1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE-APACHE file or at:
// https://www.apache.org/licenses/LICENSE-2.0
//! Layout utilities
//!
//! For documentation of layout resolution, see the [`Layout`] trait.
//!
//! Size units are physical (real) pixels. This applies to most of KAS.
//!
//! ## Data types
//!
//! [`SizeRules`] is the "heart" of widget layout, used to specify a widget's
//! size requirements. It provides various methods to compute derived rules
//! and [`SizeRules::solve_seq`], the "muscle" of the layout engine.
//!
//! [`AxisInfo`], [`Margins`] and [`Stretch`] are auxilliary data types.
//!
//! ## Solvers
//!
//! The [`RulesSolver`] and [`RulesSetter`] traits define interfaces for
//! layout engines:
//!
//! - [`SingleSolver`] and [`SingleSetter`] are trivial implementations for
//! single-child parents
//! - [`RowSolver`] and [`RowSetter`] set out a row or column of children.
//! These are parametrised over `S: RowStorage` allowing both efficient
//! operation on a small fixed number of children with [`FixedRowStorage`]
//! and operation on a over a `Vec` with [`DynRowStorage`].
//! - [`GridSolver`] and [`GridSetter`] set out children assigned to grid
//! cells with optional cell-spans. This is the most powerful and flexible
//! layout engine.
//!
//! [`RowPositionSolver`] may be used with widgets set out by [`RowSetter`]
//! to quickly locate children from a `coord` or `rect`.
mod align;
mod grid_solver;
mod row_solver;
mod single_solver;
mod size_rules;
mod size_types;
mod sizer;
mod storage;
mod visitor;
use crate::dir::{Direction, Directional, Directions};
use crate::event::ConfigMgr;
use crate::geom::{Coord, Rect};
use crate::theme::{DrawMgr, SizeMgr};
use crate::WidgetId;
#[allow(unused)] use crate::Layout;
pub use align::{Align, AlignHints, AlignPair};
pub use grid_solver::{DefaultWithLen, GridChildInfo, GridDimensions, GridSetter, GridSolver};
pub use row_solver::{RowPositionSolver, RowSetter, RowSolver};
pub use single_solver::{SingleSetter, SingleSolver};
pub use size_rules::SizeRules;
pub use size_types::*;
pub use sizer::{solve_size_rules, RulesSetter, RulesSolver, SolveCache};
pub use storage::*;
pub use visitor::{FrameStorage, PackStorage, Visitor};
/// Information on which axis is being resized
///
/// Also conveys the size of the other axis, if fixed.
#[derive(Copy, Clone, Debug)]
pub struct AxisInfo {
vertical: bool,
has_fixed: bool,
other_axis: i32,
align: Option<Align>,
}
impl AxisInfo {
/// Construct with direction and an optional value for the other axis
///
/// This method is *usually* not required by user code.
#[inline]
pub fn new(vertical: bool, fixed: Option<i32>, align: Option<Align>) -> Self {
AxisInfo {
vertical,
has_fixed: fixed.is_some(),
other_axis: fixed.unwrap_or(0),
align,
}
}
/// Construct a copy using the given alignment hints
#[inline]
pub fn with_align_hints(mut self, hints: AlignHints) -> Self {
self.align = hints.extract(self).or(self.align);
self
}
/// True if the current axis is vertical
#[inline]
pub fn is_vertical(self) -> bool {
self.vertical
}
/// True if the current axis is horizontal
#[inline]
pub fn is_horizontal(self) -> bool {
!self.vertical
}
/// Get align parameter
#[inline]
pub fn align(self) -> Option<Align> {
self.align
}
/// Set align parameter
#[inline]
pub fn set_align(&mut self, align: Option<Align>) {
self.align = align;
}
/// Set default alignment
///
/// If the optional alignment parameter is `None`, replace with `align`.
