1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//! Curve approximation
//!
//! Since curves are infinite (even circles have an infinite coordinate space,
//! even though they connect to themselves in global coordinates), a range must
//! be provided to approximate them. The approximation then returns points
//! within that range.
//!
//! The boundaries of the range are not included in the approximation. This is
//! done, to give the caller (who knows the boundary anyway) more options on how
//! to further process the approximation.

use std::collections::BTreeMap;

use crate::{
    geometry::path::{GlobalPath, SurfacePath},
    objects::{Curve, GlobalCurve},
    storage::{Handle, ObjectId},
};

use super::{path::RangeOnPath, Approx, ApproxPoint, Tolerance};

impl Approx for (&Handle<Curve>, RangeOnPath) {
    type Approximation = CurveApprox;
    type Cache = CurveCache;

    fn approx_with_cache(
        self,
        tolerance: impl Into<Tolerance>,
        cache: &mut Self::Cache,
    ) -> Self::Approximation {
        let (curve, range) = self;

        let global_curve = curve.global_form().clone();
        let global_curve_approx = match cache.get(global_curve.clone(), range) {
            Some(approx) => approx,
            None => {
                let approx = approx_global_curve(curve, range, tolerance);
                cache.insert(global_curve, range, approx)
            }
        };

        CurveApprox::empty().with_points(
            global_curve_approx.points.into_iter().map(|point| {
                let point_surface =
                    curve.path().point_from_path_coords(point.local_form);

                ApproxPoint::new(point_surface, point.global_form)
                    .with_source((curve.clone(), point.local_form))
            }),
        )
    }
}

fn approx_global_curve(
    curve: &Curve,
    range: RangeOnPath,
    tolerance: impl Into<Tolerance>,
) -> GlobalCurveApprox {
    // There are different cases of varying complexity. Circles are the hard
    // part here, as they need to be approximated, while lines don't need to be.
    //
    // This will probably all be unified eventually, as `SurfacePath` and
    // `GlobalPath` grow APIs that are better suited to implementing this code
    // in a more abstract way.
    let points = match (curve.path(), curve.surface().geometry().u) {
        (SurfacePath::Circle(_), GlobalPath::Circle(_)) => {
            todo!(
                "Approximating a circle on a curved surface not supported yet."
            )
        }
        (SurfacePath::Circle(_), GlobalPath::Line(_)) => {
            (curve.path(), range)
                .approx_with_cache(tolerance, &mut ())
                .into_iter()
                .map(|(point_curve, point_surface)| {
                    // We're throwing away `point_surface` here, which is a bit
                    // weird, as we're recomputing it later (outside of this
                    // function).
                    //
                    // It should be fine though:
                    //
                    // 1. We're throwing this version away, so there's no danger
                    //    of inconsistency between this and the later version.
                    // 2. This version should have been computed using the same
                    //    path and parameters and the later version will be, so
                    //    they should be the same anyway.
                    // 3. Not all other cases handled in this function have a
                    //    surface point available, so it needs to be computed
                    //    later anyway, in the general case.

                    let point_global = curve
                        .surface()
                        .geometry()
                        .point_from_surface_coords(point_surface);
                    (point_curve, point_global)
                })
                .collect()
        }
        (SurfacePath::Line(line), _) => {
            let range_u =
                RangeOnPath::from(range.boundary.map(|point_curve| {
                    [curve.path().point_from_path_coords(point_curve).u]
                }));

            let approx_u = (curve.surface().geometry().u, range_u)
                .approx_with_cache(tolerance, &mut ());

            let mut points = Vec::new();
            for (u, _) in approx_u {
                let t = (u.t - line.origin().u) / line.direction().u;
                let point_surface = curve.path().point_from_path_coords([t]);
                let point_global = curve
                    .surface()
                    .geometry()
                    .point_from_surface_coords(point_surface);
                points.push((u, point_global));
            }

            points
        }
    };

    let points = points
        .into_iter()
        .map(|(point_curve, point_global)| {
            ApproxPoint::new(point_curve, point_global)
        })
        .collect();
    GlobalCurveApprox { points }
}

/// An approximation of a [`Curve`]
#[derive(Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct CurveApprox {
    /// The points that approximate the curve
    pub points: Vec<ApproxPoint<2>>,
}

impl CurveApprox {
    /// Create an empty instance of `CurveApprox`
    pub fn empty() -> Self {
        Self { points: Vec::new() }
    }

    /// Add points to the approximation
    pub fn with_points(
        mut self,
        points: impl IntoIterator<Item = ApproxPoint<2>>,
    ) -> Self {
        self.points.extend(points);
        self
    }
}

/// A cache for results of an approximation
#[derive(Default)]
pub struct CurveCache {
    inner: BTreeMap<(ObjectId, RangeOnPath), GlobalCurveApprox>,
}

impl CurveCache {
    /// Create an empty cache
    pub fn new() -> Self {
        Self::default()
    }

