pub struct SizeRules { /* private fields */ }
Expand description
Widget sizing information
This is the return value of crate::Layout::size_rules
and is used to
describe size and margin requirements for widgets. This type only concerns
size requirements along a single axis.
All units are in pixels. Sizes usually come directly from SizeMgr
or from a fixed quantity multiplied by SizeMgr::scale_factor
.
Sizes
The widget size model is simple: a rectangular box, plus a margin on each
side. The SizeRules
type represents expectations along a single axis:
- The minimum acceptable size (almost always met)
- The ideal size (often the same size; this distinction is most useful for scrollable regions which are ideally large enough not to require scrolling, but can be much smaller)
- A
Stretch
priority, used to prioritize allocation of excess space
Note that Stretch::None
does not prevent stretching, but simply states
that it is undesired (lowest priority). Actually preventing stretching
requires alignment.
Margins
Required margin sizes are handled separately for each side of a widget.
Since SizeRules
concerns only one axis, it stores only two margin sizes:
“pre” (left/top) and “post” (right/bottom). These are stored as u16
values
on the assumption that no margin need exceed 65536.
When widgets are placed next to each other, their margins may be combined; e.g. if a widget with margin of 6px is followed by another with margin 2px, the required margin between the two is the maximum, 6px.
Only the layout engine and parent widgets need consider margins (beyond
their specification). For these cases, one needs to be aware that due to
margin-merging behaviour, one cannot simply “add” two SizeRules
. Instead,
when placing one widget next to another, use SizeRules::append
or
SizeRules::appended
; when placing a widget within a frame, use
FrameRules::surround
.
When calculating the size of a sequence of
widgets, one may use the Sum
implementation (this assumes that the
sequence is in left-to-right or top-to-bottom order).
Alignment
SizeRules
concerns calculations of size requirements, which the layout
engine uses to assign each widget a Rect
; it is up to the widget itself
to either fill this rect or align itself within the given space.
See crate::Layout::set_rect
for more information.
For widgets with a stretch priority of Stretch::None
, it is still
possible for layout code to assign a size larger than the preference. It is
up to the widget to align itself within this space: see
crate::Layout::set_rect
and crate::layout::AlignHints
.
Implementations§
source§impl SizeRules
impl SizeRules
sourcepub const EMPTY: Self = _
pub const EMPTY: Self = _
Empty (zero size) widget
Warning: appending another size to EMPTY
does include margins
even though EMPTY
itself has zero size. However, EMPTY
itself has
zero-size margins, so this only affects appending an EMPTY
with a
non-empty SizeRules
.
sourcepub const fn empty(stretch: Stretch) -> Self
pub const fn empty(stretch: Stretch) -> Self
Empty space with the given stretch priority
See warning on SizeRules::EMPTY
.
sourcepub fn fixed(size: i32, margins: (u16, u16)) -> Self
pub fn fixed(size: i32, margins: (u16, u16)) -> Self
A fixed size with given (pre, post)
margins
Examples found in repository?
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
pub fn fixed_splat(size: i32, margin: u16) -> Self {
Self::fixed(size, (margin, margin))
}
/// A fixed size, scaled from virtual pixels
///
/// This is a shortcut to [`SizeRules::fixed`] using virtual-pixel sizes
/// and a scale factor. It also assumes both margins are equal.
#[inline]
pub fn fixed_scaled(size: f32, margins: f32, scale_factor: f32) -> Self {
debug_assert!(size >= 0.0 && margins >= 0.0);
let size = (scale_factor * size).cast_nearest();
let m = (scale_factor * margins).cast_nearest();
SizeRules::fixed(size, (m, m))
}
More examples
sourcepub fn fixed_splat(size: i32, margin: u16) -> Self
pub fn fixed_splat(size: i32, margin: u16) -> Self
A fixed size with given (symmetric) margin
sourcepub fn fixed_scaled(size: f32, margins: f32, scale_factor: f32) -> Self
pub fn fixed_scaled(size: f32, margins: f32, scale_factor: f32) -> Self
A fixed size, scaled from virtual pixels
This is a shortcut to SizeRules::fixed
using virtual-pixel sizes
and a scale factor. It also assumes both margins are equal.
sourcepub fn extract<D: Directional>(
dir: D,
size: Size,
margins: Margins,
stretch: Stretch
) -> Self
pub fn extract<D: Directional>(
dir: D,
size: Size,
margins: Margins,
stretch: Stretch
) -> Self
Construct rules from given data
sourcepub fn extract_fixed<D: Directional>(dir: D, size: Size, margin: Margins) -> Self
pub fn extract_fixed<D: Directional>(dir: D, size: Size, margin: Margins) -> Self
Construct fixed-size rules from given data
sourcepub fn new(min: i32, ideal: i32, margins: (u16, u16), stretch: Stretch) -> Self
pub fn new(min: i32, ideal: i32, margins: (u16, u16), stretch: Stretch) -> Self
Construct with custom rules
Region size should meet the given min
-imum size and has a given
ideal
size, plus a given stretch
priority.
Expected: ideal >= min
(if not, ideal is clamped to min).
Examples found in repository?
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
pub fn extract<D: Directional>(dir: D, size: Size, margins: Margins, stretch: Stretch) -> Self {
let size = size.extract(dir);
let m = margins.extract(dir);
SizeRules::new(size, size, m, stretch)
}
/// Construct fixed-size rules from given data
#[inline]
pub fn extract_fixed<D: Directional>(dir: D, size: Size, margin: Margins) -> Self {
SizeRules::extract(dir, size, margin, Stretch::None)
}
/// Construct with custom rules
///
/// Region size should meet the given `min`-imum size and has a given
/// `ideal` size, plus a given `stretch` priority.
///
/// Expected: `ideal >= min` (if not, ideal is clamped to min).
#[inline]
pub fn new(min: i32, ideal: i32, margins: (u16, u16), stretch: Stretch) -> Self {
debug_assert!(0 <= min && 0 <= ideal);
SizeRules {
a: min,
b: ideal.max(min),
m: margins,
stretch,
}
}
/// Set stretch factor, inline
#[inline]
pub fn with_stretch(self, stretch: Stretch) -> Self {
Self::new(self.a, self.b, self.m, stretch)
}
More examples
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
pub fn to_rules_with_factor(
self,
dir: impl Directional,
scale_factor: f32,
ideal_factor: f32,
) -> SizeRules {
let min = self.extract_scaled(dir, scale_factor);
let ideal = self.extract_scaled(dir, scale_factor * ideal_factor);
SizeRules::new(min, ideal, (0, 0), Stretch::None)
}
/// Take horizontal/vertical axis component
pub fn extract(self, dir: impl Directional) -> f32 {
match dir.is_vertical() {
false => self.0,
true => self.1,
}
}
/// Take component and scale
pub fn extract_scaled(self, dir: impl Directional, scale_factor: f32) -> i32 {
(self.extract(dir) * scale_factor).cast_nearest()
}
}
impl From<(f32, f32)> for LogicalSize {
#[inline]
fn from((w, h): (f32, f32)) -> Self {
LogicalSize(w, h)
}
}
impl Conv<(i32, i32)> for LogicalSize {
#[inline]
fn try_conv((w, h): (i32, i32)) -> Result<Self> {
Ok(LogicalSize(w.try_cast()?, h.try_cast()?))
