Crate hope_agents

Crate hope_agents 

Source
Expand description

ยงHOPE Agents

Hierarchical Optimizing Policy Engine for AIngle AI agents.

Tests Documentation License

ยงOverview

HOPE Agents is a complete reinforcement learning framework for building autonomous AI agents that can:

  • ๐Ÿง  Learn from experience using Q-Learning, SARSA, and TD algorithms
  • ๐ŸŽฏ Plan hierarchically with goal decomposition and conflict resolution
  • ๐Ÿ”ฎ Predict future states and detect anomalies
  • ๐Ÿค Coordinate with other agents through message passing and shared memory
  • ๐Ÿ’พ Persist state for checkpointing and transfer learning

ยงArchitecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                      HOPE Agent                             โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                              โ”‚
โ”‚  Observation โ†’ State โ†’ Decision โ†’ Action โ†’ Learning         โ”‚
โ”‚                                                              โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
โ”‚  โ”‚  Predictive  โ”‚  โ”‚ Hierarchical โ”‚  โ”‚    Learning      โ”‚  โ”‚
โ”‚  โ”‚    Model     โ”‚  โ”‚ Goal Solver  โ”‚  โ”‚     Engine       โ”‚  โ”‚
โ”‚  โ”‚              โ”‚  โ”‚              โ”‚  โ”‚                  โ”‚  โ”‚
โ”‚  โ”‚ โ€ข Anomaly    โ”‚  โ”‚ โ€ข Goals      โ”‚  โ”‚ โ€ข Q-Learning     โ”‚  โ”‚
โ”‚  โ”‚ โ€ข Forecast   โ”‚  โ”‚ โ€ข Planning   โ”‚  โ”‚ โ€ข SARSA          โ”‚  โ”‚
โ”‚  โ”‚ โ€ข Patterns   โ”‚  โ”‚ โ€ข Conflicts  โ”‚  โ”‚ โ€ข TD Learning    โ”‚  โ”‚
โ”‚  โ”‚              โ”‚  โ”‚              โ”‚  โ”‚ โ€ข Experience     โ”‚  โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
โ”‚                                                              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

ยงFeatures

ยงโœ… Complete (100%)

ยง1. Learning Engine
  • Algorithms: Q-Learning, SARSA, TD(ฮป), Expected SARSA
  • Experience Replay: Prioritized replay buffer for efficient learning
  • Exploration: Epsilon-greedy and Boltzmann exploration
  • Value Functions: Tabular and linear function approximation
ยง2. Hierarchical Goal Solver
  • Goal Types: Achieve, Maintain, Avoid, Explore
  • Decomposition: Automatic goal breakdown into subgoals
  • Conflict Resolution: Detect and resolve goal conflicts
  • Priorities: Support for goal prioritization
ยง3. Predictive Model
  • State Prediction: Forecast next states given actions
  • Anomaly Detection: Statistical anomaly detection with z-scores
  • Trajectory Planning: Multi-step lookahead
  • Transition Model: Learn state transition dynamics
ยง4. Multi-Agent Coordination
  • Message Passing: Broadcast and direct messaging
  • Shared Memory: Global key-value store for coordination
  • Consensus: Voting-based group decision making
  • Agent Registry: Dynamic agent registration/unregistration
ยง5. State Persistence
  • Formats: JSON, Binary, MessagePack
  • Compression: Optional compression for efficient storage
  • Checkpointing: Automatic periodic checkpointing
  • Transfer Learning: Save and load trained agents

ยงQuick Start

ยงSimple Reactive Agent

use hope_agents::{Agent, SimpleAgent, Goal, Observation, Rule, Condition, Action};

// Create a simple reactive agent
let mut agent = SimpleAgent::new("sensor_monitor");

// Add a rule: if temperature > 30, alert
let rule = Rule::new(
    "high_temp",
    Condition::above("temperature", 30.0),
    Action::alert("Temperature too high!"),
);
agent.add_rule(rule);

