pub struct AxisInfo { /* private fields */ }
Expand description
Information on which axis is being resized
Also conveys the size of the other axis, if fixed.
Implementations§
source§impl AxisInfo
impl AxisInfo
sourcepub fn new(vertical: bool, fixed: Option<i32>, align: Option<Align>) -> Self
pub fn new(vertical: bool, fixed: Option<i32>, align: Option<Align>) -> Self
Construct with direction and an optional value for the other axis
This method is usually not required by user code.
Examples found in repository?
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
pub fn solve_size_rules<W: Widget + ?Sized>(
widget: &mut W,
size_mgr: SizeMgr,
x_size: Option<i32>,
y_size: Option<i32>,
h_align: Option<Align>,
v_align: Option<Align>,
) {
widget.size_rules(size_mgr.re(), AxisInfo::new(false, y_size, h_align));
widget.size_rules(size_mgr.re(), AxisInfo::new(true, x_size, v_align));
}
/// Size solver
///
/// This struct is used to solve widget layout, read size constraints and
/// cache the results until the next solver run.
///
/// [`SolveCache::find_constraints`] constructs an instance of this struct,
/// solving for size constraints.
///
/// [`SolveCache::apply_rect`] accepts a [`Rect`], updates constraints as
/// necessary and sets widget positions within this `rect`.
pub struct SolveCache {
// Technically we don't need to store min and ideal here, but it simplifies
// the API for very little real cost.
min: Size,
ideal: Size,
margins: Margins,
refresh_rules: bool,
last_width: i32,
}
impl SolveCache {
/// Get the minimum size
///
/// If `inner_margin` is true, margins are included in the result.
pub fn min(&self, inner_margin: bool) -> Size {
if inner_margin {
self.margins.pad(self.min)
} else {
self.min
}
}
/// Get the ideal size
///
/// If `inner_margin` is true, margins are included in the result.
pub fn ideal(&self, inner_margin: bool) -> Size {
if inner_margin {
self.margins.pad(self.ideal)
} else {
self.ideal
}
}
/// Get the margins
pub fn margins(&self) -> Margins {
self.margins
}
/// Calculate required size of widget
///
/// Assumes no explicit alignment.
pub fn find_constraints(widget: &mut dyn Widget, size_mgr: SizeMgr) -> Self {
let start = std::time::Instant::now();
let w = widget.size_rules(size_mgr.re(), AxisInfo::new(false, None, None));
let h = widget.size_rules(
size_mgr.re(),
AxisInfo::new(true, Some(w.ideal_size()), None),
);
let min = Size(w.min_size(), h.min_size());
let ideal = Size(w.ideal_size(), h.ideal_size());
let margins = Margins::hv(w.margins(), h.margins());
log::trace!(
target: "kas_perf::layout", "find_constraints: {}μs",
start.elapsed().as_micros(),
);
log::debug!("find_constraints: min={min:?}, ideal={ideal:?}, margins={margins:?}");
let refresh_rules = false;
let last_width = ideal.0;
SolveCache {
min,
ideal,
margins,
refresh_rules,
last_width,
}
}
/// Force updating of size rules
///
/// This should be called whenever widget size rules have been changed. It
/// forces [`SolveCache::apply_rect`] to recompute these rules when next
/// called.
pub fn invalidate_rule_cache(&mut self) {
self.refresh_rules = true;
}
/// Apply layout solution to a widget
///
/// The widget's layout is solved for the given `rect` and assigned.
/// If `inner_margin` is true, margins are internal to this `rect`; if not,
/// the caller is responsible for handling margins.
