#[repr(C)]pub struct TypedRotation3D<T, Src, Dst> {
pub i: T,
pub j: T,
pub k: T,
pub r: T,
/* private fields */
}
Expand description
A transform that can represent rotations in 3d, represented as a quaternion.
Most methods expect the quaternion to be normalized.
When in doubt, use unit_quaternion
instead of quaternion
to create
a rotation as the former will ensure that its result is normalized.
Some people use the x, y, z, w
(or w, x, y, z
) notations. The equivalence is
as follows: x -> i
, y -> j
, z -> k
, w -> r
.
The memory layout of this type corresponds to the x, y, z, w
notation
Fields§
§i: T
Component multiplied by the imaginary number i
.
j: T
Component multiplied by the imaginary number j
.
k: T
Component multiplied by the imaginary number k
.
r: T
The real part.
Implementations§
Source§impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>
impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>
Sourcepub fn quaternion(a: T, b: T, c: T, r: T) -> TypedRotation3D<T, Src, Dst>
pub fn quaternion(a: T, b: T, c: T, r: T) -> TypedRotation3D<T, Src, Dst>
Creates a rotation around from a quaternion representation.
The parameters are a, b, c and r compose the quaternion a*i + b*j + c*k + r
where a
, b
and c
describe the vector part and the last parameter r
is
the real part.
The resulting quaternion is not necessarily normalized. See unit_quaternion
.
Source§impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>where
T: Copy,
impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>where
T: Copy,
Sourcepub fn vector_part(&self) -> TypedVector3D<T, UnknownUnit>
pub fn vector_part(&self) -> TypedVector3D<T, UnknownUnit>
Returns the vector part (i, j, k) of this quaternion.
Source§impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>where
T: Float,
impl<T, Src, Dst> TypedRotation3D<T, Src, Dst>where
T: Float,
Sourcepub fn identity() -> TypedRotation3D<T, Src, Dst>
pub fn identity() -> TypedRotation3D<T, Src, Dst>
Creates the identity rotation.
Sourcepub fn unit_quaternion(i: T, j: T, k: T, r: T) -> TypedRotation3D<T, Src, Dst>
pub fn unit_quaternion(i: T, j: T, k: T, r: T) -> TypedRotation3D<T, Src, Dst>
Creates a rotation around from a quaternion representation and normalizes it.
The parameters are a, b, c and r compose the quaternion a*i + b*j + c*k + r
before normalization, where a
, b
and c
describe the vector part and the
last parameter r
is the real part.
Sourcepub fn around_axis(
axis: TypedVector3D<T, Src>,
angle: Angle<T>,
) -> TypedRotation3D<T, Src, Dst>
pub fn around_axis( axis: TypedVector3D<T, Src>, angle: Angle<T>, ) -> TypedRotation3D<T, Src, Dst>
Creates a rotation around a given axis.
Sourcepub fn around_x(angle: Angle<T>) -> TypedRotation3D<T, Src, Dst>
pub fn around_x(angle: Angle<T>) -> TypedRotation3D<T, Src, Dst>
Creates a rotation around the x axis.
Sourcepub fn around_y(angle: Angle<T>) -> TypedRotation3D<T, Src, Dst>
pub fn around_y(angle: Angle<T>) -> TypedRotation3D<T, Src, Dst>
Creates a rotation around the y axis.
Sourcepub fn around_z(angle: Angle<T>) -> TypedRotation3D<T, Src, Dst>
pub fn around_z(angle: Angle<T>) -> TypedRotation3D<T, Src, Dst>
Creates a rotation around the z axis.
Sourcepub fn euler(
roll: Angle<T>,
pitch: Angle<T>,
yaw: Angle<T>,
) -> TypedRotation3D<T, Src, Dst>
pub fn euler( roll: Angle<T>, pitch: Angle<T>, yaw: Angle<T>, ) -> TypedRotation3D<T, Src, Dst>
Creates a rotation from Euler angles.