}
}
impl Conv<(u32, u32)> for LogicalSize {
#[inline]
fn try_conv((w, h): (u32, u32)) -> Result<Self> {
Ok(LogicalSize(w.try_cast()?, h.try_cast()?))
}
}
impl Conv<Size> for LogicalSize {
#[inline]
fn try_conv(size: Size) -> Result<Self> {
Ok(LogicalSize(size.0.try_cast()?, size.1.try_cast()?))
}
}
impl From<Vec2> for LogicalSize {
#[inline]
fn from(Vec2(w, h): Vec2) -> Self {
LogicalSize(w, h)
}
}
impl From<LogicalSize> for Vec2 {
#[inline]
fn from(LogicalSize(w, h): LogicalSize) -> Self {
Vec2(w, h)
}
}
/// Margin sizes
///
/// Used by the layout system for margins around child widgets. Margins may be
/// drawn in and handle events like any other widget area.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct Margins {
/// Size of horizontal margins
pub horiz: (u16, u16),
/// Size of vertical margins
pub vert: (u16, u16),
}
impl Margins {
/// Zero-sized margins
pub const ZERO: Margins = Margins::splat(0);
/// Margins with equal size on each edge.
#[inline]
pub const fn splat(size: u16) -> Self {
Margins::hv_splat((size, size))
}
/// Margins via horizontal and vertical sizes
#[inline]
pub const fn hv(horiz: (u16, u16), vert: (u16, u16)) -> Self {
Margins { horiz, vert }
}
/// Margins via horizontal and vertical sizes
#[inline]
pub const fn hv_splat((h, v): (u16, u16)) -> Self {
Margins {
horiz: (h, h),
vert: (v, v),
}
}
/// Sum of horizontal margins
#[inline]
pub fn sum_horiz(&self) -> i32 {
i32::from(self.horiz.0) + i32::from(self.horiz.1)
}
/// Sum of vertical margins
#[inline]
pub fn sum_vert(&self) -> i32 {
i32::from(self.vert.0) + i32::from(self.vert.1)
}
/// Pad a size with margins
pub fn pad(self, size: Size) -> Size {
Size::new(size.0 + self.sum_horiz(), size.1 + self.sum_vert())
}
/// Extract one component, based on a direction
///
/// This merely extracts the horizontal or vertical component.
/// It never negates it, even if the axis is reversed.
#[inline]
pub fn extract<D: Directional>(self, dir: D) -> (u16, u16) {
match dir.is_vertical() {
false => self.horiz,
true => self.vert,
}
}
}
impl From<Size> for Margins {
fn from(size: Size) -> Self {
Margins::hv_splat(size.cast())
}
}
/// Priority for stretching widgets beyond ideal size
///
/// When more space is available than required to meet widgets' "ideal size",
/// that extra space is allocated based on the `Stretch` priority: the widget(s)
/// with the highest priority level represented are allocated extra space (the
/// excess is evenly divided between these widgets).
///
/// Note that `Stretch` only affects how much space is *made available*, not
/// how that space is used. By default, widgets expand to fill all space made
/// available to them; any other behaviour requires alignment.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd, Hash)]
pub enum Stretch {
/// Prefer no stretching
///
/// This is the default value and indicates that stretching is undesirable,
/// but does not prevent it.
None,
/// Fill unwanted space
///
/// The main use of this is to force layout with a `Filler` widget.
Filler,
/// Extra space is considered of low utility (but higher than `Filler`)
Low,
/// Extra space is considered of high utility
High,
/// Greedily consume as much space as possible
Maximize,
}
impl Default for Stretch {
fn default() -> Self {
Stretch::None
}
}
impl_scope! {
/// Control over scaling
#[impl_default]
#[derive(Clone, Debug, PartialEq)]
pub struct PixmapScaling {
/// Margins
pub margins: MarginStyle,
/// Display size
///
/// This may be set by the providing type or by the user.
pub size: LogicalSize,
/// Minimum size relative to [`Self::size`]
///
/// Default: `1.0`
pub min_factor: f32 = 1.0,
/// Ideal size relative to [`Self::size`]
///
/// Default: `1.0`
pub ideal_factor: f32 = 1.0,
/// If true, aspect ratio is fixed relative to [`Self.size`]
///
/// Default: `true`
pub fix_aspect: bool = true,
/// Widget stretchiness
///
/// If is `None`, max size is limited to ideal size.
pub stretch: Stretch,
/// Alignment (set by `Self::size_rules`)
align: AlignPair,
}
}
impl PixmapScaling {
/// Generates `size_rules` based on size
pub fn size_rules(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
let margins = mgr.margins(self.margins).extract(axis);
let scale_factor = mgr.scale_factor();
let min = self
.size
.to_physical(scale_factor * self.min_factor)
.extract(axis);
let ideal = self
.size
.to_physical(scale_factor * self.ideal_factor)
.extract(axis);
self.align.set_component(axis, axis.align_or_center());
SizeRules::new(min, ideal, margins, self.stretch)
}
/// Constrains and aligns within `rect`
///
/// The resulting size is then aligned using the `align` hints, defaulting to centered.
pub fn align_rect(&mut self, rect: Rect, scale_factor: f32) -> Rect {
let mut size = rect.size;
if self.stretch == Stretch::None {
let ideal = self.size.to_physical(scale_factor * self.ideal_factor);
size = size.min(ideal);
}
if self.fix_aspect {
let logical_size = Vec2::from(self.size);
let Vec2(rw, rh) = Vec2::conv(size) / logical_size;
// Use smaller ratio, if any is finite
if rw < rh {
size.1 = i32::conv_nearest(rw * logical_size.1);
} else if rh < rw {
size.0 = i32::conv_nearest(rh * logical_size.0);
}
}
self.align.aligned_rect(size, rect)
}
}
/// Frame size rules
///
/// This is a special variant of [`SizeRules`] for frames. It is assumed that
/// frames are not stretchy (i.e. that min-size equals ideal-size); additionally
/// frame rules have a content offset and a minimum internal margin size.
