pub struct Machine<T>where
T: EntityId,{ /* private fields */ }
Expand description
Animation blending state machine is used to blend multiple animation as well as perform automatic smooth transitions between states.
§Terminology
Node
- is a part of sub-graph that backs states with animations. Typical nodes are PlayAnimation
, BlendAnimations
,
BlendAnimationsByIndex
, etc. Nodes can be connected forming a tree, some node could be marked as output - its animation
will be used in parent state.
State
- is a final source of animation for blending. There could be any number of states, for example typical
states are: run
, idle
, jump
etc. A state could be marked as entry state - it will be active at the first frame
when using the machine. There is always one state active.
Transition
- is a connection between states that has transition time, a link to a parameter that defines whether the
transition should be performed or not. Transition is directional; there could be any number of transitions between any
number of states (loops are allowed).
Parameter
- is a named variable of a fixed type (see Parameters
section for more info).
Layer
- is a separate state graph, there could be any number of layers - each with its own mask.
Mask
- a set of handles to nodes which will be excluded from animation on a layer.
Pose
- a final result of blending multiple animation into one.
Summarizing everything of this, we can describe animation blending state machine as a state graph, where each state has its own sub-graph (tree) that provides animation for blending. States can be connected via transitions.
§Parameters
Parameter is a named variable of a fixed type. Parameters are used as a data source in various places in the animation blending state machines. There are three main types of parameters:
Rule
- boolean value that used as a trigger for transitions. When transition is using some rule, it checks the value
of the parameter and if it is true
transition starts.
Weight
- real number (f32
) that is used a weight when you blending multiple animations into one.
Index
- natural number (i32
) that is used as an animation selector.
Each parameter has a name, it could be pretty much any string.
§Layers
Layer is a separate state graph. Layers mainly used to animate different parts of humanoid (but not only) characters. For example there could a layer for upper body and a layer for lower body. Upper body layer could contain animations for aiming, melee attacks while lower body layer could contain animations for standing, running, crouching, etc. This gives you an ability to have running character that could aim or melee attack, or crouching and aiming, and so on with any combination. Both layers use the same set of parameters, so a change in a parameter will affect all layers that use it.
§Examples
Let have a quick look at simple state machine graph with a single layer:
+-------------+
| Idle Anim |
+------+------+
|
Walk Weight |
+-----------+ +-------+ Walk->Idle Rule |
| Walk Anim +------+ | |
+-----------+ | | +-------+ +---+---+
| Blend | | +-------->+ |
| +------+ Walk | | Idle |
+-----------+ | | | +<--------+ |
| Aim Anim +------+ | +--+----+ +---+---+
+-----------+ +-------+ | ^
Aim Weight | Idle->Walk Rule |
| |
Walk->Run Rule | +---------+ | Run->Idle Rule
| | | |
+--->+ Run +---+
| |
+----+----+
|
|
+------+------+
| Run Anim |
+-------------+
Here we have Walk
, Idle
, Run
states which uses different sources of poses:
Run
andIdle
both directly uses respective animations as a pose source.Walk
- is the most complex here - it uses result of blending betweenAim
andWalk
animations with different weights. This is useful if your character can only walk or can walk and aim at the same time. Desired pose determined byWalk Weight
andAim Weight
parameters combination (seeParameters
section for more info). Note: Such blending is almost never used on practice, instead you should use multiple animation layers. This serves only as an example that the machine can blend animations.
