pub trait RowStorage: Clone + Debug + Sealed {
    fn set_dim(&mut self, cols: usize);
    fn widths_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules]);

    fn rules(&mut self) -> &mut [SizeRules] { ... }
    fn widths(&mut self) -> &mut [i32] { ... }
}
Expand description

Requirements of row solver storage type

Usually this is set by a crate::layout::RowSolver from crate::Layout::size_rules, then used by crate::Layout::set_rect to divide the assigned rect between children.

It may be useful to access this directly if not solving size rules normally; specifically this allows a different size solver to replace size_rules and influence set_rect.

Note: some implementations allocate when Self::set_dim is first called. It is expected that this method is called before other methods.

Required Methods§

Set dimension: number of columns or rows

Access widths and rules simultaneously

Provided Methods§

Access SizeRules for each column/row

Examples found in repository?
src/layout/row_solver.rs (line 75)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
        &mut self,
        storage: &mut Self::Storage,
        index: Self::ChildInfo,
        child_rules: CR,
    ) {
        if self.axis.has_fixed && self.axis_is_vertical {
            self.axis.other_axis = storage.widths()[index];
        }
        let child_rules = child_rules(self.axis);

        if !self.axis_is_vertical {
            storage.rules()[index] = child_rules;
            if let Some(rules) = self.rules {
                if self.axis_is_reversed {
                    self.rules = Some(child_rules.appended(rules));
                } else {
                    self.rules = Some(rules.appended(child_rules));
                }
            } else {
                self.rules = Some(child_rules);
            }
        } else {
            self.rules = Some(
                self.rules
                    .map(|rules| rules.max(child_rules))
                    .unwrap_or(child_rules),
            );
        }
    }

    fn finish(self, _: &mut Self::Storage) -> SizeRules {
        self.rules.unwrap_or(SizeRules::EMPTY)
    }
}

/// A [`RulesSetter`] for rows (and, without loss of generality, for columns).
///
/// This is parameterised over:
///
/// -   `D:` [`Directional`] — whether this represents a row or a column
/// -   `T:` [`RowTemp`] — temporary storage type
/// -   `S:` [`RowStorage`] — persistent storage type
pub struct RowSetter<D, T: RowTemp, S: RowStorage> {
    rect: Rect,
    offsets: T,
    direction: D,
    _s: PhantomData<S>,
}

impl<D: Directional, T: RowTemp, S: RowStorage> RowSetter<D, T, S> {
    /// Construct
    ///
    /// Argument order is consistent with other [`RulesSetter`]s.
    ///
    /// -   `rect`: the [`Rect`] within which to position children
    /// - `(direction, len)`: direction and number of items
    /// -   `storage`: access to the solver's storage
    pub fn new(rect: Rect, (direction, len): (D, usize), storage: &mut S) -> Self {
        let mut offsets = T::default();
        offsets.set_len(len);
        storage.set_dim(len);

        if len > 0 {
            let is_horiz = direction.is_horizontal();
            let width = if is_horiz { rect.size.0 } else { rect.size.1 };
            let (widths, rules) = storage.widths_and_rules();
            SizeRules::solve_seq(widths, rules, width);
        }

        let _s = Default::default();
        let mut row = RowSetter {
            rect,
            offsets,
            direction,
            _s,
        };
        row.update_offsets(storage);
        row
    }

    /// Construct without solving
    ///
    /// In this case, it is assumed that the storage was already solved by a
    /// previous `RowSetter`. The user should optionally call `solve_range` on
    /// any ranges needing updating and finally call `update_offsets` before
    /// using this `RowSetter` to calculate child positions.
    pub fn new_unsolved(rect: Rect, (direction, len): (D, usize), storage: &mut S) -> Self {
        let mut offsets = T::default();
        offsets.set_len(len);
        storage.set_dim(len);

        let _s = Default::default();
        RowSetter {
            rect,
            offsets,
            direction,
            _s,
        }
    }

    pub fn update_offsets(&mut self, storage: &mut S) {
        let offsets = self.offsets.as_mut();
        let len = offsets.len();
        if len == 0 {
            return;
        }

        let pos = if self.direction.is_horizontal() {
            self.rect.pos.0
        } else {
            self.rect.pos.1
        };