#[derive(Clone, Copy, Debug)]
pub struct FrameRules {
// (pre, post) pairs
size: i32,
inner: (u16, u16),
outer: (u16, u16),
}
impl FrameRules {
pub const ZERO: Self = FrameRules::new_sym(0, 0, 0);
/// Construct new `FrameRules`
///
/// All parameters use pairs `(first, second)` where `first` is the top/left
/// component. Parameters `inner` and `outer` are inner and outer margin
/// sizes respectively while `size` is the frame size.
///
/// If `size > 0` then internal margins are the maximum of `inner` and
/// content margin; generated rules have size
/// `content_size + size + inner_margin` and outer margin `outer`.
///
/// If `size ≤ 0` then the generated rules are simply content rules but
/// with margins the maximum of `inner` and content margins; `outer` and
/// `size` are ignored (other than to enable this mode).
#[inline]
pub const fn new(size: i32, inner: (u16, u16), outer: (u16, u16)) -> Self {
FrameRules { size, inner, outer }
}
/// Construct (symmetric on axis)
#[inline]
pub const fn new_sym(size: i32, inner: u16, outer: u16) -> Self {
Self::new(size, (inner, inner), (outer, outer))
}
/// Generate rules for content surrounded by this frame
///
/// Returns the tuple `(rules, offset, size)`:
///
/// - the generated `rules`
/// - the content `offset` within the allocated rect
/// - the size consumed by the frame and inner margins (thus the content's
/// size will be that allocated for this object minus this `size` value)
pub fn surround(self, content: SizeRules) -> (SizeRules, i32, i32) {
if self.size > 0 {
let (m0, m1) = content.margins();
let m0 = m0.max(self.inner.0);
let m1 = m1.max(self.inner.1);
let offset = self.size + i32::conv(m0);
let size = offset + self.size + i32::conv(m1);
let rules = SizeRules::new(
content.min_size() + size,
content.ideal_size() + size,
self.outer,
content.stretch(),
);
(rules, offset, size)
} else {
let mut rules = content;
rules.include_margins(self.inner);
(rules, 0, 0)
}
}
sourcepub fn with_stretch(self, stretch: Stretch) -> Self
pub fn with_stretch(self, stretch: Stretch) -> Self
Set stretch factor, inline
sourcepub fn min_size(self) -> i32
pub fn min_size(self) -> i32
Get the minimum size
Examples found in repository?
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
pub fn surround(self, content: SizeRules) -> (SizeRules, i32, i32) {
if self.size > 0 {
let (m0, m1) = content.margins();
let m0 = m0.max(self.inner.0);
let m1 = m1.max(self.inner.1);
let offset = self.size + i32::conv(m0);
let size = offset + self.size + i32::conv(m1);
let rules = SizeRules::new(
content.min_size() + size,
content.ideal_size() + size,
self.outer,
content.stretch(),
);
(rules, offset, size)
} else {
let mut rules = content;
rules.include_margins(self.inner);
(rules, 0, 0)
}
}
More examples
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
fn maximal_rect_of(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
let pre_rules = SizeRules::min_sum(&storage.rules()[0..index]);
let m = storage.rules()[index].margins();
let len = storage.widths().len();
let post_rules = SizeRules::min_sum(&storage.rules()[(index + 1)..len]);
let size1 = pre_rules.min_size() + i32::from(pre_rules.margins().1.max(m.0));
let size2 = size1 + post_rules.min_size() + i32::from(post_rules.margins().0.max(m.1));
let mut rect = self.rect;
if self.direction.is_horizontal() {
rect.pos.0 = self.rect.pos.0 + size1;
rect.size.0 = (self.rect.size.0 - size2).max(0);
} else {
rect.pos.1 = self.rect.pos.1 + size1;
rect.size.1 = (self.rect.size.1 - size2).max(0);
}
rect
}
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
pub fn find_constraints(widget: &mut dyn Widget, size_mgr: SizeMgr) -> Self {
let start = std::time::Instant::now();
let w = widget.size_rules(size_mgr.re(), AxisInfo::new(false, None, None));
let h = widget.size_rules(
size_mgr.re(),
AxisInfo::new(true, Some(w.ideal_size()), None),
);
let min = Size(w.min_size(), h.min_size());
let ideal = Size(w.ideal_size(), h.ideal_size());
let margins = Margins::hv(w.margins(), h.margins());
log::trace!(
target: "kas_perf::layout", "find_constraints: {}μs",
start.elapsed().as_micros(),
);
log::debug!("find_constraints: min={min:?}, ideal={ideal:?}, margins={margins:?}");
let refresh_rules = false;
let last_width = ideal.0;
SolveCache {
min,
ideal,
margins,
refresh_rules,
last_width,
}
}
/// Force updating of size rules
///
/// This should be called whenever widget size rules have been changed. It
/// forces [`SolveCache::apply_rect`] to recompute these rules when next
/// called.
pub fn invalidate_rule_cache(&mut self) {
self.refresh_rules = true;
}
/// Apply layout solution to a widget
///
/// The widget's layout is solved for the given `rect` and assigned.
/// If `inner_margin` is true, margins are internal to this `rect`; if not,
/// the caller is responsible for handling margins.
///
/// If [`SolveCache::invalidate_rule_cache`] was called since rules were
/// last calculated then this method will recalculate all rules; otherwise
/// it will only do so if necessary (when dimensions do not match those
/// last used).
pub fn apply_rect(
&mut self,
widget: &mut dyn Widget,
mgr: &mut ConfigMgr,
mut rect: Rect,
inner_margin: bool,
print_heirarchy: bool,
) {
let start = std::time::Instant::now();
let mut width = rect.size.0;
if inner_margin {
width -= self.margins.sum_horiz();
}
// We call size_rules not because we want the result, but to allow
// internal layout solving.
if self.refresh_rules || width != self.last_width {
if self.refresh_rules {
let w = widget.size_rules(mgr.size_mgr(), AxisInfo::new(false, None, None));
self.min.0 = w.min_size();
self.ideal.0 = w.ideal_size();
self.margins.horiz = w.margins();
width = rect.size.0 - self.margins.sum_horiz();
}
let h = widget.size_rules(mgr.size_mgr(), AxisInfo::new(true, Some(width), None));
self.min.1 = h.min_size();
self.ideal.1 = h.ideal_size();
self.margins.vert = h.margins();
self.last_width = width;
}
if inner_margin {
rect.pos += Size::conv((self.margins.horiz.0, self.margins.vert.0));
rect.size.0 = width;
rect.size.1 -= self.margins.sum_vert();
}
widget.set_rect(mgr, rect);
log::trace!(target: "kas_perf::layout", "apply_rect: {}μs", start.elapsed().as_micros());
if print_heirarchy {
log::trace!(
target: "kas_core::layout::hierarchy",
"apply_rect: rect={rect:?}:{}",
WidgetHeirarchy(widget, 0),
);
}
self.refresh_rules = false;
}
sourcepub fn ideal_size(self) -> i32
pub fn ideal_size(self) -> i32
Get the ideal size
Examples found in repository?