There are four transitions between three states each with its own rule. Rule is just Rule parameter which can have boolean value that indicates that transition should be activated. The machine on the image above can be created using code like so:
use fyrox_animation::{
machine::{
Machine, State, Transition, PoseNode,
Parameter, PlayAnimation, PoseWeight, BlendAnimations, BlendPose
},
core::pool::Handle
};
use fyrox_core::pool::ErasedHandle;
// Assume that these are correct handles.
let idle_animation = Handle::default();
let walk_animation = Handle::default();
let aim_animation = Handle::default();
let mut machine = Machine::<ErasedHandle>::new();
let root_layer = &mut machine.layers_mut()[0];
let aim = root_layer.add_node(PoseNode::PlayAnimation(PlayAnimation::new(aim_animation)));
let walk = root_layer.add_node(PoseNode::PlayAnimation(PlayAnimation::new(walk_animation)));
// Blend two animations together
let blend_aim_walk = root_layer.add_node(PoseNode::BlendAnimations(
BlendAnimations::new(vec![
BlendPose::new(PoseWeight::Constant(0.75), aim),
BlendPose::new(PoseWeight::Constant(0.25), walk)
])
));
let walk_state = root_layer.add_state(State::new("Walk", blend_aim_walk));
let idle = root_layer.add_node(PoseNode::PlayAnimation(PlayAnimation::new(idle_animation)));
let idle_state = root_layer.add_state(State::new("Idle", idle));
root_layer.add_transition(Transition::new("Walk->Idle", walk_state, idle_state, 1.0, "WalkToIdle"));
root_layer.add_transition(Transition::new("Idle->Walk", idle_state, walk_state, 1.0, "IdleToWalk"));
This creates a machine with a single animation layer, fills it with some states that are backed by animation sources (either simple animation playback or animation blending). You can use multiple layers to animate a single model - for example one layer could be used for upper body of a character and other is lower body. This means that locomotion machine will take control over lower body and combat machine will control upper body.
Complex state machines quite hard to create from code, you should use ABSM editor instead whenever possible.
Implementations§
Source§impl<T> Machine<T>where
T: EntityId,
impl<T> Machine<T>where
T: EntityId,
Sourcepub fn new() -> Machine<T>
pub fn new() -> Machine<T>
Creates a new animation blending state machine with a single animation layer.
Sourcepub fn set_parameter(
&mut self,
id: &str,
new_value: Parameter,
) -> &mut Machine<T>
pub fn set_parameter( &mut self, id: &str, new_value: Parameter, ) -> &mut Machine<T>
Sets a value for existing parameter with given id or registers new parameter with given id and provided value. The method returns a reference to the machine, so the calls could be chained:
use fyrox_animation::machine::{Machine, Parameter};
use fyrox_core::pool::ErasedHandle;
let mut machine = Machine::<ErasedHandle>::new();
machine
.set_parameter("Run", Parameter::Rule(true))
.set_parameter("Jump", Parameter::Rule(false));
Sourcepub fn parameters(&self) -> &ParameterContainer
pub fn parameters(&self) -> &ParameterContainer
Returns a shared reference to the container with all parameters used by the animation blending state machine.
Sourcepub fn parameters_mut(&mut self) -> &mut ParameterContainer
pub fn parameters_mut(&mut self) -> &mut ParameterContainer
Returns a mutable reference to the container with all parameters used by the animation blending state machine.
Sourcepub fn add_layer(&mut self, layer: MachineLayer<T>)
pub fn add_layer(&mut self, layer: MachineLayer<T>)
Adds a new layer to the animation blending state machine.
Sourcepub fn remove_layer(&mut self, index: usize) -> MachineLayer<T>
pub fn remove_layer(&mut self, index: usize) -> MachineLayer<T>
Removes a layer at given index. Panics if index is out-of-bounds.
Sourcepub fn insert_layer(&mut self, index: usize, layer: MachineLayer<T>)
pub fn insert_layer(&mut self, index: usize, layer: MachineLayer<T>)
Inserts a layer at given position, panics in index is out-of-bounds.
Sourcepub fn pop_layer(&mut self) -> Option<MachineLayer<T>>
pub fn pop_layer(&mut self) -> Option<MachineLayer<T>>
Removes last layer from the list.
Sourcepub fn layers(&self) -> &[MachineLayer<T>]
pub fn layers(&self) -> &[MachineLayer<T>]
Returns a shared reference to the list of layers.