// Process observations
let obs = Observation::sensor("temperature", 35.0);
agent.observe(obs.clone());
let action = agent.decide();
let result = agent.execute(action.clone());
agent.learn(&obs, &action, &result);

ยงHOPE Agent with Learning

use hope_agents::{HopeAgent, Observation, Goal, Priority, Outcome, ActionResult};

// Create a HOPE agent with learning, prediction, and hierarchical goals
let mut agent = HopeAgent::with_default_config();

// Set a goal
let goal = Goal::maintain("temperature", 20.0..25.0)
    .with_priority(Priority::High);
agent.set_goal(goal);

// Agent loop with reinforcement learning
for episode in 0..100 {
    let obs = Observation::sensor("temperature", 22.0);
    let action = agent.step(obs.clone());

    // Execute action in environment and get reward
    let reward = 1.0;
    let next_obs = Observation::sensor("temperature", 21.0);
    let result = ActionResult::success(&action.id);

    let outcome = Outcome::new(action, result, reward, next_obs, false);
    agent.learn(outcome);
}

// Check statistics
let stats = agent.get_statistics();
println!("Episodes: {}", stats.episodes_completed);
println!("Success rate: {:.2}%", stats.success_rate * 100.0);

ยงMulti-Agent Coordination

use hope_agents::{AgentCoordinator, HopeAgent, Message, Observation};
use std::collections::HashMap;

// Create coordinator
let mut coordinator = AgentCoordinator::new();

// Register agents
let agent1 = HopeAgent::with_default_config();
let agent2 = HopeAgent::with_default_config();

let id1 = coordinator.register_agent(agent1);
let id2 = coordinator.register_agent(agent2);

// Broadcast message
coordinator.broadcast(Message::new("update", "System status changed"));

// Step all agents
let mut observations = HashMap::new();
observations.insert(id1, Observation::sensor("temp", 20.0));
observations.insert(id2, Observation::sensor("humidity", 60.0));

let actions = coordinator.step_all(observations);

ยงState Persistence

use hope_agents::{HopeAgent, AgentPersistence, CheckpointManager};
use std::path::Path;

let mut agent = HopeAgent::with_default_config();

// Train the agent...

// Save agent state
agent.save_to_file(Path::new("agent_state.json")).unwrap();

// Later, load agent state
let loaded_agent = HopeAgent::load_from_file(Path::new("agent_state.json")).unwrap();

// Or use checkpoint manager for automatic checkpointing
let mut manager = CheckpointManager::new(Path::new("checkpoints"), 5)
    .with_interval(1000);

// During training
for step in 0..10000 {
    // ... train agent ...

    if manager.should_checkpoint(step) {
        manager.save_checkpoint(&agent, step).unwrap();
    }
}

ยงOperation Modes

HOPE agents support multiple operation modes:

  • Exploration: High exploration rate for discovering new strategies
  • Exploitation: Use learned knowledge for optimal performance
  • GoalDriven: Balance exploration with goal achievement
  • Adaptive: Automatically switch modes based on performance
agent.set_mode(OperationMode::Exploration);  // High exploration
agent.set_mode(OperationMode::Exploitation); // Pure exploitation
agent.set_mode(OperationMode::Adaptive);     // Auto-adjust

ยงGoal Management

ยงGoal Types

// Achieve a target value
let goal = Goal::achieve("temperature", 25.0);

// Maintain value in range
let goal = Goal::maintain("humidity", 40.0..60.0);

// Avoid certain values
let goal = Goal::avoid("pressure", 100.0);

// Explore and discover
let goal = Goal::explore("new_area");

ยงHierarchical Goals

Goals are automatically decomposed into subgoals:

let parent = Goal::achieve("optimize_system", 1.0)
    .with_priority(Priority::High);

let goal_id = agent.set_goal(parent);

// Automatically creates subgoals for different aspects
let active_goals = agent.active_goals();

ยงConsensus and Coordination

Agents can make group decisions through voting:

let mut coordinator = AgentCoordinator::new();

// Create proposal
let proposal_id = coordinator.create_proposal(
    "new_policy",
    "Should we adopt the new temperature policy?"
);

// Agents vote
// ... (voting happens through message passing) ...