        if self.direction.is_reversed() {
            offsets[len - 1] = pos;
            for i in (0..(len - 1)).rev() {
                let i1 = i + 1;
                let m1 = storage.rules()[i1].margins_i32().1;
                let m0 = storage.rules()[i].margins_i32().0;
                offsets[i] = offsets[i1] + storage.widths()[i1] + m1.max(m0);
            }
        } else {
            offsets[0] = pos;
            for i in 1..len {
                let i1 = i - 1;
                let m1 = storage.rules()[i1].margins_i32().1;
                let m0 = storage.rules()[i].margins_i32().0;
                offsets[i] = offsets[i1] + storage.widths()[i1] + m1.max(m0);
            }
        }
    }

    pub fn solve_range(&mut self, storage: &mut S, range: Range<usize>, width: i32) {
        assert!(range.end <= self.offsets.as_mut().len());

        let (widths, rules) = storage.widths_and_rules();
        SizeRules::solve_seq(&mut widths[range.clone()], &rules[range], width);
    }
}

impl<D: Directional, T: RowTemp, S: RowStorage> RulesSetter for RowSetter<D, T, S> {
    type Storage = S;
    type ChildInfo = usize;

    fn child_rect(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
        let mut rect = self.rect;
        if self.direction.is_horizontal() {
            rect.pos.0 = self.offsets.as_mut()[index];
            rect.size.0 = storage.widths()[index];
        } else {
            rect.pos.1 = self.offsets.as_mut()[index];
            rect.size.1 = storage.widths()[index];
        }
        rect
    }

    fn maximal_rect_of(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
        let pre_rules = SizeRules::min_sum(&storage.rules()[0..index]);
        let m = storage.rules()[index].margins();
        let len = storage.widths().len();
        let post_rules = SizeRules::min_sum(&storage.rules()[(index + 1)..len]);

        let size1 = pre_rules.min_size() + i32::from(pre_rules.margins().1.max(m.0));
        let size2 = size1 + post_rules.min_size() + i32::from(post_rules.margins().0.max(m.1));

        let mut rect = self.rect;
        if self.direction.is_horizontal() {
            rect.pos.0 = self.rect.pos.0 + size1;
            rect.size.0 = (self.rect.size.0 - size2).max(0);
        } else {
            rect.pos.1 = self.rect.pos.1 + size1;
            rect.size.1 = (self.rect.size.1 - size2).max(0);
        }
        rect
    }

Access widths for each column/row

Widths are calculated from rules when set_rect is called. Assigning to widths before set_rect is called only has any effect when the available size exceeds the minimum required (see SizeRules::solve_seq).

Examples found in repository?
src/layout/row_solver.rs (line 70)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
        &mut self,
        storage: &mut Self::Storage,
        index: Self::ChildInfo,
        child_rules: CR,
    ) {
        if self.axis.has_fixed && self.axis_is_vertical {
            self.axis.other_axis = storage.widths()[index];
        }
        let child_rules = child_rules(self.axis);

        if !self.axis_is_vertical {
            storage.rules()[index] = child_rules;
            if let Some(rules) = self.rules {
                if self.axis_is_reversed {
                    self.rules = Some(child_rules.appended(rules));
                } else {
                    self.rules = Some(rules.appended(child_rules));
                }
            } else {
                self.rules = Some(child_rules);
            }
        } else {
            self.rules = Some(
                self.rules
                    .map(|rules| rules.max(child_rules))
                    .unwrap_or(child_rules),
            );
        }
    }

    fn finish(self, _: &mut Self::Storage) -> SizeRules {
        self.rules.unwrap_or(SizeRules::EMPTY)
    }
}