///
/// If [`SolveCache::invalidate_rule_cache`] was called since rules were
/// last calculated then this method will recalculate all rules; otherwise
/// it will only do so if necessary (when dimensions do not match those
/// last used).
pub fn apply_rect(
&mut self,
widget: &mut dyn Widget,
mgr: &mut ConfigMgr,
mut rect: Rect,
inner_margin: bool,
print_heirarchy: bool,
) {
let start = std::time::Instant::now();
let mut width = rect.size.0;
if inner_margin {
width -= self.margins.sum_horiz();
}
// We call size_rules not because we want the result, but to allow
// internal layout solving.
if self.refresh_rules || width != self.last_width {
if self.refresh_rules {
let w = widget.size_rules(mgr.size_mgr(), AxisInfo::new(false, None, None));
self.min.0 = w.min_size();
self.ideal.0 = w.ideal_size();
self.margins.horiz = w.margins();
width = rect.size.0 - self.margins.sum_horiz();
}
let h = widget.size_rules(mgr.size_mgr(), AxisInfo::new(true, Some(width), None));
self.min.1 = h.min_size();
self.ideal.1 = h.ideal_size();
self.margins.vert = h.margins();
self.last_width = width;
}
if inner_margin {
rect.pos += Size::conv((self.margins.horiz.0, self.margins.vert.0));
rect.size.0 = width;
rect.size.1 -= self.margins.sum_vert();
}
widget.set_rect(mgr, rect);
log::trace!(target: "kas_perf::layout", "apply_rect: {}μs", start.elapsed().as_micros());
if print_heirarchy {
log::trace!(
target: "kas_core::layout::hierarchy",
"apply_rect: rect={rect:?}:{}",
WidgetHeirarchy(widget, 0),
);
}
self.refresh_rules = false;
}
sourcepub fn with_align_hints(self, hints: AlignHints) -> Self
pub fn with_align_hints(self, hints: AlignHints) -> Self
Construct a copy using the given alignment hints
Examples found in repository?
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
fn size_rules_(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
match &mut self.layout {
LayoutType::None => SizeRules::EMPTY,
LayoutType::Component(component) => component.size_rules(mgr, axis),
LayoutType::BoxComponent(component) => component.size_rules(mgr, axis),
LayoutType::Single(child) => child.size_rules(mgr, axis),
LayoutType::AlignSingle(child, hints) => {
child.size_rules(mgr, axis.with_align_hints(*hints))
}
LayoutType::Align(layout, hints) => {
layout.size_rules_(mgr, axis.with_align_hints(*hints))
}
LayoutType::Pack(layout, stor, hints) => {
let rules = layout.size_rules_(mgr, stor.apply_align(axis, *hints));
stor.size.set_component(axis, rules.ideal_size());
rules
}
LayoutType::Margins(child, dirs, margins) => {
let mut child_rules = child.size_rules_(mgr.re(), axis);
if dirs.intersects(Directions::from(axis)) {
let mut rule_margins = child_rules.margins();
let margins = mgr.margins(*margins).extract(axis);
if dirs.intersects(Directions::LEFT | Directions::UP) {
rule_margins.0 = margins.0;
}
if dirs.intersects(Directions::RIGHT | Directions::DOWN) {
rule_margins.1 = margins.1;
}
child_rules.set_margins(rule_margins);
}
child_rules
}
LayoutType::Frame(child, storage, style) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis(axis));
storage.size_rules(mgr, axis, child_rules, *style)
}
LayoutType::Button(child, storage, _) => {
let child_rules = child.size_rules_(mgr.re(), storage.child_axis_centered(axis));
storage.size_rules(mgr, axis, child_rules, FrameStyle::Button)
}
}
}
/// Apply a given `rect` to self
#[inline]
pub fn set_rect(mut self, mgr: &mut ConfigMgr, rect: Rect) {
self.set_rect_(mgr, rect);
}
fn set_rect_(&mut self, mgr: &mut ConfigMgr, rect: Rect) {
match &mut self.layout {
LayoutType::None => (),
LayoutType::Component(component) => component.set_rect(mgr, rect),
LayoutType::BoxComponent(layout) => layout.set_rect(mgr, rect),
LayoutType::Single(child) => child.set_rect(mgr, rect),
LayoutType::Align(layout, _) => layout.set_rect_(mgr, rect),
LayoutType::AlignSingle(child, _) => child.set_rect(mgr, rect),
LayoutType::Pack(layout, stor, _) => layout.set_rect_(mgr, stor.aligned_rect(rect)),
LayoutType::Margins(child, _, _) => child.set_rect_(mgr, rect),
LayoutType::Frame(child, storage, _) | LayoutType::Button(child, storage, _) => {
storage.rect = rect;
let child_rect = Rect {
pos: rect.pos + storage.offset,
size: rect.size - storage.size,
};
child.set_rect_(mgr, child_rect);
}
}
}
/// Find a widget by coordinate
///
/// Does not return the widget's own identifier. See example usage in
/// [`Visitor::find_id`].
