Trait kas_core::layout::GridStorage
source · pub trait GridStorage: Sealed + Clone + Debug {
fn set_dims(&mut self, cols: usize, rows: usize);
fn widths_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules]);
fn heights_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules]);
fn width_rules(&mut self) -> &mut [SizeRules] { ... }
fn height_rules(&mut self) -> &mut [SizeRules] { ... }
fn widths(&mut self) -> &mut [i32] { ... }
fn heights(&mut self) -> &mut [i32] { ... }
}Expand description
Requirements of grid solver storage type
Usually this is set by a crate::layout::GridSolver from
crate::Layout::size_rules, then used by crate::Layout::set_rect to
divide the assigned rect between children.
It may be useful to access this directly if not solving size rules normally;
specifically this allows a different size solver to replace size_rules and
influence set_rect.
Note: some implementations allocate when Self::set_dims is first called.
It is expected that this method is called before other methods.
Required Methods§
sourcefn widths_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules])
fn widths_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules])
Access column widths and rules simultaneously
sourcefn heights_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules])
fn heights_and_rules(&mut self) -> (&mut [i32], &mut [SizeRules])
Access row heights and rules simultaneously
Provided Methods§
sourcefn width_rules(&mut self) -> &mut [SizeRules]
fn width_rules(&mut self) -> &mut [SizeRules]
Access SizeRules for each column
Examples found in repository?
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
fn prepare(&mut self, storage: &mut S) {
if self.axis.has_fixed {
if self.axis.is_vertical() {
let (widths, rules) = storage.widths_and_rules();
SizeRules::solve_seq(widths, rules, self.axis.other_axis);
} else {
let (heights, rules) = storage.heights_and_rules();
SizeRules::solve_seq(heights, rules, self.axis.other_axis);
}
}
if self.axis.is_horizontal() {
for n in 0..storage.width_rules().len() {
storage.width_rules()[n] = SizeRules::EMPTY;
}
} else {
for n in 0..storage.height_rules().len() {
storage.height_rules()[n] = SizeRules::EMPTY;
}
}
}
}
impl<CSR, RSR, S: GridStorage> RulesSolver for GridSolver<CSR, RSR, S>
where
CSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
RSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
{
type Storage = S;
type ChildInfo = GridChildInfo;
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
info: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed {
if self.axis.is_horizontal() {
self.axis.other_axis = ((info.row + 1)..info.row_end)
.fold(storage.heights()[usize::conv(info.row)], |h, i| {
h + storage.heights()[usize::conv(i)]
});
} else {
self.axis.other_axis = ((info.col + 1)..info.col_end)
.fold(storage.widths()[usize::conv(info.col)], |w, i| {
w + storage.widths()[usize::conv(i)]
});
}
}
let child_rules = child_rules(self.axis);
if self.axis.is_horizontal() {
if info.col_end > info.col + 1 {
let span = &mut self.col_spans.as_mut()[self.next_col_span];
span.0.max_with(child_rules);
span.1 = info.col;
span.2 = info.col_end;
self.next_col_span += 1;
} else {
storage.width_rules()[usize::conv(info.col)].max_with(child_rules);
}
} else if info.row_end > info.row + 1 {
let span = &mut self.row_spans.as_mut()[self.next_row_span];
span.0.max_with(child_rules);
span.1 = info.row;
span.2 = info.row_end;
self.next_row_span += 1;
} else {
storage.height_rules()[usize::conv(info.row)].max_with(child_rules);
};
}
fn finish(mut self, storage: &mut Self::Storage) -> SizeRules {
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
if self.axis.is_horizontal() {
calculate(storage.width_rules(), self.col_spans.as_mut())
} else {
calculate(storage.height_rules(), self.row_spans.as_mut())
}
}
}
/// A [`RulesSetter`] for grids supporting cell-spans
pub struct GridSetter<CT: RowTemp, RT: RowTemp, S: GridStorage> {
w_offsets: CT,
h_offsets: RT,
pos: Coord,
_s: PhantomData<S>,
}
impl<CT: RowTemp, RT: RowTemp, S: GridStorage> GridSetter<CT, RT, S> {
/// Construct
///
/// Argument order is consistent with other [`RulesSetter`]s.