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
pub fn surround(self, content: SizeRules) -> (SizeRules, i32, i32) {
if self.size > 0 {
let (m0, m1) = content.margins();
let m0 = m0.max(self.inner.0);
let m1 = m1.max(self.inner.1);
let offset = self.size + i32::conv(m0);
let size = offset + self.size + i32::conv(m1);
let rules = SizeRules::new(
content.min_size() + size,
content.ideal_size() + size,
self.outer,
content.stretch(),
);
(rules, offset, size)
} else {
let mut rules = content;
rules.include_margins(self.inner);
(rules, 0, 0)
}
}
More examples
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
pub fn find_constraints(widget: &mut dyn Widget, size_mgr: SizeMgr) -> Self {
let start = std::time::Instant::now();
let w = widget.size_rules(size_mgr.re(), AxisInfo::new(false, None, None));
let h = widget.size_rules(
size_mgr.re(),
AxisInfo::new(true, Some(w.ideal_size()), None),
);
let min = Size(w.min_size(), h.min_size());
let ideal = Size(w.ideal_size(), h.ideal_size());
let margins = Margins::hv(w.margins(), h.margins());
log::trace!(
target: "kas_perf::layout", "find_constraints: {}μs",
start.elapsed().as_micros(),
);
log::debug!("find_constraints: min={min:?}, ideal={ideal:?}, margins={margins:?}");
let refresh_rules = false;
let last_width = ideal.0;
SolveCache {
min,
ideal,
margins,
refresh_rules,
last_width,
}
}
/// Force updating of size rules
///
/// This should be called whenever widget size rules have been changed. It
/// forces [`SolveCache::apply_rect`] to recompute these rules when next
/// called.
pub fn invalidate_rule_cache(&mut self) {
self.refresh_rules = true;
}
/// Apply layout solution to a widget
///
/// The widget's layout is solved for the given `rect` and assigned.
/// If `inner_margin` is true, margins are internal to this `rect`; if not,
/// the caller is responsible for handling margins.
///
/// If [`SolveCache::invalidate_rule_cache`] was called since rules were
/// last calculated then this method will recalculate all rules; otherwise
/// it will only do so if necessary (when dimensions do not match those
/// last used).
pub fn apply_rect(
&mut self,
widget: &mut dyn Widget,
mgr: &mut ConfigMgr,
mut rect: Rect,
inner_margin: bool,
print_heirarchy: bool,
) {
let start = std::time::Instant::now();
let mut width = rect.size.0;
if inner_margin {
width -= self.margins.sum_horiz();
}
// We call size_rules not because we want the result, but to allow
// internal layout solving.
if self.refresh_rules || width != self.last_width {
if self.refresh_rules {
let w = widget.size_rules(mgr.size_mgr(), AxisInfo::new(false, None, None));
self.min.0 = w.min_size();
self.ideal.0 = w.ideal_size();
self.margins.horiz = w.margins();
width = rect.size.0 - self.margins.sum_horiz();
}
let h = widget.size_rules(mgr.size_mgr(), AxisInfo::new(true, Some(width), None));
self.min.1 = h.min_size();
self.ideal.1 = h.ideal_size();
self.margins.vert = h.margins();
self.last_width = width;
}
if inner_margin {
rect.pos += Size::conv((self.margins.horiz.0, self.margins.vert.0));
rect.size.0 = width;
rect.size.1 -= self.margins.sum_vert();
}
widget.set_rect(mgr, rect);
log::trace!(target: "kas_perf::layout", "apply_rect: {}μs", start.elapsed().as_micros());
if print_heirarchy {
log::trace!(
target: "kas_core::layout::hierarchy",
"apply_rect: rect={rect:?}:{}",
WidgetHeirarchy(widget, 0),
);
}
self.refresh_rules = false;
}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
fn size_rules_(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
match &mut self.layout {
LayoutType::None => SizeRules::EMPTY,
LayoutType::Component(component) => component.size_rules(mgr, axis),
LayoutType::BoxComponent(component) => component.size_rules(mgr, axis),
LayoutType::Single(child) => child.size_rules(mgr, axis),
LayoutType::AlignSingle(child, hints) => {
child.size_rules(mgr, axis.with_align_hints(*hints))
}
LayoutType::Align(layout, hints) => {
layout.size_rules_(mgr, axis.with_align_hints(*hints))
}
LayoutType::Pack(layout, stor, hints) => {
let rules = layout.size_rules_(mgr, stor.apply_align(axis, *hints));
stor.size.set_component(axis, rules.ideal_size());
rules
}
LayoutType::Margins(child, dirs, margins) => {
let mut child_rules = child.size_rules_(mgr.re(), axis);
if dirs.intersects(Directions::from(axis)) {
let mut rule_margins = child_rules.margins();
let margins = mgr.margins(*margins).extract(axis);
if dirs.intersects(Directions::LEFT | Directions::UP) {
rule_margins.0 = margins.0;
}
if dirs.intersects(Directions::RIGHT | Directions::DOWN) {
rule_margins.1 = margins.1;
}
child_rules.set_margins(rule_margins);
}
child_rules
}
LayoutType::Frame(child, storage, style) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis(axis));
storage.size_rules(mgr, axis, child_rules, *style)
}
LayoutType::Button(child, storage, _) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis_centered(axis));
storage.size_rules(mgr, axis, child_rules, FrameStyle::Button)
}
}
}
sourcepub fn margins(self) -> (u16, u16)
pub fn margins(self) -> (u16, u16)
Get the (pre, post)
margin sizes
Examples found in repository?