#[inline]
pub fn find_id(mut self, coord: Coord) -> Option<WidgetId> {
self.find_id_(coord)
}
fn find_id_(&mut self, coord: Coord) -> Option<WidgetId> {
match &mut self.layout {
LayoutType::None => None,
LayoutType::Component(component) => component.find_id(coord),
LayoutType::BoxComponent(layout) => layout.find_id(coord),
LayoutType::Single(child) | LayoutType::AlignSingle(child, _) => child.find_id(coord),
LayoutType::Align(layout, _) => layout.find_id_(coord),
LayoutType::Pack(layout, _, _) => layout.find_id_(coord),
LayoutType::Margins(layout, _, _) => layout.find_id_(coord),
LayoutType::Frame(child, _, _) => child.find_id_(coord),
// Buttons steal clicks, hence Button never returns ID of content
LayoutType::Button(_, _, _) => None,
}
}
/// Draw a widget's children
#[inline]
pub fn draw(mut self, draw: DrawMgr) {
self.draw_(draw);
}
fn draw_(&mut self, mut draw: DrawMgr) {
match &mut self.layout {
LayoutType::None => (),
LayoutType::Component(component) => component.draw(draw),
LayoutType::BoxComponent(layout) => layout.draw(draw),
LayoutType::Single(child) | LayoutType::AlignSingle(child, _) => draw.recurse(*child),
LayoutType::Align(layout, _) => layout.draw_(draw),
LayoutType::Pack(layout, _, _) => layout.draw_(draw),
LayoutType::Margins(layout, _, _) => layout.draw_(draw),
LayoutType::Frame(child, storage, style) => {
draw.frame(storage.rect, *style, Background::Default);
child.draw_(draw);
}
LayoutType::Button(child, storage, color) => {
let bg = match color {
Some(rgb) => Background::Rgb(*rgb),
None => Background::Default,
};
draw.frame(storage.rect, FrameStyle::Button, bg);
child.draw_(draw);
}
}
}
}
/// Implement row/column layout for children
struct List<'a, S, D, I> {
data: &'a mut S,
direction: D,
children: I,
}
impl<'a, S: RowStorage, D: Directional, I> Layout for List<'a, S, D, I>
where
I: ExactSizeIterator<Item = Visitor<'a>>,
{
fn size_rules(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
let dim = (self.direction, self.children.len());
let mut solver = RowSolver::new(axis, dim, self.data);
for (n, child) in (&mut self.children).enumerate() {
solver.for_child(self.data, n, |axis| child.size_rules(mgr.re(), axis));
}
solver.finish(self.data)
}
fn set_rect(&mut self, mgr: &mut ConfigMgr, rect: Rect) {
let dim = (self.direction, self.children.len());
let mut setter = RowSetter::<D, Vec<i32>, _>::new(rect, dim, self.data);
for (n, child) in (&mut self.children).enumerate() {
child.set_rect(mgr, setter.child_rect(self.data, n));
}
}
fn find_id(&mut self, coord: Coord) -> Option<WidgetId> {
// TODO(opt): more efficient search strategy?