///
/// - `rect`: the [`Rect`] within which to position children
/// - `dim`: grid dimensions
/// - `storage`: access to the solver's storage
pub fn new(rect: Rect, dim: GridDimensions, storage: &mut S) -> Self {
let (cols, rows) = (dim.cols.cast(), dim.rows.cast());
let mut w_offsets = CT::default();
w_offsets.set_len(cols);
let mut h_offsets = RT::default();
h_offsets.set_len(rows);
storage.set_dims(cols, rows);
if cols > 0 {
let (widths, rules) = storage.widths_and_rules();
let target = rect.size.0;
SizeRules::solve_seq(widths, rules, target);
w_offsets.as_mut()[0] = 0;
for i in 1..w_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.width_rules()[i1].margins_i32().1;
let m0 = storage.width_rules()[i].margins_i32().0;
w_offsets.as_mut()[i] = w_offsets.as_mut()[i1] + storage.widths()[i1] + m1.max(m0);
}
}
if rows > 0 {
let (heights, rules) = storage.heights_and_rules();
let target = rect.size.1;
SizeRules::solve_seq(heights, rules, target);
h_offsets.as_mut()[0] = 0;
for i in 1..h_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.height_rules()[i1].margins_i32().1;
let m0 = storage.height_rules()[i].margins_i32().0;
h_offsets.as_mut()[i] = h_offsets.as_mut()[i1] + storage.heights()[i1] + m1.max(m0);
}
}
GridSetter {
w_offsets,
h_offsets,
pos: rect.pos,
_s: Default::default(),
}
}sourcefn height_rules(&mut self) -> &mut [SizeRules]
fn height_rules(&mut self) -> &mut [SizeRules]
Access SizeRules for each row
Examples found in repository?
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
fn prepare(&mut self, storage: &mut S) {
if self.axis.has_fixed {
if self.axis.is_vertical() {
let (widths, rules) = storage.widths_and_rules();
SizeRules::solve_seq(widths, rules, self.axis.other_axis);
} else {
let (heights, rules) = storage.heights_and_rules();
SizeRules::solve_seq(heights, rules, self.axis.other_axis);
}
}
if self.axis.is_horizontal() {
for n in 0..storage.width_rules().len() {
storage.width_rules()[n] = SizeRules::EMPTY;
}
} else {
for n in 0..storage.height_rules().len() {
storage.height_rules()[n] = SizeRules::EMPTY;
}
}
}
}
impl<CSR, RSR, S: GridStorage> RulesSolver for GridSolver<CSR, RSR, S>
where
CSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
RSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
{
type Storage = S;
type ChildInfo = GridChildInfo;
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
info: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed {
if self.axis.is_horizontal() {
self.axis.other_axis = ((info.row + 1)..info.row_end)
.fold(storage.heights()[usize::conv(info.row)], |h, i| {
h + storage.heights()[usize::conv(i)]
});
} else {
self.axis.other_axis = ((info.col + 1)..info.col_end)
.fold(storage.widths()[usize::conv(info.col)], |w, i| {
w + storage.widths()[usize::conv(i)]
});
}
}
let child_rules = child_rules(self.axis);
if self.axis.is_horizontal() {
if info.col_end > info.col + 1 {
let span = &mut self.col_spans.as_mut()[self.next_col_span];
span.0.max_with(child_rules);
span.1 = info.col;
span.2 = info.col_end;
self.next_col_span += 1;
} else {
storage.width_rules()[usize::conv(info.col)].max_with(child_rules);
}
} else if info.row_end > info.row + 1 {
let span = &mut self.row_spans.as_mut()[self.next_row_span];
span.0.max_with(child_rules);
span.1 = info.row;
span.2 = info.row_end;
self.next_row_span += 1;
} else {
storage.height_rules()[usize::conv(info.row)].max_with(child_rules);
};
}
fn finish(mut self, storage: &mut Self::Storage) -> SizeRules {
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
if self.axis.is_horizontal() {
calculate(storage.width_rules(), self.col_spans.as_mut())
} else {
calculate(storage.height_rules(), self.row_spans.as_mut())
}
}
}
/// A [`RulesSetter`] for grids supporting cell-spans
pub struct GridSetter<CT: RowTemp, RT: RowTemp, S: GridStorage> {
w_offsets: CT,
h_offsets: RT,
pos: Coord,
_s: PhantomData<S>,
}
impl<CT: RowTemp, RT: RowTemp, S: GridStorage> GridSetter<CT, RT, S> {
/// Construct
///
/// Argument order is consistent with other [`RulesSetter`]s.
