1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// Copyright 2019 Parity Technologies (UK) Ltd.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! Contains some helper futures for creating upgrades.

use futures::{prelude::*, try_ready};
use std::{cmp, error, fmt, io::Cursor, mem};
use tokio_io::{io, AsyncRead, AsyncWrite};

/// Send a message to the given socket, then shuts down the writing side.
///
/// > **Note**: Prepends a variable-length prefix indicate the length of the message. This is
/// >           compatible with what `read_one` expects.
#[inline]
pub fn write_one<TSocket, TData>(socket: TSocket, data: TData) -> WriteOne<TSocket, TData>
where
    TSocket: AsyncWrite,
    TData: AsRef<[u8]>,
{
    let len_data = build_int_buffer(data.as_ref().len());
    WriteOne {
        inner: WriteOneInner::WriteLen(io::write_all(socket, len_data), data),
    }
}

/// Builds a buffer that contains the given integer encoded as variable-length.
fn build_int_buffer(num: usize) -> io::Window<[u8; 10]> {
    let mut len_data = unsigned_varint::encode::u64_buffer();
    let encoded_len = unsigned_varint::encode::u64(num as u64, &mut len_data).len();
    let mut len_data = io::Window::new(len_data);
    len_data.set_end(encoded_len);
    len_data
}

/// Future that makes `write_one` work.
pub struct WriteOne<TSocket, TData = Vec<u8>> {
    inner: WriteOneInner<TSocket, TData>,
}

enum WriteOneInner<TSocket, TData> {
    /// We need to write the data length to the socket.
    WriteLen(io::WriteAll<TSocket, io::Window<[u8; 10]>>, TData),
    /// We need to write the actual data to the socket.
    Write(io::WriteAll<TSocket, TData>),
    /// We need to shut down the socket.
    Shutdown(io::Shutdown<TSocket>),
    /// A problem happened during the processing.
    Poisoned,
}

impl<TSocket, TData> Future for WriteOne<TSocket, TData>
where
    TSocket: AsyncWrite,
    TData: AsRef<[u8]>,
{
    type Item = ();
    type Error = std::io::Error;

    #[inline]
    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        Ok(self.inner.poll()?.map(|_socket| ()))
    }
}

impl<TSocket, TData> Future for WriteOneInner<TSocket, TData>
where
    TSocket: AsyncWrite,
    TData: AsRef<[u8]>,
{
    type Item = TSocket;
    type Error = std::io::Error;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            match mem::replace(self, WriteOneInner::Poisoned) {
                WriteOneInner::WriteLen(mut inner, data) => match inner.poll()? {
                    Async::Ready((socket, _)) => {
                        *self = WriteOneInner::Write(io::write_all(socket, data));
                    }
                    Async::NotReady => {
                        *self = WriteOneInner::WriteLen(inner, data);
                    }
                },
                WriteOneInner::Write(mut inner) => match inner.poll()? {
                    Async::Ready((socket, _)) => {
                        *self = WriteOneInner::Shutdown(tokio_io::io::shutdown(socket));
                    }
                    Async::NotReady => {
                        *self = WriteOneInner::Write(inner);
                    }
                },
                WriteOneInner::Shutdown(ref mut inner) => {
                    let socket = try_ready!(inner.poll());
                    return Ok(Async::Ready(socket));
                }
                WriteOneInner::Poisoned => panic!(),
            }
        }
    }
}

/// Reads a message from the given socket. Only one message is processed and the socket is dropped,
/// because we assume that the socket will not send anything more.
///
/// The `max_size` parameter is the maximum size in bytes of the message that we accept. This is
/// necessary in order to avoid DoS attacks where the remote sends us a message of several
/// gigabytes.
///
/// > **Note**: Assumes that a variable-length prefix indicates the length of the message. This is
/// >           compatible with what `write_one` does.
#[inline]
pub fn read_one<TSocket>(
    socket: TSocket,
    max_size: usize,
) -> ReadOne<TSocket>
{
    ReadOne {
        inner: ReadOneInner::ReadLen {
            socket,
            len_buf: Cursor::new([0; 10]),
            max_size,
        },
    }
}