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
pub fn surround(self, content: SizeRules) -> (SizeRules, i32, i32) {
if self.size > 0 {
let (m0, m1) = content.margins();
let m0 = m0.max(self.inner.0);
let m1 = m1.max(self.inner.1);
let offset = self.size + i32::conv(m0);
let size = offset + self.size + i32::conv(m1);
let rules = SizeRules::new(
content.min_size() + size,
content.ideal_size() + size,
self.outer,
content.stretch(),
);
(rules, offset, size)
} else {
let mut rules = content;
rules.include_margins(self.inner);
(rules, 0, 0)
}
}
More examples
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
fn maximal_rect_of(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
let pre_rules = SizeRules::min_sum(&storage.rules()[0..index]);
let m = storage.rules()[index].margins();
let len = storage.widths().len();
let post_rules = SizeRules::min_sum(&storage.rules()[(index + 1)..len]);
let size1 = pre_rules.min_size() + i32::from(pre_rules.margins().1.max(m.0));
let size2 = size1 + post_rules.min_size() + i32::from(post_rules.margins().0.max(m.1));
let mut rect = self.rect;
if self.direction.is_horizontal() {
rect.pos.0 = self.rect.pos.0 + size1;
rect.size.0 = (self.rect.size.0 - size2).max(0);
} else {
rect.pos.1 = self.rect.pos.1 + size1;
rect.size.1 = (self.rect.size.1 - size2).max(0);
}
rect
}
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
pub fn find_constraints(widget: &mut dyn Widget, size_mgr: SizeMgr) -> Self {
let start = std::time::Instant::now();
let w = widget.size_rules(size_mgr.re(), AxisInfo::new(false, None, None));
let h = widget.size_rules(
size_mgr.re(),
AxisInfo::new(true, Some(w.ideal_size()), None),
);
let min = Size(w.min_size(), h.min_size());
let ideal = Size(w.ideal_size(), h.ideal_size());
let margins = Margins::hv(w.margins(), h.margins());
log::trace!(
target: "kas_perf::layout", "find_constraints: {}μs",
start.elapsed().as_micros(),
);
log::debug!("find_constraints: min={min:?}, ideal={ideal:?}, margins={margins:?}");
let refresh_rules = false;
let last_width = ideal.0;
SolveCache {
min,
ideal,
margins,
refresh_rules,
last_width,
}
}
/// Force updating of size rules
///
/// This should be called whenever widget size rules have been changed. It
/// forces [`SolveCache::apply_rect`] to recompute these rules when next
/// called.
pub fn invalidate_rule_cache(&mut self) {
self.refresh_rules = true;
}
/// Apply layout solution to a widget
///
/// The widget's layout is solved for the given `rect` and assigned.
/// If `inner_margin` is true, margins are internal to this `rect`; if not,
/// the caller is responsible for handling margins.
///
/// If [`SolveCache::invalidate_rule_cache`] was called since rules were
/// last calculated then this method will recalculate all rules; otherwise
/// it will only do so if necessary (when dimensions do not match those
/// last used).
pub fn apply_rect(
&mut self,
widget: &mut dyn Widget,
mgr: &mut ConfigMgr,
mut rect: Rect,
inner_margin: bool,
print_heirarchy: bool,
) {
let start = std::time::Instant::now();
let mut width = rect.size.0;
if inner_margin {
width -= self.margins.sum_horiz();
}
// We call size_rules not because we want the result, but to allow
// internal layout solving.
if self.refresh_rules || width != self.last_width {
if self.refresh_rules {
let w = widget.size_rules(mgr.size_mgr(), AxisInfo::new(false, None, None));
self.min.0 = w.min_size();
self.ideal.0 = w.ideal_size();
self.margins.horiz = w.margins();
width = rect.size.0 - self.margins.sum_horiz();
}
let h = widget.size_rules(mgr.size_mgr(), AxisInfo::new(true, Some(width), None));
self.min.1 = h.min_size();
self.ideal.1 = h.ideal_size();
self.margins.vert = h.margins();
self.last_width = width;
}
if inner_margin {
rect.pos += Size::conv((self.margins.horiz.0, self.margins.vert.0));
rect.size.0 = width;
rect.size.1 -= self.margins.sum_vert();
}
widget.set_rect(mgr, rect);
log::trace!(target: "kas_perf::layout", "apply_rect: {}μs", start.elapsed().as_micros());
if print_heirarchy {
log::trace!(
target: "kas_core::layout::hierarchy",
"apply_rect: rect={rect:?}:{}",
WidgetHeirarchy(widget, 0),
);
}
self.refresh_rules = false;
}
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
fn size_rules_(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
match &mut self.layout {
LayoutType::None => SizeRules::EMPTY,
LayoutType::Component(component) => component.size_rules(mgr, axis),
LayoutType::BoxComponent(component) => component.size_rules(mgr, axis),
LayoutType::Single(child) => child.size_rules(mgr, axis),
LayoutType::AlignSingle(child, hints) => {
child.size_rules(mgr, axis.with_align_hints(*hints))
}
LayoutType::Align(layout, hints) => {
layout.size_rules_(mgr, axis.with_align_hints(*hints))
}
LayoutType::Pack(layout, stor, hints) => {
let rules = layout.size_rules_(mgr, stor.apply_align(axis, *hints));
stor.size.set_component(axis, rules.ideal_size());
rules
}
LayoutType::Margins(child, dirs, margins) => {
let mut child_rules = child.size_rules_(mgr.re(), axis);
if dirs.intersects(Directions::from(axis)) {
let mut rule_margins = child_rules.margins();
let margins = mgr.margins(*margins).extract(axis);
if dirs.intersects(Directions::LEFT | Directions::UP) {
rule_margins.0 = margins.0;
}
if dirs.intersects(Directions::RIGHT | Directions::DOWN) {
rule_margins.1 = margins.1;
}
child_rules.set_margins(rule_margins);
}
child_rules
}
LayoutType::Frame(child, storage, style) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis(axis));
storage.size_rules(mgr, axis, child_rules, *style)
}
LayoutType::Button(child, storage, _) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis_centered(axis));
storage.size_rules(mgr, axis, child_rules, FrameStyle::Button)
}
}
}
sourcepub fn margins_i32(self) -> (i32, i32)
pub fn margins_i32(self) -> (i32, i32)
Get the (pre, post)
margin sizes, cast to i32
Examples found in repository?