///
/// - `rect`: the [`Rect`] within which to position children
/// - `dim`: grid dimensions
/// - `storage`: access to the solver's storage
pub fn new(rect: Rect, dim: GridDimensions, storage: &mut S) -> Self {
let (cols, rows) = (dim.cols.cast(), dim.rows.cast());
let mut w_offsets = CT::default();
w_offsets.set_len(cols);
let mut h_offsets = RT::default();
h_offsets.set_len(rows);
storage.set_dims(cols, rows);
if cols > 0 {
let (widths, rules) = storage.widths_and_rules();
let target = rect.size.0;
SizeRules::solve_seq(widths, rules, target);
w_offsets.as_mut()[0] = 0;
for i in 1..w_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.width_rules()[i1].margins_i32().1;
let m0 = storage.width_rules()[i].margins_i32().0;
w_offsets.as_mut()[i] = w_offsets.as_mut()[i1] + storage.widths()[i1] + m1.max(m0);
}
}
if rows > 0 {
let (heights, rules) = storage.heights_and_rules();
let target = rect.size.1;
SizeRules::solve_seq(heights, rules, target);
h_offsets.as_mut()[0] = 0;
for i in 1..h_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.height_rules()[i1].margins_i32().1;
let m0 = storage.height_rules()[i].margins_i32().0;
h_offsets.as_mut()[i] = h_offsets.as_mut()[i1] + storage.heights()[i1] + m1.max(m0);
}
}
GridSetter {
w_offsets,
h_offsets,
pos: rect.pos,
_s: Default::default(),
}
}sourcefn widths(&mut self) -> &mut [i32]
fn widths(&mut self) -> &mut [i32]
Access widths for each column
Widths are calculated from rules when set_rect is called. Assigning
to widths before set_rect is called only has any effect when the available
size exceeds the minimum required (see SizeRules::solve_seq).
Examples found in repository?
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
info: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed {
if self.axis.is_horizontal() {
self.axis.other_axis = ((info.row + 1)..info.row_end)
.fold(storage.heights()[usize::conv(info.row)], |h, i| {
h + storage.heights()[usize::conv(i)]
});
} else {
self.axis.other_axis = ((info.col + 1)..info.col_end)
.fold(storage.widths()[usize::conv(info.col)], |w, i| {
w + storage.widths()[usize::conv(i)]
});
}
}
let child_rules = child_rules(self.axis);
if self.axis.is_horizontal() {
if info.col_end > info.col + 1 {
let span = &mut self.col_spans.as_mut()[self.next_col_span];
span.0.max_with(child_rules);
span.1 = info.col;
span.2 = info.col_end;
self.next_col_span += 1;
} else {
storage.width_rules()[usize::conv(info.col)].max_with(child_rules);
}
} else if info.row_end > info.row + 1 {
let span = &mut self.row_spans.as_mut()[self.next_row_span];
span.0.max_with(child_rules);
span.1 = info.row;
span.2 = info.row_end;
self.next_row_span += 1;
} else {
storage.height_rules()[usize::conv(info.row)].max_with(child_rules);
};
}
fn finish(mut self, storage: &mut Self::Storage) -> SizeRules {
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
if self.axis.is_horizontal() {
calculate(storage.width_rules(), self.col_spans.as_mut())
} else {
calculate(storage.height_rules(), self.row_spans.as_mut())
}
}
}
/// A [`RulesSetter`] for grids supporting cell-spans
pub struct GridSetter<CT: RowTemp, RT: RowTemp, S: GridStorage> {
w_offsets: CT,
h_offsets: RT,
pos: Coord,
_s: PhantomData<S>,
}
impl<CT: RowTemp, RT: RowTemp, S: GridStorage> GridSetter<CT, RT, S> {
/// Construct
///
/// Argument order is consistent with other [`RulesSetter`]s.