The rotations are applied in roll then pitch then yaw order.
- Roll (also called bank) is a rotation around the x axis.
- Pitch (also called bearing) is a rotation around the y axis.
- Yaw (also called heading) is a rotation around the z axis.
Sourcepub fn inverse(&self) -> TypedRotation3D<T, Dst, Src>
pub fn inverse(&self) -> TypedRotation3D<T, Dst, Src>
Returns the inverse of this rotation.
pub fn square_norm(&self) -> T
Sourcepub fn normalize(&self) -> TypedRotation3D<T, Src, Dst>
pub fn normalize(&self) -> TypedRotation3D<T, Src, Dst>
Returns a unit quaternion from this one.
pub fn is_normalized(&self) -> boolwhere
T: ApproxEq<T>,
Sourcepub fn slerp(
&self,
other: &TypedRotation3D<T, Src, Dst>,
t: T,
) -> TypedRotation3D<T, Src, Dst>where
T: ApproxEq<T>,
pub fn slerp(
&self,
other: &TypedRotation3D<T, Src, Dst>,
t: T,
) -> TypedRotation3D<T, Src, Dst>where
T: ApproxEq<T>,
Spherical linear interpolation between this rotation and another rotation.
t
is expected to be between zero and one.
Sourcepub fn lerp(
&self,
other: &TypedRotation3D<T, Src, Dst>,
t: T,
) -> TypedRotation3D<T, Src, Dst>
pub fn lerp( &self, other: &TypedRotation3D<T, Src, Dst>, t: T, ) -> TypedRotation3D<T, Src, Dst>
Basic Linear interpolation between this rotation and another rotation.
t
is expected to be between zero and one.
Sourcepub fn rotate_point3d(
&self,
point: &TypedPoint3D<T, Src>,
) -> TypedPoint3D<T, Dst>where
T: ApproxEq<T>,
pub fn rotate_point3d(
&self,
point: &TypedPoint3D<T, Src>,
) -> TypedPoint3D<T, Dst>where
T: ApproxEq<T>,
Returns the given 3d point transformed by this rotation.
The input point must be use the unit Src, and the returned point has the unit Dst.
Sourcepub fn rotate_point2d(
&self,
point: &TypedPoint2D<T, Src>,
) -> TypedPoint2D<T, Dst>where
T: ApproxEq<T>,
pub fn rotate_point2d(
&self,
point: &TypedPoint2D<T, Src>,
) -> TypedPoint2D<T, Dst>where
T: ApproxEq<T>,
Returns the given 2d point transformed by this rotation then projected on the xy plane.
The input point must be use the unit Src, and the returned point has the unit Dst.
Sourcepub fn rotate_vector3d(
&self,
vector: &TypedVector3D<T, Src>,
) -> TypedVector3D<T, Dst>where
T: ApproxEq<T>,
pub fn rotate_vector3d(
&self,
vector: &TypedVector3D<T, Src>,
) -> TypedVector3D<T, Dst>where
T: ApproxEq<T>,
Returns the given 3d vector transformed by this rotation.
The input vector must be use the unit Src, and the returned point has the unit Dst.
Sourcepub fn rotate_vector2d(
&self,
vector: &TypedVector2D<T, Src>,
) -> TypedVector2D<T, Dst>where
T: ApproxEq<T>,
pub fn rotate_vector2d(
&self,
vector: &TypedVector2D<T, Src>,
) -> TypedVector2D<T, Dst>where
T: ApproxEq<T>,
Returns the given 2d vector transformed by this rotation then projected on the xy plane.
The input vector must be use the unit Src, and the returned point has the unit Dst.
Sourcepub fn to_transform(&self) -> TypedTransform3D<T, Src, Dst>where
T: ApproxEq<T>,
pub fn to_transform(&self) -> TypedTransform3D<T, Src, Dst>where
T: ApproxEq<T>,
Returns the matrix representation of this rotation.