self.children.find_map(|child| child.find_id(coord))
}
fn draw(&mut self, mut draw: DrawMgr) {
for child in &mut self.children {
child.draw(draw.re_clone());
}
}
}
/// Float layout
struct Float<'a, I>
where
I: DoubleEndedIterator<Item = Visitor<'a>>,
{
children: I,
}
impl<'a, I> Layout for Float<'a, I>
where
I: DoubleEndedIterator<Item = Visitor<'a>>,
{
fn size_rules(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
let mut rules = SizeRules::EMPTY;
for child in &mut self.children {
rules = rules.max(child.size_rules(mgr.re(), axis));
}
rules
}
fn set_rect(&mut self, mgr: &mut ConfigMgr, rect: Rect) {
for child in &mut self.children {
child.set_rect(mgr, rect);
}
}
fn find_id(&mut self, coord: Coord) -> Option<WidgetId> {
self.children.find_map(|child| child.find_id(coord))
}
fn draw(&mut self, mut draw: DrawMgr) {
let mut iter = (&mut self.children).rev();
if let Some(first) = iter.next() {
first.draw(draw.re_clone());
}
for child in iter {
draw.with_pass(|draw| child.draw(draw));
}
}
}
/// A row/column over a slice
struct Slice<'a, W: Widget, D: Directional> {
data: &'a mut DynRowStorage,
direction: D,
children: &'a mut [W],
}
impl<'a, W: Widget, D: Directional> Layout for Slice<'a, W, D> {
fn size_rules(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
let dim = (self.direction, self.children.len());
let mut solver = RowSolver::new(axis, dim, self.data);
for (n, child) in self.children.iter_mut().enumerate() {
solver.for_child(self.data, n, |axis| child.size_rules(mgr.re(), axis));
}
solver.finish(self.data)
}
fn set_rect(&mut self, mgr: &mut ConfigMgr, rect: Rect) {
let dim = (self.direction, self.children.len());
let mut setter = RowSetter::<D, Vec<i32>, _>::new(rect, dim, self.data);
for (n, child) in self.children.iter_mut().enumerate() {
child.set_rect(mgr, setter.child_rect(self.data, n));
}
}
fn find_id(&mut self, coord: Coord) -> Option<WidgetId> {
let solver = RowPositionSolver::new(self.direction);
solver
.find_child_mut(self.children, coord)
.and_then(|child| child.find_id(coord))
}
fn draw(&mut self, mut draw: DrawMgr) {
let solver = RowPositionSolver::new(self.direction);
solver.for_children(self.children, draw.get_clip_rect(), |w| draw.recurse(w));
}
}
/// Implement grid layout for children
struct Grid<'a, S, I> {
data: &'a mut S,
dim: GridDimensions,
children: I,
}
impl<'a, S: GridStorage, I> Layout for Grid<'a, S, I>
where
I: Iterator<Item = (GridChildInfo, Visitor<'a>)>,
{
fn size_rules(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
let mut solver = GridSolver::<Vec<_>, Vec<_>, _>::new(axis, self.dim, self.data);
for (info, child) in &mut self.children {
solver.for_child(self.data, info, |axis| child.size_rules(mgr.re(), axis));
}
solver.finish(self.data)
}
fn set_rect(&mut self, mgr: &mut ConfigMgr, rect: Rect) {
let mut setter = GridSetter::<Vec<_>, Vec<_>, _>::new(rect, self.dim, self.data);
for (info, child) in &mut self.children {
child.set_rect(mgr, setter.child_rect(self.data, info));
}
}
fn find_id(&mut self, coord: Coord) -> Option<WidgetId> {
// TODO(opt): more efficient search strategy?
self.children.find_map(|(_, child)| child.find_id(coord))
}
fn draw(&mut self, mut draw: DrawMgr) {
for (_, child) in &mut self.children {
child.draw(draw.re_clone());
}
}
}
/// Layout storage for alignment
#[derive(Clone, Default, Debug)]
pub struct PackStorage {
align: AlignPair,
size: Size,
}
impl PackStorage {
/// Set alignment
fn apply_align(&mut self, axis: AxisInfo, hints: AlignHints) -> AxisInfo {
let axis = axis.with_align_hints(hints);
self.align.set_component(axis, axis.align_or_default());
axis
}
sourcepub fn is_vertical(self) -> bool
pub fn is_vertical(self) -> bool
True if the current axis is vertical
Examples found in repository?