///
/// - `rect`: the [`Rect`] within which to position children
/// - `dim`: grid dimensions
/// - `storage`: access to the solver's storage
pub fn new(rect: Rect, dim: GridDimensions, storage: &mut S) -> Self {
let (cols, rows) = (dim.cols.cast(), dim.rows.cast());
let mut w_offsets = CT::default();
w_offsets.set_len(cols);
let mut h_offsets = RT::default();
h_offsets.set_len(rows);
storage.set_dims(cols, rows);
if cols > 0 {
let (widths, rules) = storage.widths_and_rules();
let target = rect.size.0;
SizeRules::solve_seq(widths, rules, target);
w_offsets.as_mut()[0] = 0;
for i in 1..w_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.width_rules()[i1].margins_i32().1;
let m0 = storage.width_rules()[i].margins_i32().0;
w_offsets.as_mut()[i] = w_offsets.as_mut()[i1] + storage.widths()[i1] + m1.max(m0);
}
}
if rows > 0 {
let (heights, rules) = storage.heights_and_rules();
let target = rect.size.1;
SizeRules::solve_seq(heights, rules, target);
h_offsets.as_mut()[0] = 0;
for i in 1..h_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.height_rules()[i1].margins_i32().1;
let m0 = storage.height_rules()[i].margins_i32().0;
h_offsets.as_mut()[i] = h_offsets.as_mut()[i1] + storage.heights()[i1] + m1.max(m0);
}
}
GridSetter {
w_offsets,
h_offsets,
pos: rect.pos,
_s: Default::default(),
}
}
}
impl<CT: RowTemp, RT: RowTemp, S: GridStorage> RulesSetter for GridSetter<CT, RT, S> {
type Storage = S;
type ChildInfo = GridChildInfo;
fn child_rect(&mut self, storage: &mut Self::Storage, info: Self::ChildInfo) -> Rect {
let x = self.w_offsets.as_mut()[usize::conv(info.col)];
let y = self.h_offsets.as_mut()[usize::conv(info.row)];
let pos = self.pos + Offset(x, y);
let i1 = usize::conv(info.col_end) - 1;
let w = storage.widths()[i1] + self.w_offsets.as_mut()[i1]
- self.w_offsets.as_mut()[usize::conv(info.col)];
let i1 = usize::conv(info.row_end) - 1;
let h = storage.heights()[i1] + self.h_offsets.as_mut()[i1]
- self.h_offsets.as_mut()[usize::conv(info.row)];
let size = Size(w, h);
Rect { pos, size }
}sourcefn heights(&mut self) -> &mut [i32]
fn heights(&mut self) -> &mut [i32]
Access heights for each row
Heights are calculated from rules when set_rect is called. Assigning
to heights before set_rect is called only has any effect when the available
size exceeds the minimum required (see SizeRules::solve_seq).
Examples found in repository?