Sourcepub fn pre_rotate<NewSrc>(
&self,
other: &TypedRotation3D<T, NewSrc, Src>,
) -> TypedRotation3D<T, NewSrc, Dst>where
T: ApproxEq<T>,
pub fn pre_rotate<NewSrc>(
&self,
other: &TypedRotation3D<T, NewSrc, Src>,
) -> TypedRotation3D<T, NewSrc, Dst>where
T: ApproxEq<T>,
Returns a rotation representing the other rotation followed by this rotation.
Sourcepub fn post_rotate<NewDst>(
&self,
other: &TypedRotation3D<T, Dst, NewDst>,
) -> TypedRotation3D<T, Src, NewDst>where
T: ApproxEq<T>,
pub fn post_rotate<NewDst>(
&self,
other: &TypedRotation3D<T, Dst, NewDst>,
) -> TypedRotation3D<T, Src, NewDst>where
T: ApproxEq<T>,
Returns a rotation representing this rotation followed by the other rotation.
Trait Implementations§
Source§impl<T, Src, Dst> ApproxEq<T> for TypedRotation3D<T, Src, Dst>
impl<T, Src, Dst> ApproxEq<T> for TypedRotation3D<T, Src, Dst>
fn approx_epsilon() -> T
fn approx_eq(&self, other: &TypedRotation3D<T, Src, Dst>) -> bool
fn approx_eq_eps(&self, other: &TypedRotation3D<T, Src, Dst>, eps: &T) -> bool
Source§impl<T, Src, Dst> Clone for TypedRotation3D<T, Src, Dst>where
T: Clone,
impl<T, Src, Dst> Clone for TypedRotation3D<T, Src, Dst>where
T: Clone,
Source§fn clone(&self) -> TypedRotation3D<T, Src, Dst>
fn clone(&self) -> TypedRotation3D<T, Src, Dst>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl<T, Src, Dst> Debug for TypedRotation3D<T, Src, Dst>where
T: Debug,
impl<T, Src, Dst> Debug for TypedRotation3D<T, Src, Dst>where
T: Debug,
Source§impl<T, Src, Dst> Display for TypedRotation3D<T, Src, Dst>where
T: Display,
impl<T, Src, Dst> Display for TypedRotation3D<T, Src, Dst>where
T: Display,
Source§impl<'l> From<&'l TypedRotation3D<f32, UnknownUnit, UnknownUnit>> for Variant
impl<'l> From<&'l TypedRotation3D<f32, UnknownUnit, UnknownUnit>> for Variant
Source§fn from(val: &'l TypedRotation3D<f32, UnknownUnit, UnknownUnit>) -> Variant
fn from(val: &'l TypedRotation3D<f32, UnknownUnit, UnknownUnit>) -> Variant
Source§impl<T, Src, Dst> From<TypedRotation3D<T, Src, Dst>> for TypedRigidTransform3D<T, Src, Dst>
impl<T, Src, Dst> From<TypedRotation3D<T, Src, Dst>> for TypedRigidTransform3D<T, Src, Dst>
Source§fn from(rot: TypedRotation3D<T, Src, Dst>) -> TypedRigidTransform3D<T, Src, Dst>
fn from(rot: TypedRotation3D<T, Src, Dst>) -> TypedRigidTransform3D<T, Src, Dst>
Source§impl<T, Src, Dst> Hash for TypedRotation3D<T, Src, Dst>where
T: Hash,
impl<T, Src, Dst> Hash for TypedRotation3D<T, Src, Dst>where
T: Hash,
Source§impl<T, Src, Dst> PartialEq for TypedRotation3D<T, Src, Dst>where
T: PartialEq,
impl<T, Src, Dst> PartialEq for TypedRotation3D<T, Src, Dst>where
T: PartialEq,
Source§fn eq(&self, other: &TypedRotation3D<T, Src, Dst>) -> bool
fn eq(&self, other: &TypedRotation3D<T, Src, Dst>) -> bool
self
and other
values to be equal, and is used by ==
.