// Check consensus
match coordinator.get_consensus(&proposal_id) {
    Some(ConsensusResult::Decided { approved, votes_for, votes_against, .. }) => {
        println!("Decision: {}", if approved { "Approved" } else { "Rejected" });
        println!("Votes: {} for, {} against", votes_for, votes_against);
    }
    _ => println!("Voting in progress..."),
}

ยงConfiguration

ยงIoT Mode

Optimized for resource-constrained devices:

use hope_agents::AgentConfig;

let config = AgentConfig::iot_mode();
let agent = SimpleAgent::with_config("iot_agent", config);

// Features:
// - Limited memory (128KB)
// - Disabled learning
// - Reduced buffer sizes

ยงCustom Configuration

use hope_agents::{HopeConfig, LearningConfig, PredictiveConfig, LearningAlgorithm};

let config = HopeConfig {
    learning: LearningConfig {
        learning_rate: 0.1,
        discount_factor: 0.95,
        algorithm: LearningAlgorithm::QLearning,
        epsilon: 0.2,
        ..Default::default()
    },
    predictive: PredictiveConfig {
        history_size: 500,
        ..Default::default()
    },
    anomaly_sensitivity: 0.8,
    auto_decompose_goals: true,
    ..Default::default()
};

let agent = HopeAgent::new(config);

ยงPerformance

HOPE Agents is designed for high performance:

  • 1000+ steps/second on modern hardware
  • Efficient memory usage with configurable limits
  • Incremental learning with no batch processing required
  • Lock-free coordination for multi-agent scenarios

ยงBenchmarks

Run benchmarks with:

cargo bench

ยงTesting

Comprehensive test suite with 133 tests covering:

  • Unit tests for all components
  • Integration tests for complete workflows
  • Multi-agent coordination scenarios
  • Persistence roundtrip tests
  • Performance tests

Run tests:

# All tests
cargo test

# Specific module
cargo test coordination
cargo test persistence

# Integration tests
cargo test --test integration_test

# With output
cargo test -- --nocapture

ยงExamples

See the tests/integration_test.rs file for comprehensive examples demonstrating:

  • Simple agent workflows
  • Learning cycles with multiple episodes
  • Multi-agent coordination
  • Consensus mechanisms
  • State persistence and checkpointing
  • Anomaly detection
  • Operation mode switching

ยงAPI Documentation

Full API documentation is available at docs.rs/hope_agents.

Generate local documentation:

cargo doc --open

ยงIntegration with AIngle

HOPE Agents integrates seamlessly with the AIngle network:

// Observe network events
let obs = Observation::network_event("node_joined", node_id);

// Execute actions on the network
let action = Action::send_message("Hello, network!");

// Store data in AIngle
let action = Action::store_data(serde_json::to_string(&data).unwrap());

ยงRoadmap

Future enhancements (beyond 100%):

  • Deep Q-Networks (DQN) support
  • Policy gradient methods (PPO, A3C)
  • Multi-objective optimization
  • Distributed training
  • Web assembly support
  • Python bindings

ยงContributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines.

ยงLicense

Licensed under the Apache License, Version 2.0. See LICENSE for details.

ยงCitation

If you use HOPE Agents in your research, please cite:

@software{hope_agents,
  title = {HOPE Agents: Hierarchical Optimizing Policy Engine},
  author = {Apilium Technologies},
  year = {2025},
  url = {https://github.com/ApiliumCode/aingle}
}

ยงSupport

  • Documentation: https://docs.rs/hope_agents
  • Issues: https://github.com/ApiliumCode/aingle/issues

Status: โœ… 100% Complete

All core features implemented, tested, and documented.

ยงHOPE Agents - Hierarchical Optimizing Policy Engine

Autonomous AI agents framework for AIngle semantic networks.