/// Future that makes `read_one` work.
pub struct ReadOne<TSocket> {
    inner: ReadOneInner<TSocket>,
}

enum ReadOneInner<TSocket> {
    // We need to read the data length from the socket.
    ReadLen {
        socket: TSocket,
        /// A small buffer where we will right the variable-length integer representing the
        /// length of the actual packet.
        len_buf: Cursor<[u8; 10]>,
        max_size: usize,
    },
    // We need to read the actual data from the socket.
    ReadRest(io::ReadExact<TSocket, io::Window<Vec<u8>>>),
    /// A problem happened during the processing.
    Poisoned,
}

impl<TSocket> Future for ReadOne<TSocket>
where
    TSocket: AsyncRead,
{
    type Item = Vec<u8>;
    type Error = ReadOneError;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            match mem::replace(&mut self.inner, ReadOneInner::Poisoned) {
                ReadOneInner::ReadLen {
                    mut socket,
                    mut len_buf,
                    max_size,
                } => {
                    match socket.read_buf(&mut len_buf)? {
                        Async::Ready(num_read) => {
                            // Reaching EOF before finishing to read the length is an error.
                            if num_read == 0 {
                                return Err(ReadOneError::Io(
                                    std::io::ErrorKind::UnexpectedEof.into(),
                                ));
                            }

                            let len_buf_with_data =
                                &len_buf.get_ref()[..len_buf.position() as usize];
                            if let Ok((len, data_start)) =
                                unsigned_varint::decode::usize(len_buf_with_data)
                            {
                                if len >= max_size {
                                    return Err(ReadOneError::TooLarge {
                                        requested: len,
                                        max: max_size,
                                    });
                                }

                                // Create `data_buf` containing the start of the data that was
                                // already in `len_buf`.
                                let n = cmp::min(data_start.len(), len);
                                let mut data_buf = vec![0; len];
                                data_buf[.. n].copy_from_slice(&data_start[.. n]);
                                let mut data_buf = io::Window::new(data_buf);
                                data_buf.set_start(data_start.len());
                                self.inner =
                                    ReadOneInner::ReadRest(io::read_exact(socket, data_buf));
                            } else {
                                self.inner = ReadOneInner::ReadLen {
                                    socket,
                                    len_buf,
                                    max_size,
                                };
                            }
                        }
                        Async::NotReady => {
                            self.inner = ReadOneInner::ReadLen {
                                socket,
                                len_buf,
                                max_size,
                            };
                        }
                    }
                }
                ReadOneInner::ReadRest(mut inner) => {
                    match inner.poll()? {
                        Async::Ready((_, data)) => {
                            return Ok(Async::Ready(data.into_inner()));
                        }
                        Async::NotReady => {
                            self.inner = ReadOneInner::ReadRest(inner);
                        }
                    }
                }
                ReadOneInner::Poisoned => panic!(),
            }
        }
    }
}

/// Error while reading one message.
#[derive(Debug)]
pub enum ReadOneError {
    /// Error on the socket.
    Io(std::io::Error),
    /// Requested data is over the maximum allowed size.
    TooLarge {
        /// Size requested by the remote.
        requested: usize,
        /// Maximum allowed.
        max: usize,
    },
}

impl From<std::io::Error> for ReadOneError {
    #[inline]
    fn from(err: std::io::Error) -> ReadOneError {
        ReadOneError::Io(err)
    }
}

impl fmt::Display for ReadOneError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            ReadOneError::Io(ref err) => write!(f, "{}", err),
            ReadOneError::TooLarge { .. } => write!(f, "Received data size over maximum"),
        }
    }
}

impl error::Error for ReadOneError {
    fn source(&self) -> Option<&(dyn error::Error + 'static)> {
        match *self {
            ReadOneError::Io(ref err) => Some(err),
            ReadOneError::TooLarge { .. } => None,
        }
    }
}

/// Similar to `read_one`, but applies a transformation on the output buffer.
#[inline]
pub fn read_one_then<TSocket, TThen, TOut, TErr>(
    socket: TSocket,
    max_size: usize,
    then: TThen,
) -> ReadOneThen<TSocket, TThen>
where
    TSocket: AsyncRead,
    TThen: FnOnce(Vec<u8>) -> Result<TOut, TErr>,
    TErr: From<ReadOneError>,
{
    ReadOneThen {
        inner: read_one(socket, max_size),
        then: Some(then),
    }
}

/// Future that makes `read_one_then` work.
pub struct ReadOneThen<TSocket, TThen> {
    inner: ReadOne<TSocket>,
    then: Option<TThen>,
}

impl<TSocket, TThen, TOut, TErr> Future for ReadOneThen<TSocket, TThen>
where
    TSocket: AsyncRead,
    TThen: FnOnce(Vec<u8>) -> Result<TOut, TErr>,
    TErr: From<ReadOneError>,
{
    type Item = TOut;
    type Error = TErr;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        match self.inner.poll()? {
            Async::Ready(buffer) => {
                let then = self.then.take().expect("Future was polled after it was finished");
                Ok(Async::Ready(then(buffer)?))
            },
            Async::NotReady => Ok(Async::NotReady),
        }
    }
}