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
pub fn new<D: Directional>(axis: AxisInfo, (dir, len): (D, usize), storage: &mut S) -> Self {
storage.set_dim(len);
let axis_is_vertical = axis.is_vertical() ^ dir.is_vertical();
if axis.has_fixed && axis_is_vertical {
let (widths, rules) = storage.widths_and_rules();
SizeRules::solve_seq(widths, rules, axis.other_axis);
}
RowSolver {
axis,
axis_is_vertical,
axis_is_reversed: dir.is_reversed(),
rules: None,
_s: Default::default(),
}
}
More examples
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
fn prepare(&mut self, storage: &mut S) {
if self.axis.has_fixed {
if self.axis.is_vertical() {
let (widths, rules) = storage.widths_and_rules();
SizeRules::solve_seq(widths, rules, self.axis.other_axis);
} else {
let (heights, rules) = storage.heights_and_rules();
SizeRules::solve_seq(heights, rules, self.axis.other_axis);
}
}
if self.axis.is_horizontal() {
for n in 0..storage.width_rules().len() {
storage.width_rules()[n] = SizeRules::EMPTY;
}
} else {
for n in 0..storage.height_rules().len() {
storage.height_rules()[n] = SizeRules::EMPTY;
}
}
}
sourcepub fn is_horizontal(self) -> bool
pub fn is_horizontal(self) -> bool
True if the current axis is horizontal
Examples found in repository?
More examples
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
fn prepare(&mut self, storage: &mut S) {
if self.axis.has_fixed {
if self.axis.is_vertical() {
let (widths, rules) = storage.widths_and_rules();
SizeRules::solve_seq(widths, rules, self.axis.other_axis);
} else {
let (heights, rules) = storage.heights_and_rules();
SizeRules::solve_seq(heights, rules, self.axis.other_axis);
}
}
if self.axis.is_horizontal() {
for n in 0..storage.width_rules().len() {
storage.width_rules()[n] = SizeRules::EMPTY;
}
} else {
for n in 0..storage.height_rules().len() {
storage.height_rules()[n] = SizeRules::EMPTY;
}
}
}
}
impl<CSR, RSR, S: GridStorage> RulesSolver for GridSolver<CSR, RSR, S>
where
CSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
RSR: AsRef<[(SizeRules, u32, u32)]> + AsMut<[(SizeRules, u32, u32)]>,
{
type Storage = S;
type ChildInfo = GridChildInfo;
fn for_child<CR: FnOnce(AxisInfo) -> SizeRules>(
&mut self,
storage: &mut Self::Storage,
info: Self::ChildInfo,
child_rules: CR,
) {
if self.axis.has_fixed {
if self.axis.is_horizontal() {
self.axis.other_axis = ((info.row + 1)..info.row_end)
.fold(storage.heights()[usize::conv(info.row)], |h, i| {
h + storage.heights()[usize::conv(i)]
});
} else {
self.axis.other_axis = ((info.col + 1)..info.col_end)
.fold(storage.widths()[usize::conv(info.col)], |w, i| {
w + storage.widths()[usize::conv(i)]
});
}
}
let child_rules = child_rules(self.axis);
if self.axis.is_horizontal() {
if info.col_end > info.col + 1 {
let span = &mut self.col_spans.as_mut()[self.next_col_span];
span.0.max_with(child_rules);
span.1 = info.col;
span.2 = info.col_end;
self.next_col_span += 1;
} else {
storage.width_rules()[usize::conv(info.col)].max_with(child_rules);
}
} else if info.row_end > info.row + 1 {
let span = &mut self.row_spans.as_mut()[self.next_row_span];
span.0.max_with(child_rules);
span.1 = info.row;
span.2 = info.row_end;