/// A [`RulesSetter`] for rows (and, without loss of generality, for columns).
///
/// This is parameterised over:
///
/// -   `D:` [`Directional`] — whether this represents a row or a column
/// -   `T:` [`RowTemp`] — temporary storage type
/// -   `S:` [`RowStorage`] — persistent storage type
pub struct RowSetter<D, T: RowTemp, S: RowStorage> {
    rect: Rect,
    offsets: T,
    direction: D,
    _s: PhantomData<S>,
}

impl<D: Directional, T: RowTemp, S: RowStorage> RowSetter<D, T, S> {
    /// Construct
    ///
    /// Argument order is consistent with other [`RulesSetter`]s.
    ///
    /// -   `rect`: the [`Rect`] within which to position children
    /// - `(direction, len)`: direction and number of items
    /// -   `storage`: access to the solver's storage
    pub fn new(rect: Rect, (direction, len): (D, usize), storage: &mut S) -> Self {
        let mut offsets = T::default();
        offsets.set_len(len);
        storage.set_dim(len);

        if len > 0 {
            let is_horiz = direction.is_horizontal();
            let width = if is_horiz { rect.size.0 } else { rect.size.1 };
            let (widths, rules) = storage.widths_and_rules();
            SizeRules::solve_seq(widths, rules, width);
        }

        let _s = Default::default();
        let mut row = RowSetter {
            rect,
            offsets,
            direction,
            _s,
        };
        row.update_offsets(storage);
        row
    }

    /// Construct without solving
    ///
    /// In this case, it is assumed that the storage was already solved by a
    /// previous `RowSetter`. The user should optionally call `solve_range` on
    /// any ranges needing updating and finally call `update_offsets` before
    /// using this `RowSetter` to calculate child positions.
    pub fn new_unsolved(rect: Rect, (direction, len): (D, usize), storage: &mut S) -> Self {
        let mut offsets = T::default();
        offsets.set_len(len);
        storage.set_dim(len);

        let _s = Default::default();
        RowSetter {
            rect,
            offsets,
            direction,
            _s,
        }
    }

    pub fn update_offsets(&mut self, storage: &mut S) {
        let offsets = self.offsets.as_mut();
        let len = offsets.len();
        if len == 0 {
            return;
        }

        let pos = if self.direction.is_horizontal() {
            self.rect.pos.0
        } else {
            self.rect.pos.1
        };

        if self.direction.is_reversed() {
            offsets[len - 1] = pos;
            for i in (0..(len - 1)).rev() {
                let i1 = i + 1;
                let m1 = storage.rules()[i1].margins_i32().1;
                let m0 = storage.rules()[i].margins_i32().0;
                offsets[i] = offsets[i1] + storage.widths()[i1] + m1.max(m0);
            }
        } else {
            offsets[0] = pos;
            for i in 1..len {
                let i1 = i - 1;
                let m1 = storage.rules()[i1].margins_i32().1;
                let m0 = storage.rules()[i].margins_i32().0;
                offsets[i] = offsets[i1] + storage.widths()[i1] + m1.max(m0);
            }
        }
    }

    pub fn solve_range(&mut self, storage: &mut S, range: Range<usize>, width: i32) {
        assert!(range.end <= self.offsets.as_mut().len());

        let (widths, rules) = storage.widths_and_rules();
        SizeRules::solve_seq(&mut widths[range.clone()], &rules[range], width);
    }
}

impl<D: Directional, T: RowTemp, S: RowStorage> RulesSetter for RowSetter<D, T, S> {
    type Storage = S;
    type ChildInfo = usize;

    fn child_rect(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
        let mut rect = self.rect;
        if self.direction.is_horizontal() {
            rect.pos.0 = self.offsets.as_mut()[index];
            rect.size.0 = storage.widths()[index];
        } else {
            rect.pos.1 = self.offsets.as_mut()[index];
            rect.size.1 = storage.widths()[index];
        }
        rect
    }

    fn maximal_rect_of(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
        let pre_rules = SizeRules::min_sum(&storage.rules()[0..index]);
        let m = storage.rules()[index].margins();
        let len = storage.widths().len();
        let post_rules = SizeRules::min_sum(&storage.rules()[(index + 1)..len]);

        let size1 = pre_rules.min_size() + i32::from(pre_rules.margins().1.max(m.0));
        let size2 = size1 + post_rules.min_size() + i32::from(post_rules.margins().0.max(m.1));

        let mut rect = self.rect;
        if self.direction.is_horizontal() {
            rect.pos.0 = self.rect.pos.0 + size1;
            rect.size.0 = (self.rect.size.0 - size2).max(0);
        } else {
            rect.pos.1 = self.rect.pos.1 + size1;
            rect.size.1 = (self.rect.size.1 - size2).max(0);
        }
        rect
    }

Implementors§