/// Send a message to the given socket, then shuts down the writing side, then reads an answer.
///
/// This combines `write_one` followed with `read_one`.
#[inline]
pub fn request_response<TSocket, TData, TThen, TOut, TErr>(
    socket: TSocket,
    data: TData,
    max_size: usize,
    then: TThen,
) -> RequestResponse<TSocket, TThen, TData>
where
    TSocket: AsyncRead + AsyncWrite,
    TData: AsRef<[u8]>,
    TThen: FnOnce(Vec<u8>) -> Result<TOut, TErr>,
{
    RequestResponse {
        inner: RequestResponseInner::Write(write_one(socket, data).inner, max_size, then),
    }
}

/// Future that makes `request_response` work.
pub struct RequestResponse<TSocket, TThen, TData = Vec<u8>> {
    inner: RequestResponseInner<TSocket, TData, TThen>,
}

enum RequestResponseInner<TSocket, TData, TThen> {
    // We need to write data to the socket.
    Write(WriteOneInner<TSocket, TData>, usize, TThen),
    // We need to read the message.
    Read(ReadOneThen<TSocket, TThen>),
    // An error happened during the processing.
    Poisoned,
}

impl<TSocket, TData, TThen, TOut, TErr> Future for RequestResponse<TSocket, TThen, TData>
where
    TSocket: AsyncRead + AsyncWrite,
    TData: AsRef<[u8]>,
    TThen: FnOnce(Vec<u8>) -> Result<TOut, TErr>,
    TErr: From<ReadOneError>,
{
    type Item = TOut;
    type Error = TErr;

    fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
        loop {
            match mem::replace(&mut self.inner, RequestResponseInner::Poisoned) {
                RequestResponseInner::Write(mut inner, max_size, then) => {
                    match inner.poll().map_err(ReadOneError::Io)? {
                        Async::Ready(socket) => {
                            self.inner =
                                RequestResponseInner::Read(read_one_then(socket, max_size, then));
                        }
                        Async::NotReady => {
                            self.inner = RequestResponseInner::Write(inner, max_size, then);
                        }
                    }
                }
                RequestResponseInner::Read(mut inner) => match inner.poll()? {
                    Async::Ready(packet) => return Ok(Async::Ready(packet)),
                    Async::NotReady => {
                        self.inner = RequestResponseInner::Read(inner);
                    }
                },
                RequestResponseInner::Poisoned => panic!(),
            };
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::io::Cursor;
    use tokio::runtime::current_thread::Runtime;

    #[test]
    fn write_one_works() {
        let data = (0..rand::random::<usize>() % 10_000)
            .map(|_| rand::random::<u8>())
            .collect::<Vec<_>>();

        let mut out = vec![0; 10_000];
        let future = write_one(Cursor::new(&mut out[..]), data.clone());
        Runtime::new().unwrap().block_on(future).unwrap();

        let (out_len, out_data) = unsigned_varint::decode::usize(&out).unwrap();
        assert_eq!(out_len, data.len());
        assert_eq!(&out_data[..out_len], &data[..]);
    }

    #[test]
    fn read_one_works() {
        let original_data = (0..rand::random::<usize>() % 10_000)
            .map(|_| rand::random::<u8>())
            .collect::<Vec<_>>();

        let mut len_buf = unsigned_varint::encode::usize_buffer();
        let len_buf = unsigned_varint::encode::usize(original_data.len(), &mut len_buf);

        let mut in_buffer = len_buf.to_vec();
        in_buffer.extend_from_slice(&original_data);

        let future = read_one_then(Cursor::new(in_buffer), 10_000, move |out| -> Result<_, ReadOneError> {
            assert_eq!(out, original_data);
            Ok(())
        });

        Runtime::new().unwrap().block_on(future).unwrap();
    }

    #[test]
    fn read_one_zero_len() {
        let future = read_one_then(Cursor::new(vec![0]), 10_000, move |out| -> Result<_, ReadOneError> {
            assert!(out.is_empty());
            Ok(())
        });

        Runtime::new().unwrap().block_on(future).unwrap();
    }

    #[test]
    fn read_checks_length() {
        let mut len_buf = unsigned_varint::encode::u64_buffer();
        let len_buf = unsigned_varint::encode::u64(5_000, &mut len_buf);

        let mut in_buffer = len_buf.to_vec();
        in_buffer.extend((0..5000).map(|_| 0));

        let future = read_one_then(Cursor::new(in_buffer), 100, move |_| -> Result<_, ReadOneError> {
            Ok(())
        });

        match Runtime::new().unwrap().block_on(future) {
            Err(ReadOneError::TooLarge { .. }) => (),
            _ => panic!(),
        }
    }
}