self.next_row_span += 1;
} else {
storage.height_rules()[usize::conv(info.row)].max_with(child_rules);
};
}
fn finish(mut self, storage: &mut Self::Storage) -> SizeRules {
fn calculate(widths: &mut [SizeRules], spans: &mut [(SizeRules, u32, u32)]) -> SizeRules {
// spans: &mut [(rules, begin, end)]
// To avoid losing Stretch, we distribute this first
const BASE_WEIGHT: u32 = 100;
const SPAN_WEIGHT: u32 = 10;
let mut scores: Vec<u32> = widths
.iter()
.map(|w| w.stretch() as u32 * BASE_WEIGHT)
.collect();
for span in spans.iter() {
let w = span.0.stretch() as u32 * SPAN_WEIGHT;
for score in &mut scores[(usize::conv(span.1))..(usize::conv(span.2))] {
*score += w;
}
}
for span in spans.iter() {
let range = (usize::conv(span.1))..(usize::conv(span.2));
span.0
.distribute_stretch_over_by(&mut widths[range.clone()], &scores[range]);
}
// Sort spans to apply smallest first
spans.sort_by_key(|span| span.2.saturating_sub(span.1));
// We are left with non-overlapping spans.
// For each span, we ensure cell widths are sufficiently large.
for span in spans {
let rules = span.0;
let begin = usize::conv(span.1);
let end = usize::conv(span.2);
rules.distribute_span_over(&mut widths[begin..end]);
}
SizeRules::sum(widths)
}
if self.axis.is_horizontal() {
calculate(storage.width_rules(), self.col_spans.as_mut())
} else {
calculate(storage.height_rules(), self.row_spans.as_mut())
}
}
sourcepub fn set_default_align(&mut self, align: Align)
pub fn set_default_align(&mut self, align: Align)
Set default alignment
If the optional alignment parameter is None
, replace with align
.
sourcepub fn set_default_align_hv(&mut self, horiz: Align, vert: Align)
pub fn set_default_align_hv(&mut self, horiz: Align, vert: Align)
Set default alignment
If the optional alignment parameter is None
, replace with either
horiz
or vert
depending on this axis’ orientation.
sourcepub fn align_or_default(self) -> Align
pub fn align_or_default(self) -> Align
Get align parameter, defaulting to Align::Default
sourcepub fn align_or_center(self) -> Align
pub fn align_or_center(self) -> Align
Get align parameter, defaulting to Align::Center
Examples found in repository?
253 254 255 256 257 258 259 260 261 262 263 264 265 266
pub fn size_rules(&mut self, mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
let margins = mgr.margins(self.margins).extract(axis);
let scale_factor = mgr.scale_factor();
let min = self
.size
.to_physical(scale_factor * self.min_factor)
.extract(axis);
let ideal = self
.size
.to_physical(scale_factor * self.ideal_factor)
.extract(axis);
self.align.set_component(axis, axis.align_or_center());
SizeRules::new(min, ideal, margins, self.stretch)
}
sourcepub fn align_or_stretch(self) -> Align
pub fn align_or_stretch(self) -> Align
Get align parameter, defaulting to Align::Stretch
sourcepub fn size_other_if_fixed(&self, vertical: bool) -> Option<i32>
pub fn size_other_if_fixed(&self, vertical: bool) -> Option<i32>
Size of other axis, if fixed and vertical
matches this axis.
Trait Implementations§
source§impl Directional for AxisInfo
impl Directional for AxisInfo
source§fn as_direction(self) -> Direction
fn as_direction(self) -> Direction
Direction
enum