HOPE Agents
Hierarchical Optimizing Policy Engine for AIngle AI agents.
Overview
HOPE Agents is a complete reinforcement learning framework for building autonomous AI agents that can:
- 🧠 Learn from experience using Q-Learning, SARSA, and TD algorithms
- 🎯 Plan hierarchically with goal decomposition and conflict resolution
- 🔮 Predict future states and detect anomalies
- 🤝 Coordinate with other agents through message passing and shared memory
- 💾 Persist state for checkpointing and transfer learning
Architecture
┌─────────────────────────────────────────────────────────────┐
│ HOPE Agent │
├─────────────────────────────────────────────────────────────┤
│ │
│ Observation → State → Decision → Action → Learning │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────┐ │
│ │ Predictive │ │ Hierarchical │ │ Learning │ │
│ │ Model │ │ Goal Solver │ │ Engine │ │
│ │ │ │ │ │ │ │
│ │ • Anomaly │ │ • Goals │ │ • Q-Learning │ │
│ │ • Forecast │ │ • Planning │ │ • SARSA │ │
│ │ • Patterns │ │ • Conflicts │ │ • TD Learning │ │
│ │ │ │ │ │ • Experience │ │
│ └──────────────┘ └──────────────┘ └──────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────┘
Features
✅ Complete (100%)
1. Learning Engine
- Algorithms: Q-Learning, SARSA, TD(λ), Expected SARSA
- Experience Replay: Prioritized replay buffer for efficient learning
- Exploration: Epsilon-greedy and Boltzmann exploration
- Value Functions: Tabular and linear function approximation
2. Hierarchical Goal Solver
- Goal Types: Achieve, Maintain, Avoid, Explore
- Decomposition: Automatic goal breakdown into subgoals
- Conflict Resolution: Detect and resolve goal conflicts
- Priorities: Support for goal prioritization
3. Predictive Model
- State Prediction: Forecast next states given actions
- Anomaly Detection: Statistical anomaly detection with z-scores
- Trajectory Planning: Multi-step lookahead
- Transition Model: Learn state transition dynamics
4. Multi-Agent Coordination
- Message Passing: Broadcast and direct messaging
- Shared Memory: Global key-value store for coordination
- Consensus: Voting-based group decision making
- Agent Registry: Dynamic agent registration/unregistration
5. State Persistence
- Formats: JSON, Binary, MessagePack
- Compression: Optional compression for efficient storage
- Checkpointing: Automatic periodic checkpointing
- Transfer Learning: Save and load trained agents
Quick Start
Simple Reactive Agent
use ;
// Create a simple reactive agent
let mut agent = new;
// Add a rule: if temperature > 30, alert
let rule = new;
agent.add_rule;
// Process observations
let obs = sensor;
agent.observe;
let action = agent.decide;
let result = agent.execute;
agent.learn;
HOPE Agent with Learning
use ;
// Create a HOPE agent with learning, prediction, and hierarchical goals
let mut agent = with_default_config;
// Set a goal
let goal = maintain
.with_priority;
agent.set_goal;
// Agent loop with reinforcement learning
for episode in 0..100
// Check statistics
let stats = agent.get_statistics;
println!;
println!;
Multi-Agent Coordination
use ;
use HashMap;
// Create coordinator
let mut coordinator = new;
// Register agents
let agent1 = with_default_config;
let agent2 = with_default_config;
let id1 = coordinator.register_agent;
let id2 = coordinator.register_agent;
// Broadcast message
coordinator.broadcast;
// Step all agents
let mut observations = new;
observations.insert;
observations.insert;
let actions = coordinator.step_all;
State Persistence
use ;
use Path;
let mut agent = with_default_config;
// Train the agent...
// Save agent state
agent.save_to_file.unwrap;
// Later, load agent state
let loaded_agent = load_from_file.unwrap;
// Or use checkpoint manager for automatic checkpointing
let mut manager = new
.with_interval;
// During training
for step in 0..10000
Operation Modes
HOPE agents support multiple operation modes:
- Exploration: High exploration rate for discovering new strategies
- Exploitation: Use learned knowledge for optimal performance
- GoalDriven: Balance exploration with goal achievement
- Adaptive: Automatically switch modes based on performance
agent.set_mode; // High exploration
agent.set_mode; // Pure exploitation
agent.set_mode; // Auto-adjust
Goal Management
Goal Types
// Achieve a target value
let goal = achieve;
// Maintain value in range
let goal = maintain;
// Avoid certain values
let goal = avoid;
// Explore and discover
let goal = explore;
Hierarchical Goals
Goals are automatically decomposed into subgoals:
let parent = achieve
.with_priority;
let goal_id = agent.set_goal;
// Automatically creates subgoals for different aspects
let active_goals = agent.active_goals;
Consensus and Coordination
Agents can make group decisions through voting:
let mut coordinator = new;
// Create proposal
let proposal_id = coordinator.create_proposal;
// Agents vote
// ... (voting happens through message passing) ...
// Check consensus
match coordinator.get_consensus
Configuration
IoT Mode
Optimized for resource-constrained devices:
use AgentConfig;
let config = iot_mode;
let agent = with_config;
// Features:
// - Limited memory (128KB)
// - Disabled learning
// - Reduced buffer sizes
Custom Configuration
use ;
let config = HopeConfig ;
let agent = new;
Performance
HOPE Agents is designed for high performance:
- 1000+ steps/second on modern hardware
- Efficient memory usage with configurable limits
- Incremental learning with no batch processing required
- Lock-free coordination for multi-agent scenarios
Benchmarks
Run benchmarks with:
Testing
Comprehensive test suite with 133 tests covering:
- Unit tests for all components
- Integration tests for complete workflows
- Multi-agent coordination scenarios
- Persistence roundtrip tests
- Performance tests
Run tests:
# All tests
# Specific module
# Integration tests
# With output
Examples
See the tests/integration_test.rs file for comprehensive examples demonstrating:
- Simple agent workflows
- Learning cycles with multiple episodes
- Multi-agent coordination
- Consensus mechanisms
- State persistence and checkpointing
- Anomaly detection
- Operation mode switching
API Documentation
Full API documentation is available at docs.rs/hope_agents.
Generate local documentation:
Integration with AIngle
HOPE Agents integrates seamlessly with the AIngle network:
// Observe network events
let obs = network_event;
// Execute actions on the network
let action = send_message;
// Store data in AIngle
let action = store_data;
Roadmap
Future enhancements (beyond 100%):
- Deep Q-Networks (DQN) support
- Policy gradient methods (PPO, A3C)
- Multi-objective optimization
- Distributed training
- Web assembly support
- Python bindings
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
License
Licensed under the Apache License, Version 2.0. See LICENSE for details.
Citation
If you use HOPE Agents in your research, please cite:
Support
- Documentation: https://docs.rs/hope_agents
- Issues: https://github.com/ApiliumCode/aingle/issues
Status: ✅ 100% Complete
All core features implemented, tested, and documented.