>("transit_sender")
                        .to_hex()
                )
                .as_bytes(),
            )
            .await?;

        let expected_rx_handshake = format!(
            "transit receiver {} ready\n\n",
            self.key
                .derive_subkey_from_purpose::<crate::GenericKey>("transit_receiver")
                .to_hex()
        );
        assert_eq!(expected_rx_handshake.len(), 89);
        read_expect(socket, expected_rx_handshake.as_bytes()).await?;

        struct Finalizer {
            skey: Key<TransitTxKey>,
            rkey: Key<TransitRxKey>,
        }

        impl TransitCryptoInitFinalizer for Finalizer {
            fn handshake_finalize(
                self: Box<Self>,
                socket: &mut TcpStream,
            ) -> BoxFuture<Result<DynTransitCrypto, TransitHandshakeError>> {
                Box::pin(async move {
                    socket.write_all(b"go\n").await?;

                    Ok::<_, TransitHandshakeError>((
                        Box::new(SecretboxCryptoEncrypt {
                            skey: self.skey,
                            snonce: Default::default(),
                        }) as Box<dyn TransitCryptoEncrypt>,
                        Box::new(SecretboxCryptoDecrypt {
                            rkey: self.rkey,
                            rnonce: Default::default(),
                        }) as Box<dyn TransitCryptoDecrypt>,
                    ))
                })
            }
        }

        Ok(Box::new(Finalizer { skey, rkey }))
    }

    async fn handshake_follower(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        // 9. create record keys
        /* The order here is correct. The "sender" and "receiver" side are a misnomer and should be called
         * "leader" and "follower" instead. As a follower, we use the leader key for receiving and our
         * key for sending.
         */
        let rkey = self
            .key
            .derive_subkey_from_purpose("transit_record_sender_key");
        let skey = self
            .key
            .derive_subkey_from_purpose("transit_record_receiver_key");

        // for receive mode, send receive_handshake_msg and compare.
        // the received message with send_handshake_msg
        socket
            .write_all(
                format!(
                    "transit receiver {} ready\n\n",
                    self.key
                        .derive_subkey_from_purpose::<crate::GenericKey>("transit_receiver")
                        .to_hex(),
                )
                .as_bytes(),
            )
            .await?;

        let expected_tx_handshake = format!(
            "transit sender {} ready\n\ngo\n",
            self.key
                .derive_subkey_from_purpose::<crate::GenericKey>("transit_sender")
                .to_hex(),
        );
        assert_eq!(expected_tx_handshake.len(), 90);
        read_expect(socket, expected_tx_handshake.as_bytes()).await?;

        Ok(Box::new((
            Box::new(SecretboxCryptoEncrypt {
                skey,
                snonce: Default::default(),
            }) as Box<dyn TransitCryptoEncrypt>,
            Box::new(SecretboxCryptoDecrypt {
                rkey,
                rnonce: Default::default(),
            }) as Box<dyn TransitCryptoDecrypt>,
        )) as Box<dyn TransitCryptoInitFinalizer>)
    }
}

type NoiseHandshakeState = noise_protocol::HandshakeState<
    noise_rust_crypto::X25519,
    noise_rust_crypto::ChaCha20Poly1305,
    noise_rust_crypto::Blake2s,
>;
type NoiseCipherState = noise_protocol::CipherState<noise_rust_crypto::ChaCha20Poly1305>;

/// Cryptography based on the [noise protocol](noiseprotocol.org).
/// → "Magic-Wormhole Dilation Handshake v1 Leader\n\n"
/// ← "Magic-Wormhole Dilation Handshake v1 Follower\n\n"
/// → psk, e // Handshake
/// ← e, ee
/// ← "" // First real message
/// → "" // Not in this method, to confirm the connection
///
/// The noise protocol pattern used is "Noise_NNpsk0_25519_ChaChaPoly_BLAKE2s"
pub struct NoiseInit {
    pub key: Arc<Key<TransitKey>>,
}