Sourcepub fn layers_mut(&mut self) -> &mut [MachineLayer<T>]
pub fn layers_mut(&mut self) -> &mut [MachineLayer<T>]
Returns a mutable reference to the list of layers.
Sourcepub fn find_layer_by_name_ref<S>(
&self,
name: S,
) -> Option<(usize, &MachineLayer<T>)>
pub fn find_layer_by_name_ref<S>( &self, name: S, ) -> Option<(usize, &MachineLayer<T>)>
Tries to find a layer by its name. Returns index of the layer and its reference.
Sourcepub fn find_by_name_mut<S>(
&mut self,
name: S,
) -> Option<(usize, &mut MachineLayer<T>)>
pub fn find_by_name_mut<S>( &mut self, name: S, ) -> Option<(usize, &mut MachineLayer<T>)>
Tries to find a layer by its name. Returns index of the layer and its reference.
Sourcepub fn pose(&self) -> &AnimationPose<T>
pub fn pose(&self) -> &AnimationPose<T>
Returns final pose of the machine.
Sourcepub fn evaluate_pose(
&mut self,
animations: &mut AnimationContainer<T>,
dt: f32,
) -> &AnimationPose<T>
pub fn evaluate_pose( &mut self, animations: &mut AnimationContainer<T>, dt: f32, ) -> &AnimationPose<T>
Computes final animation pose that could be then applied to a set of entities graph. This method will update all the animations used by the machine automatically. Make sure to not update the animations in the container before using this method. Otherwise your animations will be updated more than once, and they’ll play at higher speed and performance will also be decreased.
Trait Implementations§
Source§impl<T> Reflect for Machine<T>
impl<T> Reflect for Machine<T>
fn source_path() -> &'static str
fn type_name(&self) -> &'static str
fn doc(&self) -> &'static str
Source§fn assembly_name(&self) -> &'static str
fn assembly_name(&self) -> &'static str
#[derive(Reflect)]
) to ensure that this method will return correct assembly
name. In other words - there’s no guarantee, that any implementation other than proc-macro
will return a correct name of the assembly. Alternatively, you can use env!("CARGO_PKG_NAME")
as an implementation.Source§fn type_assembly_name() -> &'static str
fn type_assembly_name() -> &'static str
#[derive(Reflect)]
) to ensure that this method will return correct assembly
name. In other words - there’s no guarantee, that any implementation other than proc-macro
will return a correct name of the assembly. Alternatively, you can use env!("CARGO_PKG_NAME")
as an implementation.fn fields_info(&self, func: &mut dyn FnMut(&[FieldInfo<'_, '_>]))
fn into_any(self: Box<Machine<T>>) -> Box<dyn Any>
fn set( &mut self, value: Box<dyn Reflect>, ) -> Result<Box<dyn Reflect>, Box<dyn Reflect>>
fn as_any(&self, func: &mut dyn FnMut(&(dyn Any + 'static)))
fn as_any_mut(&mut self, func: &mut dyn FnMut(&mut (dyn Any + 'static)))
fn as_reflect(&self, func: &mut dyn FnMut(&(dyn Reflect + 'static)))
fn as_reflect_mut(&mut self, func: &mut dyn FnMut(&mut (dyn Reflect + 'static)))
fn fields(&self, func: &mut dyn FnMut(&[&(dyn Reflect + 'static)]))
fn fields_mut( &mut self, func: &mut dyn FnMut(&mut [&mut (dyn Reflect + 'static)]), )
fn field( &self, name: &str, func: &mut dyn FnMut(Option<&(dyn Reflect + 'static)>), )
fn field_mut( &mut self, name: &str, func: &mut dyn FnMut(Option<&mut (dyn Reflect + 'static)>), )
Source§fn set_field(
&mut self,
field: &str,
value: Box<dyn Reflect>,
func: &mut dyn FnMut(Result<Box<dyn Reflect>, Box<dyn Reflect>>),
)
fn set_field( &mut self, field: &str, value: Box<dyn Reflect>, func: &mut dyn FnMut(Result<Box<dyn Reflect>, Box<dyn Reflect>>), )
#[reflect(setter = ..)]