    /// Insert the approximation of a [`GlobalCurve`]
    pub fn insert(
        &mut self,
        handle: Handle<GlobalCurve>,
        range: RangeOnPath,
        approx: GlobalCurveApprox,
    ) -> GlobalCurveApprox {
        self.inner.insert((handle.id(), range), approx.clone());
        approx
    }

    /// Access the approximation for the given [`GlobalCurve`], if available
    pub fn get(
        &self,
        handle: Handle<GlobalCurve>,
        range: RangeOnPath,
    ) -> Option<GlobalCurveApprox> {
        self.inner.get(&(handle.id(), range)).cloned()
    }
}

/// An approximation of a [`GlobalCurve`]
#[derive(Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct GlobalCurveApprox {
    /// The points that approximate the curve
    pub points: Vec<ApproxPoint<1>>,
}

#[cfg(test)]
mod tests {
    use std::f64::consts::TAU;

    use pretty_assertions::assert_eq;

    use crate::{
        algorithms::approx::{path::RangeOnPath, Approx, ApproxPoint},
        builder::{CurveBuilder, SurfaceBuilder},
        geometry::path::GlobalPath,
        insert::Insert,
        partial::{Partial, PartialCurve, PartialObject, PartialSurface},
        services::Services,
    };

    use super::CurveApprox;

    #[test]
    fn approx_line_on_flat_surface() {
        let mut services = Services::new();

        let surface = services.objects.surfaces.xz_plane();
        let mut curve = PartialCurve {
            surface: Partial::from(surface),
            ..Default::default()
        };
        curve.update_as_line_from_points([[1., 1.], [2., 1.]]);
        let curve = curve
            .build(&mut services.objects)
            .insert(&mut services.objects);
        let range = RangeOnPath::from([[0.], [1.]]);

        let approx = (&curve, range).approx(1.);

        assert_eq!(approx, CurveApprox::empty());
    }

    #[test]
    fn approx_line_on_curved_surface_but_not_along_curve() {
        let mut services = Services::new();

        let surface = PartialSurface::from_axes(
            GlobalPath::circle_from_radius(1.),
            [0., 0., 1.],
        )
        .build(&mut services.objects)
        .insert(&mut services.objects);
        let mut curve = PartialCurve {
            surface: Partial::from(surface),
            ..Default::default()
        };
        curve.update_as_line_from_points([[1., 1.], [1., 2.]]);
        let curve = curve
            .build(&mut services.objects)
            .insert(&mut services.objects);
        let range = RangeOnPath::from([[0.], [1.]]);

        let approx = (&curve, range).approx(1.);

        assert_eq!(approx, CurveApprox::empty());
    }

    #[test]
    fn approx_line_on_curved_surface_along_curve() {
        let mut services = Services::new();

        let path = GlobalPath::circle_from_radius(1.);
        let surface = PartialSurface::from_axes(path, [0., 0., 1.])
            .build(&mut services.objects)
            .insert(&mut services.objects);
        let mut curve = PartialCurve {
            surface: Partial::from(surface.clone()),
            ..Default::default()
        };
        curve.update_as_line_from_points([[0., 1.], [1., 1.]]);
        let curve = curve
            .build(&mut services.objects)
            .insert(&mut services.objects);

        let range = RangeOnPath::from([[0.], [TAU]]);
        let tolerance = 1.;

        let approx = (&curve, range).approx(tolerance);

        let expected_approx = (path, range)
            .approx(tolerance)
            .into_iter()
            .map(|(point_local, _)| {
                let point_surface =
                    curve.path().point_from_path_coords(point_local);
                let point_global =
                    surface.geometry().point_from_surface_coords(point_surface);
                ApproxPoint::new(point_surface, point_global)
            })
            .collect::<Vec<_>>();
        assert_eq!(approx.points, expected_approx);
    }

    #[test]
    fn approx_circle_on_flat_surface() {
        let mut services = Services::new();

        let surface = services.objects.surfaces.xz_plane();
        let mut curve = PartialCurve {
            surface: Partial::from(surface),
            ..Default::default()
        };
        curve.update_as_circle_from_radius(1.);
        let curve = curve
            .build(&mut services.objects)
            .insert(&mut services.objects);

        let range = RangeOnPath::from([[0.], [TAU]]);
        let tolerance = 1.;
        let approx = (&curve, range).approx(tolerance);

        let expected_approx = (curve.path(), range)
            .approx(tolerance)
            .into_iter()
            .map(|(_, point_surface)| {
                let point_global = curve
                    .surface()
                    .geometry()
                    .point_from_surface_coords(point_surface);
                ApproxPoint::new(point_surface, point_global)
            })
            .collect::<Vec<_>>();
        assert_eq!(approx.points, expected_approx);
    }
}