#[async_trait]
impl TransitCryptoInit for NoiseInit {
    async fn handshake_leader(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        socket
            .write_all(b"Magic-Wormhole Dilation Handshake v1 Leader\n\n")
            .await?;
        read_expect(socket, b"Magic-Wormhole Dilation Handshake v1 Follower\n\n").await?;

        let mut handshake: NoiseHandshakeState = {
            let mut builder = noise_protocol::HandshakeStateBuilder::new();
            builder.set_pattern(noise_protocol::patterns::noise_nn_psk0());
            builder.set_prologue(&[]);
            builder.set_is_initiator(true);
            builder.build_handshake_state()
        };
        handshake.push_psk(&*self.key);

        // → psk, e
        write_transit_message(socket, &handshake.write_message_vec(&[])?).await?;

        // ← e, ee
        handshake.read_message(&read_transit_message(socket).await?, &mut [])?;

        assert!(handshake.completed());
        let (tx, mut rx) = handshake.get_ciphers();

        // ← ""
        let peer_confirmation_message = rx.decrypt_vec(&read_transit_message(socket).await?)?;
        ensure!(
            peer_confirmation_message.len() == 0,
            TransitHandshakeError::HandshakeFailed
        );

        struct Finalizer {
            tx: NoiseCipherState,
            rx: NoiseCipherState,
        }

        impl TransitCryptoInitFinalizer for Finalizer {
            fn handshake_finalize(
                mut self: Box<Self>,
                socket: &mut TcpStream,
            ) -> BoxFuture<Result<DynTransitCrypto, TransitHandshakeError>> {
                Box::pin(async move {
                    // → ""
                    write_transit_message(socket, &self.tx.encrypt_vec(&[])).await?;

                    Ok::<_, TransitHandshakeError>((
                        Box::new(NoiseCryptoEncrypt { tx: self.tx })
                            as Box<dyn TransitCryptoEncrypt>,
                        Box::new(NoiseCryptoDecrypt { rx: self.rx })
                            as Box<dyn TransitCryptoDecrypt>,
                    ))
                })
            }
        }

        Ok(Box::new(Finalizer { tx, rx }))
    }

    async fn handshake_follower(
        &self,
        socket: &mut TcpStream,
    ) -> Result<Box<dyn TransitCryptoInitFinalizer>, TransitHandshakeError> {
        socket
            .write_all(b"Magic-Wormhole Dilation Handshake v1 Follower\n\n")
            .await?;
        read_expect(socket, b"Magic-Wormhole Dilation Handshake v1 Leader\n\n").await?;

        let mut handshake: NoiseHandshakeState = {
            let mut builder = noise_protocol::HandshakeStateBuilder::new();
            builder.set_pattern(noise_protocol::patterns::noise_nn_psk0());
            builder.set_prologue(&[]);
            builder.set_is_initiator(false);
            builder.build_handshake_state()
        };
        handshake.push_psk(&*self.key);

        // ← psk, e
        handshake.read_message(&read_transit_message(socket).await?, &mut [])?;

        // → e, ee
        write_transit_message(socket, &handshake.write_message_vec(&[])?).await?;

        assert!(handshake.completed());
        // Warning: rx and tx are swapped here (read the `get_ciphers` doc carefully)
        let (mut rx, mut tx) = handshake.get_ciphers();

        // → ""
        write_transit_message(socket, &tx.encrypt_vec(&[])).await?;

        // ← ""
        let peer_confirmation_message = rx.decrypt_vec(&read_transit_message(socket).await?)?;
        ensure!(
            peer_confirmation_message.len() == 0,
            TransitHandshakeError::HandshakeFailed
        );

        Ok(Box::new((
            Box::new(NoiseCryptoEncrypt { tx }) as Box<dyn TransitCryptoEncrypt>,
            Box::new(NoiseCryptoDecrypt { rx }) as Box<dyn TransitCryptoDecrypt>,
        )) as Box<dyn TransitCryptoInitFinalizer>)
    }
}

type DynTransitCrypto = (Box<dyn TransitCryptoEncrypt>, Box<dyn TransitCryptoDecrypt>);

#[async_trait]
pub trait TransitCryptoEncrypt: Send {
    async fn encrypt(
        &mut self,
        socket: &mut (dyn futures::io::AsyncWrite + Unpin + Send),
        plaintext: &[u8],
    ) -> Result<(), TransitError>;
}