or falls back to
Reflect::field_mut
fn as_array(&self, func: &mut dyn FnMut(Option<&(dyn ReflectArray + 'static)>))
fn as_array_mut( &mut self, func: &mut dyn FnMut(Option<&mut (dyn ReflectArray + 'static)>), )
fn as_list(&self, func: &mut dyn FnMut(Option<&(dyn ReflectList + 'static)>))
fn as_list_mut( &mut self, func: &mut dyn FnMut(Option<&mut (dyn ReflectList + 'static)>), )
fn as_inheritable_variable( &self, func: &mut dyn FnMut(Option<&(dyn ReflectInheritableVariable + 'static)>), )
fn as_inheritable_variable_mut( &mut self, func: &mut dyn FnMut(Option<&mut (dyn ReflectInheritableVariable + 'static)>), )
fn as_hash_map( &self, func: &mut dyn FnMut(Option<&(dyn ReflectHashMap + 'static)>), )
fn as_hash_map_mut( &mut self, func: &mut dyn FnMut(Option<&mut (dyn ReflectHashMap + 'static)>), )
Source§impl<T> Visit for Machine<T>
impl<T> Visit for Machine<T>
Source§fn visit(&mut self, name: &str, visitor: &mut Visitor) -> Result<(), VisitError>
fn visit(&mut self, name: &str, visitor: &mut Visitor) -> Result<(), VisitError>
impl<T> StructuralPartialEq for Machine<T>where
T: EntityId,
Auto Trait Implementations§
impl<T> !Freeze for Machine<T>
impl<T> !RefUnwindSafe for Machine<T>
impl<T> Send for Machine<T>
impl<T> !Sync for Machine<T>
impl<T> Unpin for Machine<T>where
T: Unpin,
impl<T> !UnwindSafe for Machine<T>
Blanket Implementations§
Source§impl<T> AsyncTaskResult for T
impl<T> AsyncTaskResult for T
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Any
. Could be used to downcast a trait object
to a particular type.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Any
. Could be used to downcast a trait object
to a particular type.fn into_any(self: Box<T>) -> Box<dyn Any>
Source§impl<T> FieldValue for Twhere
T: 'static,
impl<T> FieldValue for Twhere
T: 'static,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> MessageData for T
impl<T> MessageData for T
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
Source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian()
.Source§impl<T> ReflectBase for Twhere
T: Reflect,
impl<T> ReflectBase for Twhere
T: Reflect,
fn as_any_raw(&self) -> &(dyn Any + 'static)
fn as_any_raw_mut(&mut self) -> &mut (dyn Any + 'static)
Source§impl<T> ResolvePath for Twhere
T: Reflect,
impl<T> ResolvePath for Twhere
T: Reflect,
fn resolve_path<'p>( &self, path: &'p str, func: &mut dyn FnMut(Result<&(dyn Reflect + 'static), ReflectPathError<'p>>), )
fn resolve_path_mut<'p>( &mut self, path: &'p str, func: &mut dyn FnMut(Result<&mut (dyn Reflect + 'static), ReflectPathError<'p>>), )
fn get_resolve_path<'p, T>(
&self,
path: &'p str,
func: &mut dyn FnMut(Result<&T, ReflectPathError<'p>>),
)where
T: Reflect,
fn get_resolve_path_mut<'p, T>(
&mut self,
path: &'p str,
func: &mut dyn FnMut(Result<&mut T, ReflectPathError<'p>>),
)where
T: Reflect,
Source§impl<T> ScriptMessagePayload for T
impl<T> ScriptMessagePayload for T
Source§fn as_any_ref(&self) -> &(dyn Any + 'static)
fn as_any_ref(&self) -> &(dyn Any + 'static)
self
as &dyn Any
Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
self
as &dyn Any
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.