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
pub fn update_offsets(&mut self, storage: &mut S) {
let offsets = self.offsets.as_mut();
let len = offsets.len();
if len == 0 {
return;
}
let pos = if self.direction.is_horizontal() {
self.rect.pos.0
} else {
self.rect.pos.1
};
if self.direction.is_reversed() {
offsets[len - 1] = pos;
for i in (0..(len - 1)).rev() {
let i1 = i + 1;
let m1 = storage.rules()[i1].margins_i32().1;
let m0 = storage.rules()[i].margins_i32().0;
offsets[i] = offsets[i1] + storage.widths()[i1] + m1.max(m0);
}
} else {
offsets[0] = pos;
for i in 1..len {
let i1 = i - 1;
let m1 = storage.rules()[i1].margins_i32().1;
let m0 = storage.rules()[i].margins_i32().0;
offsets[i] = offsets[i1] + storage.widths()[i1] + m1.max(m0);
}
}
}
More examples
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
pub fn new(rect: Rect, dim: GridDimensions, storage: &mut S) -> Self {
let (cols, rows) = (dim.cols.cast(), dim.rows.cast());
let mut w_offsets = CT::default();
w_offsets.set_len(cols);
let mut h_offsets = RT::default();
h_offsets.set_len(rows);
storage.set_dims(cols, rows);
if cols > 0 {
let (widths, rules) = storage.widths_and_rules();
let target = rect.size.0;
SizeRules::solve_seq(widths, rules, target);
w_offsets.as_mut()[0] = 0;
for i in 1..w_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.width_rules()[i1].margins_i32().1;
let m0 = storage.width_rules()[i].margins_i32().0;
w_offsets.as_mut()[i] = w_offsets.as_mut()[i1] + storage.widths()[i1] + m1.max(m0);
}
}
if rows > 0 {
let (heights, rules) = storage.heights_and_rules();
let target = rect.size.1;
SizeRules::solve_seq(heights, rules, target);
h_offsets.as_mut()[0] = 0;
for i in 1..h_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.height_rules()[i1].margins_i32().1;
let m0 = storage.height_rules()[i].margins_i32().0;
h_offsets.as_mut()[i] = h_offsets.as_mut()[i1] + storage.heights()[i1] + m1.max(m0);
}
}
GridSetter {
w_offsets,
h_offsets,
pos: rect.pos,
_s: Default::default(),
}
}
sourcepub fn stretch(self) -> Stretch
pub fn stretch(self) -> Stretch
Get the stretch priority
Examples found in repository?
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
pub fn surround(self, content: SizeRules) -> (SizeRules, i32, i32) {
if self.size > 0 {
let (m0, m1) = content.margins();
let m0 = m0.max(self.inner.0);
let m1 = m1.max(self.inner.1);
let offset = self.size + i32::conv(m0);
let size = offset + self.size + i32::conv(m1);
let rules = SizeRules::new(
content.min_size() + size,
content.ideal_size() + size,
self.outer,
content.stretch(),
);
(rules, offset, size)
} else {
let mut rules = content;
rules.include_margins(self.inner);
(rules, 0, 0)
}
}
More examples
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
sourcepub fn set_stretch(&mut self, stretch: Stretch)
pub fn set_stretch(&mut self, stretch: Stretch)
Set the stretch priority
sourcepub fn set_margins(&mut self, margins: (u16, u16))
pub fn set_margins(&mut self, margins: (u16, u16))
Set margins
Examples found in repository?
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
fn size_rules_(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
match &mut self.layout {
LayoutType::None => SizeRules::EMPTY,
LayoutType::Component(component) => component.size_rules(mgr, axis),
LayoutType::BoxComponent(component) => component.size_rules(mgr, axis),
LayoutType::Single(child) => child.size_rules(mgr, axis),
LayoutType::AlignSingle(child, hints) => {
child.size_rules(mgr, axis.with_align_hints(*hints))
}
LayoutType::Align(layout, hints) => {
layout.size_rules_(mgr, axis.with_align_hints(*hints))
}
LayoutType::Pack(layout, stor, hints) => {
let rules = layout.size_rules_(mgr, stor.apply_align(axis, *hints));
stor.size.set_component(axis, rules.ideal_size());
rules
}
LayoutType::Margins(child, dirs, margins) => {
let mut child_rules = child.size_rules_(mgr.re(), axis);
if dirs.intersects(Directions::from(axis)) {
let mut rule_margins = child_rules.margins();
let margins = mgr.margins(*margins).extract(axis);
if dirs.intersects(Directions::LEFT | Directions::UP) {
rule_margins.0 = margins.0;
}
if dirs.intersects(Directions::RIGHT | Directions::DOWN) {
rule_margins.1 = margins.1;
}
child_rules.set_margins(rule_margins);
}
child_rules
}
LayoutType::Frame(child, storage, style) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis(axis));
storage.size_rules(mgr, axis, child_rules, *style)
}
LayoutType::Button(child, storage, _) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis_centered(axis));
storage.size_rules(mgr, axis, child_rules, FrameStyle::Button)
}
}
}
sourcepub fn include_margins(&mut self, margins: (u16, u16))
pub fn include_margins(&mut self, margins: (u16, u16))
Set margins to max of own margins and given margins
Examples found in repository?
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
pub fn surround(self, content: SizeRules) -> (SizeRules, i32, i32) {
if self.size > 0 {
let (m0, m1) = content.margins();
let m0 = m0.max(self.inner.0);
let m1 = m1.max(self.inner.1);
let offset = self.size + i32::conv(m0);
let size = offset + self.size + i32::conv(m1);
let rules = SizeRules::new(
content.min_size() + size,
content.ideal_size() + size,
self.outer,
content.stretch(),
);
(rules, offset, size)
} else {
let mut rules = content;
rules.include_margins(self.inner);
(rules, 0, 0)
}
}
sourcepub fn max(self, rhs: Self) -> SizeRules
pub fn max(self, rhs: Self) -> SizeRules
Use the maximum size of self
and rhs
.
Examples found in repository?
More examples
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
index: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed && self.axis_is_vertical {
self.axis.other_axis = storage.widths()[index];
}
let child_rules = child_rules(self.axis);
if !self.axis_is_vertical {
storage.rules()[index] = child_rules;
if let Some(rules) = self.rules {
if self.axis_is_reversed {
self.rules = Some(child_rules.appended(rules));
} else {
self.rules = Some(rules.appended(child_rules));
}
} else {
self.rules = Some(child_rules);
}
} else {
self.rules = Some(
self.rules
.map(|rules| rules.max(child_rules))
.unwrap_or(child_rules),
);
}
}
sourcepub fn max_with(&mut self, rhs: Self)
pub fn max_with(&mut self, rhs: Self)
Set self = self.max(rhs);
Examples found in repository?
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
info: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed {
if self.axis.is_horizontal() {
self.axis.other_axis = ((info.row + 1)..info.row_end)
.fold(storage.heights()[usize::conv(info.row)], |h, i| {
h + storage.heights()[usize::conv(i)]
});
} else {
self.axis.other_axis = ((info.col + 1)..info.col_end)
.fold(storage.widths()[usize::conv(info.col)], |w, i| {
w + storage.widths()[usize::conv(i)]
});
}
}
let child_rules = child_rules(self.axis);
if self.axis.is_horizontal() {
if info.col_end > info.col + 1 {
let span = &mut self.col_spans.as_mut()[self.next_col_span];
span.0.max_with(child_rules);
span.1 = info.col;
span.2 = info.col_end;
self.next_col_span += 1;
} else {
storage.width_rules()[usize::conv(info.col)].max_with(child_rules);
}
} else if info.row_end > info.row + 1 {
let span = &mut self.row_spans.as_mut()[self.next_row_span];
span.0.max_with(child_rules);
span.1 = info.row;
span.2 = info.row_end;
self.next_row_span += 1;
} else {
storage.height_rules()[usize::conv(info.row)].max_with(child_rules);
};
}
sourcepub fn multiply_with_margin(&mut self, min_factor: i32, ideal_factor: i32)
pub fn multiply_with_margin(&mut self, min_factor: i32, ideal_factor: i32)
Multiply the (min, ideal)
size, including internal margins
E.g. given margin = margins.0 + margins.1
and factors (2, 5)
, the
minimum size is set to min * 2 + margin
and the ideal to
ideal * 5 + 4 * margin
.