#[async_trait]
pub trait TransitCryptoDecrypt: Send {
    async fn decrypt(
        &mut self,
        socket: &mut (dyn futures::io::AsyncRead + Unpin + Send),
    ) -> Result<Box<[u8]>, TransitError>;
}

struct SecretboxCryptoEncrypt {
    /** Our key, used for sending */
    pub skey: Key<TransitTxKey>,
    /** Nonce for sending */
    pub snonce: secretbox::Nonce,
}

struct SecretboxCryptoDecrypt {
    /** Their key, used for receiving */
    pub rkey: Key<TransitRxKey>,
    /**
     * Nonce for receiving
     *
     * We'll count as receiver and track if messages come in in order
     */
    pub rnonce: secretbox::Nonce,
}

#[async_trait]
impl TransitCryptoEncrypt for SecretboxCryptoEncrypt {
    async fn encrypt(
        &mut self,
        socket: &mut (dyn futures::io::AsyncWrite + Unpin + Send),
        plaintext: &[u8],
    ) -> Result<(), TransitError> {
        let nonce = &mut self.snonce;
        let sodium_key = secretbox::Key::from_slice(&self.skey);

        let ciphertext = {
            let nonce_le = secretbox::Nonce::from_slice(nonce);

            let cipher = secretbox::XSalsa20Poly1305::new(sodium_key);
            cipher
                .encrypt(nonce_le, plaintext)
                /* TODO replace with (TransitError::Crypto) after the next xsalsa20poly1305 update */
                .map_err(|_| TransitError::Crypto)?
        };

        // send the encrypted record
        socket
            .write_all(&((ciphertext.len() + nonce.len()) as u32).to_be_bytes())
            .await?;
        socket.write_all(nonce).await?;
        socket.write_all(&ciphertext).await?;

        crate::util::sodium_increment_be(nonce);

        Ok(())
    }
}

#[async_trait]
impl TransitCryptoDecrypt for SecretboxCryptoDecrypt {
    async fn decrypt(
        &mut self,
        socket: &mut (dyn futures::io::AsyncRead + Unpin + Send),
    ) -> Result<Box<[u8]>, TransitError> {
        let nonce = &mut self.rnonce;

        let enc_packet = read_transit_message(socket).await?;

        use std::io::{Error, ErrorKind};
        ensure!(
            enc_packet.len() >= secretbox::NONCE_SIZE,
            Error::new(
                ErrorKind::InvalidData,
                "Message must be long enough to contain at least the nonce"
            )
        );

        // 3. decrypt the vector 'enc_packet' with the key.
        let plaintext = {
            let (received_nonce, ciphertext) = enc_packet.split_at(secretbox::NONCE_SIZE);
            {
                // Nonce check
                ensure!(
                    nonce.as_slice() == received_nonce,
                    TransitError::Nonce(received_nonce.into(), nonce.as_slice().into()),
                );

                crate::util::sodium_increment_be(nonce);
            }

            let cipher = secretbox::XSalsa20Poly1305::new(secretbox::Key::from_slice(&self.rkey));
            cipher
                .decrypt(secretbox::Nonce::from_slice(received_nonce), ciphertext)
                /* TODO replace with (TransitError::Crypto) after the next xsalsa20poly1305 update */
                .map_err(|_| TransitError::Crypto)?
        };

        Ok(plaintext.into_boxed_slice())
    }
}

struct NoiseCryptoEncrypt {
    tx: NoiseCipherState,
}

struct NoiseCryptoDecrypt {
    rx: NoiseCipherState,
}

#[async_trait]
impl TransitCryptoEncrypt for NoiseCryptoEncrypt {
    async fn encrypt(
        &mut self,
        socket: &mut (dyn futures::io::AsyncWrite + Unpin + Send),
        plaintext: &[u8],
    ) -> Result<(), TransitError> {
        write_transit_message(socket, &self.tx.encrypt_vec(plaintext)).await?;
        Ok(())
    }
}

#[async_trait]
impl TransitCryptoDecrypt for NoiseCryptoDecrypt {
    async fn decrypt(
        &mut self,
        socket: &mut (dyn futures::io::AsyncRead + Unpin + Send),
    ) -> Result<Box<[u8]>, TransitError> {
        let plaintext = self.rx.decrypt_vec(&read_transit_message(socket).await?)?;
        Ok(plaintext.into_boxed_slice())
    }
}