ยงOverview

HOPE Agents provides a complete framework for building autonomous AI agents that can:

  • Observe their environment (IoT sensors, network events, user inputs)
  • Decide based on learned policies and hierarchical goals
  • Execute actions in the AIngle network
  • Learn and adapt over time using reinforcement learning

This crate is designed for use cases ranging from simple reactive agents to complex multi-agent systems with learning capabilities

ยงArchitecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                       HOPE Agent                            โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚                                                              โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
โ”‚  โ”‚   Sensors    โ”‚  โ”‚   Policy     โ”‚  โ”‚    Actuators     โ”‚  โ”‚
โ”‚  โ”‚              โ”‚  โ”‚   Engine     โ”‚  โ”‚                  โ”‚  โ”‚
โ”‚  โ”‚ โ€ข IoT data   โ”‚โ”€โ–บโ”‚              โ”‚โ”€โ–บโ”‚ โ€ข Network calls  โ”‚  โ”‚
โ”‚  โ”‚ โ€ข Events     โ”‚  โ”‚ โ€ข Goals      โ”‚  โ”‚ โ€ข State changes  โ”‚  โ”‚
โ”‚  โ”‚ โ€ข Messages   โ”‚  โ”‚ โ€ข Rules      โ”‚  โ”‚ โ€ข Messages       โ”‚  โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚ โ€ข Learning   โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
โ”‚                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                         โ”‚
โ”‚                           โ”‚                                 โ”‚
โ”‚                    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                         โ”‚
โ”‚                    โ”‚   Memory     โ”‚                         โ”‚
โ”‚                    โ”‚ (Titans)     โ”‚                         โ”‚
โ”‚                    โ”‚              โ”‚                         โ”‚
โ”‚                    โ”‚ STM โ—„โ”€โ”€โ–บ LTM โ”‚                         โ”‚
โ”‚                    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                         โ”‚
โ”‚                                                              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

ยงQuick Start

ยงSimple Reactive Agent

โ“˜
use hope_agents::{Agent, SimpleAgent, Goal, Observation, Rule, Condition, Action};

// Create a simple reactive agent
let mut agent = SimpleAgent::new("sensor_monitor");

// Add a rule: if temperature > 30, alert
let rule = Rule::new(
    "high_temp",
    Condition::above("temperature", 30.0),
    Action::alert("Temperature too high!"),
);
agent.add_rule(rule);

// Process observations
let obs = Observation::sensor("temperature", 35.0);
agent.observe(obs.clone());
let action = agent.decide();
let result = agent.execute(action.clone());
agent.learn(&obs, &action, &result);

ยงHOPE Agent with Learning

โ“˜
use hope_agents::{HopeAgent, HopeConfig, Observation, Goal, Priority, Outcome};

// Create a HOPE agent with learning, prediction, and hierarchical goals
let mut agent = HopeAgent::with_default_config();

// Set a goal
let goal = Goal::maintain("temperature", 20.0..25.0)
    .with_priority(Priority::High);
agent.set_goal(goal);

// Agent loop with reinforcement learning
for episode in 0..100 {
    let obs = Observation::sensor("temperature", 22.0);
    let action = agent.step(obs.clone());

    // Execute action in environment and get reward
    let reward = 1.0; // Example reward
    let next_obs = Observation::sensor("temperature", 21.0);

    let outcome = Outcome::new(action, result, reward, next_obs, false);
    agent.learn(outcome);
}

ยงMulti-Agent Coordination

โ“˜
use hope_agents::{AgentCoordinator, HopeAgent, Message, Observation};
use std::collections::HashMap;

// Create coordinator
let mut coordinator = AgentCoordinator::new();

// Register agents
let agent1 = HopeAgent::with_default_config();
let agent2 = HopeAgent::with_default_config();

let id1 = coordinator.register_agent(agent1);
let id2 = coordinator.register_agent(agent2);

// Broadcast message
coordinator.broadcast(Message::new("update", "System status changed"));

// Step all agents
let mut observations = HashMap::new();
observations.insert(id1, Observation::sensor("temp", 20.0));
observations.insert(id2, Observation::sensor("humidity", 60.0));

let actions = coordinator.step_all(observations);

ยงState Persistence

โ“˜
use hope_agents::{HopeAgent, AgentPersistence};
use std::path::Path;

let mut agent = HopeAgent::with_default_config();

// Train the agent...