Panics if either factor is 0.
sourcepub fn append(&mut self, rhs: SizeRules)
pub fn append(&mut self, rhs: SizeRules)
Append the rules for rhs
to self
This implies that rhs
rules concern an element to the right of or
below self. Note that order matters since margins may be combined.
Note also that appending SizeRules::EMPTY
does include interior
margins (those between EMPTY
and the other rules) within the result.
sourcepub fn appended(self, rhs: SizeRules) -> Self
pub fn appended(self, rhs: SizeRules) -> Self
Return the rules for self appended by rhs
This implies that rhs
rules concern an element to the right of or
below self. Note that order matters since margins may be combined.
Note also that appending SizeRules::EMPTY
does include interior
margins (those between EMPTY
and the other rules) within the result.
Examples found in repository?
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
fn sum<I: Iterator<Item = Self>>(mut iter: I) -> Self {
if let Some(first) = iter.next() {
iter.fold(first, |x, y| x.appended(y))
} else {
SizeRules::EMPTY
}
}
}
/// Return the sum over a sequence of rules, assuming these are ordered
///
/// Uses [`SizeRules::appended`] on all rules in sequence.
impl<'a> Sum<&'a Self> for SizeRules {
fn sum<I: Iterator<Item = &'a Self>>(mut iter: I) -> Self {
if let Some(first) = iter.next() {
iter.fold(*first, |x, y| x.appended(*y))
} else {
SizeRules::EMPTY
}
}
More examples
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
index: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed && self.axis_is_vertical {
self.axis.other_axis = storage.widths()[index];
}
let child_rules = child_rules(self.axis);
if !self.axis_is_vertical {
storage.rules()[index] = child_rules;
if let Some(rules) = self.rules {
if self.axis_is_reversed {
self.rules = Some(child_rules.appended(rules));
} else {
self.rules = Some(rules.appended(child_rules));
}
} else {
self.rules = Some(child_rules);
}
} else {
self.rules = Some(
self.rules
.map(|rules| rules.max(child_rules))
.unwrap_or(child_rules),
);
}
}
sourcepub fn sum(range: &[SizeRules]) -> SizeRules
pub fn sum(range: &[SizeRules]) -> SizeRules
Return the result of appending all given ranges
Examples found in repository?
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
pub fn solve_seq(out: &mut [i32], rules: &[Self], target: i32) {
let total = SizeRules::sum(rules);
Self::solve_seq_total(out, rules, total, target);
}
/// Solve a sequence of rules
///
/// This is the same as [`SizeRules::solve_seq`] except that the rules' sum
/// is passed explicitly.
#[cfg_attr(not(feature = "internal_doc"), doc(hidden))]
#[cfg_attr(doc_cfg, doc(cfg(internal_doc)))]
#[allow(
clippy::comparison_chain,
clippy::needless_range_loop,
clippy::needless_return
)]
#[inline]
pub fn solve_seq_total(out: &mut [i32], rules: &[Self], total: Self, target: i32) {
type Targets = SmallVec<[i32; 16]>;
#[allow(non_snake_case)]
let N = out.len();
assert_eq!(rules.len(), N);
if N == 0 {
return;
}
#[cfg(debug_assertions)]
{
assert!(out.iter().all(|w| *w >= 0));
let mut sum = SizeRules::sum(rules);
sum.m = total.m; // external margins are unimportant here
assert_eq!(sum, total);
}
if target > total.a {
// All minimum sizes can be met.
out[0] = out[0].max(rules[0].a);
let mut margin_sum = 0;
let mut sum = out[0];
let mut dist_under_b = (rules[0].b - out[0]).max(0);
let mut dist_over_b = (out[0] - rules[0].b).max(0);
for i in 1..N {
out[i] = out[i].max(rules[i].a);
margin_sum += i32::from((rules[i - 1].m.1).max(rules[i].m.0));
sum += out[i];
dist_under_b += (rules[i].b - out[i]).max(0);
dist_over_b += (out[i] - rules[i].b).max(0);
}
let target = target - margin_sum;
if sum == target {
return;
} else if sum < target {
fn increase_targets<F: Fn(usize) -> i32>(
out: &mut [i32],
targets: &mut Targets,
base: F,
mut avail: i32,
) {
if targets.is_empty() {
return;
}
// Calculate ceiling above which sizes will not be increased
let mut any_removed = true;
while any_removed {
any_removed = false;
let count = i32::conv(targets.len());
let ceil = (avail + count - 1) / count; // round up
let mut t = 0;
while t < targets.len() {
let i = usize::conv(targets[t]);
if out[i] >= base(i) + ceil {
avail -= out[i] - base(i);
targets.remove(t);
any_removed = true;
continue;
}
t += 1;
}
if targets.is_empty() {
return;
}
}
// Since no more are removed by a ceiling, all remaining
// targets will be (approx) equal. Arbitrarily distribute
// rounding errors to the first ones.
let count = i32::conv(targets.len());
let per_elt = avail / count;
let extra = usize::conv(avail - per_elt * count);
assert!(extra < targets.len());
for t in 0..extra {
let i = usize::conv(targets[t]);
out[i] = base(i) + per_elt + 1;
}
for t in extra..targets.len() {
let i = usize::conv(targets[t]);
out[i] = base(i) + per_elt;
}
}
if target - sum >= dist_under_b {
// We can increase all sizes to their ideal. Since this may
// not be enough, we also count the number with highest
// stretch factor and how far these are over their ideal.