#[inline]
pub fn set_default_align(&mut self, align: Align) {
if self.align.is_none() {
self.align = Some(align);
}
}
/// Set default alignment
///
/// If the optional alignment parameter is `None`, replace with either
/// `horiz` or `vert` depending on this axis' orientation.
#[inline]
pub fn set_default_align_hv(&mut self, horiz: Align, vert: Align) {
if self.align.is_none() {
if self.is_horizontal() {
self.align = Some(horiz);
} else {
self.align = Some(vert);
}
}
}
/// Get align parameter, defaulting to [`Align::Default`]
#[inline]
pub fn align_or_default(self) -> Align {
self.align.unwrap_or(Align::Default)
}
/// Get align parameter, defaulting to [`Align::Center`]
#[inline]
pub fn align_or_center(self) -> Align {
self.align.unwrap_or(Align::Center)
}
/// Get align parameter, defaulting to [`Align::Stretch`]
#[inline]
pub fn align_or_stretch(self) -> Align {
self.align.unwrap_or(Align::Stretch)
}
/// Size of other axis, if fixed
#[inline]
pub fn other(&self) -> Option<i32> {
if self.has_fixed {
Some(self.other_axis)
} else {
None
}
}
/// Size of other axis, if fixed and `vertical` matches this axis.
#[inline]
pub fn size_other_if_fixed(&self, vertical: bool) -> Option<i32> {
if vertical == self.vertical && self.has_fixed {
Some(self.other_axis)
} else {
None
}
}
/// Subtract `x` from size of other axis (if applicable)
#[inline]
pub fn sub_other(&mut self, x: i32) {
self.other_axis -= x;
}
}
impl Directional for AxisInfo {
type Flipped = Self;
type Reversed = Self;
fn flipped(mut self) -> Self::Flipped {
self.vertical = !self.vertical;
self.has_fixed = false;
self
}
#[inline]
fn reversed(self) -> Self::Reversed {
self
}
#[inline]
fn as_direction(self) -> Direction {
match self.vertical {
false => Direction::Right,
true => Direction::Down,
}
}
}
impl From<AxisInfo> for Directions {
fn from(axis: AxisInfo) -> Directions {
match axis.vertical {
false => Directions::LEFT | Directions::RIGHT,
true => Directions::UP | Directions::DOWN,
}
}
}
/// Implementation generated by use of `layout = ..` property of `#[widget]`
///
/// This trait need not be implemented by the user, however it may be useful to
/// adjust the result of an automatic implementation, for example:
/// ```
/// # extern crate kas_core as kas;
/// use kas::prelude::*;
///
/// impl_scope! {
/// #[derive(Debug)]
/// #[widget {
/// layout = "Example";
/// }]
/// struct Example {
/// core: widget_core!(),
/// }
/// impl Layout for Self {
/// fn size_rules(&mut self, size_mgr: SizeMgr, axis: AxisInfo) -> SizeRules {
/// let mut rules = kas::layout::AutoLayout::size_rules(self, size_mgr, axis);
/// rules.set_stretch(Stretch::High);
/// rules
/// }
/// }
/// }
/// ```
///
/// It is not recommended to import this trait since method names conflict with [`Layout`].
pub trait AutoLayout {
/// Get size rules for the given axis
///
/// This functions identically to [`Layout::size_rules`].
fn size_rules(&mut self, size_mgr: SizeMgr, axis: AxisInfo) -> SizeRules;
/// Set size and position
///
/// This functions identically to [`Layout::set_rect`].
fn set_rect(&mut self, mgr: &mut ConfigMgr, rect: Rect);
/// Translate a coordinate to a [`WidgetId`]
///
/// This functions identically to [`Layout::find_id`].
fn find_id(&mut self, coord: Coord) -> Option<WidgetId>;
/// Draw a widget and its children
///
/// This functions identically to [`Layout::draw`].
fn draw(&mut self, draw: DrawMgr);
}
#[cfg(test)]
#[test]
fn size() {
assert_eq!(std::mem::size_of::<AxisInfo>(), 8);
}