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
info: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed {
if self.axis.is_horizontal() {
self.axis.other_axis = ((info.row + 1)..info.row_end)
.fold(storage.heights()[usize::conv(info.row)], |h, i| {
h + storage.heights()[usize::conv(i)]
});
} else {
self.axis.other_axis = ((info.col + 1)..info.col_end)
.fold(storage.widths()[usize::conv(info.col)], |w, i| {
w + storage.widths()[usize::conv(i)]
});
}
}
let child_rules = child_rules(self.axis);
if self.axis.is_horizontal() {
if info.col_end > info.col + 1 {
let span = &mut self.col_spans.as_mut()[self.next_col_span];
span.0.max_with(child_rules);
span.1 = info.col;
span.2 = info.col_end;
self.next_col_span += 1;
} else {
storage.width_rules()[usize::conv(info.col)].max_with(child_rules);
}
} else if info.row_end > info.row + 1 {
let span = &mut self.row_spans.as_mut()[self.next_row_span];
span.0.max_with(child_rules);
span.1 = info.row;
span.2 = info.row_end;
self.next_row_span += 1;
} else {
storage.height_rules()[usize::conv(info.row)].max_with(child_rules);
};
}
fn finish(mut self, storage: &mut Self::Storage) -> SizeRules {
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
if self.axis.is_horizontal() {
calculate(storage.width_rules(), self.col_spans.as_mut())
} else {
calculate(storage.height_rules(), self.row_spans.as_mut())
}
}
}
/// A [`RulesSetter`] for grids supporting cell-spans
pub struct GridSetter<CT: RowTemp, RT: RowTemp, S: GridStorage> {
w_offsets: CT,
h_offsets: RT,
pos: Coord,
_s: PhantomData<S>,
}
impl<CT: RowTemp, RT: RowTemp, S: GridStorage> GridSetter<CT, RT, S> {
/// Construct
///
/// Argument order is consistent with other [`RulesSetter`]s.
///
/// - `rect`: the [`Rect`] within which to position children
/// - `dim`: grid dimensions
/// - `storage`: access to the solver's storage
pub fn new(rect: Rect, dim: GridDimensions, storage: &mut S) -> Self {
let (cols, rows) = (dim.cols.cast(), dim.rows.cast());
let mut w_offsets = CT::default();
w_offsets.set_len(cols);
let mut h_offsets = RT::default();
h_offsets.set_len(rows);
storage.set_dims(cols, rows);
if cols > 0 {
let (widths, rules) = storage.widths_and_rules();
let target = rect.size.0;
SizeRules::solve_seq(widths, rules, target);
w_offsets.as_mut()[0] = 0;
for i in 1..w_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.width_rules()[i1].margins_i32().1;
let m0 = storage.width_rules()[i].margins_i32().0;
w_offsets.as_mut()[i] = w_offsets.as_mut()[i1] + storage.widths()[i1] + m1.max(m0);
}
}
if rows > 0 {
let (heights, rules) = storage.heights_and_rules();
let target = rect.size.1;
SizeRules::solve_seq(heights, rules, target);
h_offsets.as_mut()[0] = 0;
for i in 1..h_offsets.as_mut().len() {
let i1 = i - 1;
let m1 = storage.height_rules()[i1].margins_i32().1;
let m0 = storage.height_rules()[i].margins_i32().0;
h_offsets.as_mut()[i] = h_offsets.as_mut()[i1] + storage.heights()[i1] + m1.max(m0);
}
}
GridSetter {
w_offsets,
h_offsets,
pos: rect.pos,
_s: Default::default(),
}
}
}
impl<CT: RowTemp, RT: RowTemp, S: GridStorage> RulesSetter for GridSetter<CT, RT, S> {
type Storage = S;
type ChildInfo = GridChildInfo;
fn child_rect(&mut self, storage: &mut Self::Storage, info: Self::ChildInfo) -> Rect {
let x = self.w_offsets.as_mut()[usize::conv(info.col)];
let y = self.h_offsets.as_mut()[usize::conv(info.row)];
let pos = self.pos + Offset(x, y);
let i1 = usize::conv(info.col_end) - 1;
let w = storage.widths()[i1] + self.w_offsets.as_mut()[i1]
- self.w_offsets.as_mut()[usize::conv(info.col)];
let i1 = usize::conv(info.row_end) - 1;
let h = storage.heights()[i1] + self.h_offsets.as_mut()[i1]
- self.h_offsets.as_mut()[usize::conv(info.row)];
let size = Size(w, h);
Rect { pos, size }
}