// If highest stretch is None, do not expand beyond ideal.
sum = 0;
let highest_stretch = total.stretch;
let mut targets = Targets::new();
let mut over = 0;
for i in 0..N {
out[i] = out[i].max(rules[i].b);
sum += out[i];
if rules[i].stretch == highest_stretch {
over += out[i] - rules[i].b;
targets.push(i.cast());
}
}
let avail = target - sum + over;
increase_targets(out, &mut targets, |i| rules[i].b, avail);
debug_assert!(target >= (0..N).fold(0, |x, i| x + out[i]));
} else {
// We cannot increase sizes as far as their ideal: instead
// increase over minimum size and under ideal
let mut targets = Targets::new();
let mut over = 0;
for i in 0..N {
if out[i] < rules[i].b {
over += out[i] - rules[i].a;
targets.push(i.cast());
}
}
let avail = target - sum + over;
increase_targets(out, &mut targets, |i| rules[i].a, avail);
debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
}
} else {
// sum > target: we need to decrease some sizes
fn reduce_targets<F: Fn(usize) -> i32>(
out: &mut [i32],
targets: &mut Targets,
base: F,
mut avail: i32,
) {
// We can ignore everything below the floor
let mut any_removed = true;
while any_removed {
any_removed = false;
let floor = avail / i32::conv(targets.len());
let mut t = 0;
while t < targets.len() {
let i = usize::conv(targets[t]);
if out[i] <= base(i) + floor {
avail -= out[i] - base(i);
targets.remove(t);
any_removed = true;
continue;
}
t += 1;
}
}
// All targets remaining must be reduced to floor, bar rounding errors
let floor = avail / i32::conv(targets.len());
let extra = usize::conv(avail) - usize::conv(floor) * targets.len();
assert!(extra < targets.len());
for t in 0..extra {
let i = usize::conv(targets[t]);
out[i] = base(i) + floor + 1;
}
for t in extra..targets.len() {
let i = usize::conv(targets[t]);
out[i] = base(i) + floor;
}
}
if dist_over_b > sum - target {
// we do not go below ideal, and will keep at least one above
// calculate distance over for each stretch priority
const MAX_STRETCH: usize = Stretch::Maximize as usize + 1;
let mut dists = [0; MAX_STRETCH];
for i in 0..N {
dists[rules[i].stretch as usize] += (out[i] - rules[i].b).max(0);
}
let mut accum = 0;
let mut highest_affected = 0;
for i in 0..MAX_STRETCH {
highest_affected = i;
dists[i] += accum;
accum = dists[i];
if accum >= sum - target {
break;
}
}
let mut avail = 0;
let mut targets = Targets::new();
for i in 0..N {
let stretch = rules[i].stretch as usize;
if out[i] > rules[i].b {
if stretch < highest_affected {
sum -= out[i] - rules[i].b;
out[i] = rules[i].b;
} else if stretch == highest_affected {
avail += out[i] - rules[i].b;
targets.push(i.cast());
}
}
}
if sum > target {
avail = avail + target - sum;
reduce_targets(out, &mut targets, |i| rules[i].b, avail);
}
debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
} else {
// No size can exceed the ideal
// First, ensure nothing exceeds the ideal:
let mut targets = Targets::new();
sum = 0;
for i in 0..N {
out[i] = out[i].min(rules[i].b);
sum += out[i];
if out[i] > rules[i].a {
targets.push(i.cast());
}
}
if sum > target {
let avail = target + margin_sum - total.a;
reduce_targets(out, &mut targets, |i| rules[i].a, avail);
}
debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
}
}
} else {
// Below minimum size: ignore target and use minimum sizes.
for n in 0..N {
out[n] = rules[n].a;
}
}
}
More examples
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
sourcepub fn min_sum(range: &[SizeRules]) -> SizeRules
pub fn min_sum(range: &[SizeRules]) -> SizeRules
Return the result of appending all given ranges (min only)
This is a specialised version of sum: only the minimum is calculated
Examples found in repository?
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
fn maximal_rect_of(&mut self, storage: &mut Self::Storage, index: Self::ChildInfo) -> Rect {
let pre_rules = SizeRules::min_sum(&storage.rules()[0..index]);
let m = storage.rules()[index].margins();
let len = storage.widths().len();
let post_rules = SizeRules::min_sum(&storage.rules()[(index + 1)..len]);
let size1 = pre_rules.min_size() + i32::from(pre_rules.margins().1.max(m.0));
let size2 = size1 + post_rules.min_size() + i32::from(post_rules.margins().0.max(m.1));
let mut rect = self.rect;
if self.direction.is_horizontal() {
rect.pos.0 = self.rect.pos.0 + size1;
rect.size.0 = (self.rect.size.0 - size2).max(0);
} else {
rect.pos.1 = self.rect.pos.1 + size1;
rect.size.1 = (self.rect.size.1 - size2).max(0);
}
rect
}
sourcepub fn sub_add(&mut self, x: Self, y: Self)
pub fn sub_add(&mut self, x: Self, y: Self)
Set self to self - x + y
, clamped to 0 or greater
This is a specialised operation to join two spans, subtracing the
common overlap (x
), thus margins are self.m.0
and y.m.1
.
sourcepub fn reduce_min_to(&mut self, min: i32)
pub fn reduce_min_to(&mut self, min: i32)
Reduce the minimum size
If min
is greater than the current minimum size, this has no effect.
sourcepub fn distribute_span_over(self, rules: &mut [Self])
pub fn distribute_span_over(self, rules: &mut [Self])
Adjust a sequence of rules
to ensure that the total is at least self
This is used by grids to ensure that cell spans are sufficiently large.
Examples found in repository?
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
Trait Implementations§
source§impl PartialEq<SizeRules> for SizeRules
impl PartialEq<SizeRules> for SizeRules
source§impl<'a> Sum<&'a SizeRules> for SizeRules
impl<'a> Sum<&'a SizeRules> for SizeRules
Return the sum over a sequence of rules, assuming these are ordered
Uses SizeRules::appended
on all rules in sequence.
source§impl Sum<SizeRules> for SizeRules
impl Sum<SizeRules> for SizeRules
Return the sum over a sequence of rules, assuming these are ordered
Uses SizeRules::appended
on all rules in sequence.
impl Copy for SizeRules
impl Eq for SizeRules
impl StructuralEq for SizeRules
impl StructuralPartialEq for SizeRules
Auto Trait Implementations§
impl RefUnwindSafe for SizeRules
impl Send for SizeRules
impl Sync for SizeRules
impl Unpin for SizeRules
impl UnwindSafe for SizeRules
Blanket Implementations§
source§impl<S, T> CastApprox<T> for Swhere
T: ConvApprox<S>,
impl<S, T> CastApprox<T> for Swhere
T: ConvApprox<S>,
source§fn try_cast_approx(self) -> Result<T, Error>
fn try_cast_approx(self) -> Result<T, Error>
source§fn cast_approx(self) -> T
fn cast_approx(self) -> T
source§impl<S, T> CastFloat<T> for Swhere
T: ConvFloat<S>,
impl<S, T> CastFloat<T> for Swhere
T: ConvFloat<S>,
source§fn cast_trunc(self) -> T
fn cast_trunc(self) -> T
source§fn cast_nearest(self) -> T
fn cast_nearest(self) -> T
source§fn cast_floor(self) -> T
fn cast_floor(self) -> T
source§impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
source§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.