Struct fj_kernel::algorithms::approx::ApproxPoint
source · pub struct ApproxPoint<const D: usize> {
pub local_form: Point<D>,
pub global_form: Point<3>,
pub source: Option<Rc<dyn Source>>,
}Expand description
A point from an approximation, with local and global forms
Fields§
§local_form: Point<D>The local form of the point
global_form: Point<3>The global form of the points
source: Option<Rc<dyn Source>>The optional source of the point
Implementations§
source§impl<const D: usize> ApproxPoint<D>
impl<const D: usize> ApproxPoint<D>
sourcepub fn new(local_form: Point<D>, global_form: Point<3>) -> Self
pub fn new(local_form: Point<D>, global_form: Point<3>) -> Self
Create an instance of ApproxPoint, without a source
Examples found in repository?
src/algorithms/approx/edge.rs (lines 29-32)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let [a, b] = self.vertices();
let boundary = [a, b].map(|vertex| vertex.position());
let range = RangeOnPath { boundary };
let first = ApproxPoint::new(
a.surface_form().position(),
a.global_form().position(),
);
let curve_approx =
(self.curve(), range).approx_with_cache(tolerance, cache);
HalfEdgeApprox {
first,
curve_approx,
}
}More examples
src/algorithms/approx/curve.rs (line 47)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let (curve, range) = self;
let global_curve = curve.global_form().clone();
let global_curve_approx = match cache.get(global_curve.clone(), range) {
Some(approx) => approx,
None => {
let approx = approx_global_curve(curve, range, tolerance);
cache.insert(global_curve, range, approx)
}
};
CurveApprox::empty().with_points(
global_curve_approx.points.into_iter().map(|point| {
let point_surface =
curve.path().point_from_path_coords(point.local_form);
ApproxPoint::new(point_surface, point.global_form)
.with_source((curve.clone(), point.local_form))
}),
)
}
}
fn approx_global_curve(
curve: &Curve,
range: RangeOnPath,
tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
// There are different cases of varying complexity. Circles are the hard
// part here, as they need to be approximated, while lines don't need to be.
//
// This will probably all be unified eventually, as `SurfacePath` and
// `GlobalPath` grow APIs that are better suited to implementing this code
// in a more abstract way.
let points = match (curve.path(), curve.surface().geometry().u) {
(SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
todo!(
"Approximating a circle on a curved surface not supported yet."
)
}
(SurfacePath::Circle(_), GlobalPath::Line(_)) => {
(curve.path(), range)
.approx_with_cache(tolerance, &mut ())
.into_iter()
.map(|(point_curve, point_surface)| {
// We're throwing away `point_surface` here, which is a bit
// weird, as we're recomputing it later (outside of this
// function).
//
// It should be fine though:
//
// 1. We're throwing this version away, so there's no danger
// of inconsistency between this and the later version.
// 2. This version should have been computed using the same
// path and parameters and the later version will be, so
// they should be the same anyway.
// 3. Not all other cases handled in this function have a
// surface point available, so it needs to be computed
// later anyway, in the general case.
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
(point_curve, point_global)
})
.collect()
}
(SurfacePath::Line(line), _) => {
let range_u =
RangeOnPath::from(range.boundary.map(|point_curve| {
[curve.path().point_from_path_coords(point_curve).u]
}));
let approx_u = (curve.surface().geometry().u, range_u)
.approx_with_cache(tolerance, &mut ());
let mut points = Vec::new();
for (u, _) in approx_u {
let t = (u.t - line.origin().u) / line.direction().u;
let point_surface = curve.path().point_from_path_coords([t]);
let point_global = curve
.surface()
.geometry()
.point_from_surface_coords(point_surface);
points.push((u, point_global));
}
points
}
};
let points = points
.into_iter()
.map(|(point_curve, point_global)| {
ApproxPoint::new(point_curve, point_global)
})
.collect();
GlobalCurveApprox { points }
}sourcepub fn with_source(self, source: impl Source) -> Self
pub fn with_source(self, source: impl Source) -> Self
Attach a source to the point
Examples found in repository?
src/algorithms/approx/curve.rs (line 48)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let (curve, range) = self;
let global_curve = curve.global_form().clone();
let global_curve_approx = match cache.get(global_curve.clone(), range) {
Some(approx) => approx,
None => {
let approx = approx_global_curve(curve, range, tolerance);
cache.insert(global_curve, range, approx)
}
};
CurveApprox::empty().with_points(
global_curve_approx.points.into_iter().map(|point| {
let point_surface =
curve.path().point_from_path_coords(point.local_form);
ApproxPoint::new(point_surface, point.global_form)
.with_source((curve.clone(), point.local_form))
}),
)
}Trait Implementations§
source§impl<const D: usize> Clone for ApproxPoint<D>
impl<const D: usize> Clone for ApproxPoint<D>
source§fn clone(&self) -> ApproxPoint<D>
fn clone(&self) -> ApproxPoint<D>
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl<const D: usize> Debug for ApproxPoint<D>
impl<const D: usize> Debug for ApproxPoint<D>
source§impl<const D: usize> Hash for ApproxPoint<D>
impl<const D: usize> Hash for ApproxPoint<D>
source§impl<const D: usize> Ord for ApproxPoint<D>
impl<const D: usize> Ord for ApproxPoint<D>
source§impl<const D: usize> PartialEq<ApproxPoint<D>> for ApproxPoint<D>
impl<const D: usize> PartialEq<ApproxPoint<D>> for ApproxPoint<D>
source§impl<const D: usize> PartialOrd<ApproxPoint<D>> for ApproxPoint<D>
impl<const D: usize> PartialOrd<ApproxPoint<D>> for ApproxPoint<D>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moreimpl<const D: usize> Eq for ApproxPoint<D>
Auto Trait Implementations§
impl<const D: usize> !RefUnwindSafe for ApproxPoint<D>
impl<const D: usize> !Send for ApproxPoint<D>
impl<const D: usize> !Sync for ApproxPoint<D>
impl<const D: usize> Unpin for ApproxPoint<D>
impl<const D: usize> !UnwindSafe for ApproxPoint<D>
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.