// Save agent state
agent.save_to_file(Path::new("agent_state.json")).unwrap();

// Later, load agent state
let loaded_agent = HopeAgent::load_from_file(Path::new("agent_state.json")).unwrap();

ยงAgent Types

  • ReactiveAgent: Simple stimulus-response behavior
  • GoalBasedAgent: Works toward explicit goals
  • LearningAgent: Adapts behavior over time
  • CooperativeAgent: Coordinates with other agents

Re-exportsยง

pub use action::Action;
pub use action::ActionResult;
pub use action::ActionType;
pub use agent::Agent;
pub use agent::AgentId;
pub use agent::AgentState;
pub use agent::SimpleAgent;
pub use config::AgentConfig;
pub use coordination::AgentCoordinator;
pub use coordination::ConsensusResult;
pub use coordination::CoordinationError;
pub use coordination::Message;
pub use coordination::MessageBus;
pub use coordination::MessageId;
pub use coordination::MessagePayload;
pub use coordination::MessagePriority;
pub use coordination::SharedMemory;
pub use error::Error;
pub use error::Result;
pub use goal::Goal;
pub use goal::GoalPriority;
pub use goal::GoalStatus;
pub use goal::GoalType;
pub use hierarchical::ConflictResolution;
pub use hierarchical::ConflictType;
pub use hierarchical::DecompositionResult;
pub use hierarchical::DecompositionRule;
pub use hierarchical::DecompositionStrategy;
pub use hierarchical::GoalConflict;
pub use hierarchical::GoalTree;
pub use hierarchical::GoalTypeFilter;
pub use hierarchical::HierarchicalGoalSolver;
pub use hierarchical::ParallelStrategy;
pub use hierarchical::SequentialStrategy;
pub use hierarchical::default_decomposition_rules;
pub use hope_agent::AgentStats;
pub use hope_agent::GoalSelectionStrategy;
pub use hope_agent::HopeAgent;
pub use hope_agent::HopeConfig;
pub use hope_agent::OperationMode;
pub use hope_agent::Outcome;
pub use hope_agent::SerializedState;
pub use learning::ActionId;
pub use learning::Experience;
pub use learning::LearningAlgorithm;
pub use learning::LearningConfig;
pub use learning::LearningEngine;
pub use learning::QValue;
pub use learning::StateActionPair;
pub use learning::StateId;
pub use observation::Observation;
pub use observation::ObservationType;
pub use observation::Sensor;
pub use persistence::AgentPersistence;
pub use persistence::CheckpointManager;
pub use persistence::LearningSnapshot;
pub use persistence::PersistenceError;
pub use persistence::PersistenceFormat;
pub use persistence::PersistenceOptions;
pub use policy::Condition;
pub use policy::Policy;
pub use policy::PolicyEngine;
pub use policy::Rule;
pub use predictive::AnomalyDetector;
pub use predictive::PredictedState;
pub use predictive::PredictiveConfig;
pub use predictive::PredictiveModel;
pub use predictive::StateEncoder;
pub use predictive::StateSnapshot;
pub use predictive::Trajectory;
pub use predictive::TransitionModel;
pub use types::*;

Modulesยง

action
Action types for HOPE Agents
agent
Agent implementations for HOPE framework
config
Configuration for HOPE Agents
coordination
Multi-Agent Coordination
error
Error types for HOPE Agents
goal
Goal types for HOPE Agents
hierarchical
Hierarchical goal decomposition and management for HOPE agents.
hope_agent
HOPE Agent Orchestrator
learning
Learning module for HOPE Agents
observation
Observation types for HOPE Agents
persistence
Agent State Persistence
policy
Policy engine for HOPE Agents
predictive
Predictive modeling for state and reward prediction in HOPE agents.
types
Core types for HOPE Agents

Constantsยง

VERSION
HOPE framework version

Functionsยง

create_agent
Create a simple agent with default configuration.
create_iot_agent
Create an IoT-optimized agent with reduced memory footprint.